Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Optimal and Diffusion Transports in Machine Lea...

Gabriel Peyré
January 15, 2025

Optimal and Diffusion Transports in Machine Learning

Slides for a general introduction to the use of Optimal Transport methods in learning, with an emphasis on diffusion models, flow matching, training 2 layers neural networks and deep transformers.

Gabriel Peyré

January 15, 2025
Tweet

More Decks by Gabriel Peyré

Other Decks in Research

Transcript

  1. Gabriel Peyré É C O L E N O R

    M A L E S U P É R I E U R E Optimal and Diffusion Transports in Machine Learning to be or not to be a gradient ∇
  2. Generative AI: auto-regressive vs. transport Raconte de façon rigolotte l'histoire

    d'un chercheur CNRS qui présente l’IA générative devant un large auditoire. Le professeur Jacques Leclair, célèbre directeur de l’Institut de Mathématiques du CNRS, monte sur scène avec l’enthousiasme d’un enfant qui vient de découvrir que son yaourt préféré a un nouveau goût. Devant lui, un large auditoire aux regards curieux. “Aujourd’hui, mes amis,” commence-t-il avec un clin d’œil complice, “je vais vous prouver que les mathématiques peuvent être aussi cool qu’un chaton jouant avec une pelote de laine… et je parle bien sûr de l’IA générative!”. Représente un chercheur en mathématiques en train de présenter l’IA générative devant un large auditoire. DALL·E 2
  3. Generative AI: auto-regressive vs. transport Raconte de façon rigolotte l'histoire

    d'un chercheur CNRS qui présente l’IA générative devant un large auditoire. Le professeur Jacques Leclair, célèbre directeur de l’Institut de Mathématiques du CNRS, monte sur scène avec l’enthousiasme d’un enfant qui vient de découvrir que son yaourt préféré a un nouveau goût. Devant lui, un large auditoire aux regards curieux. “Aujourd’hui, mes amis,” commence-t-il avec un clin d’œil complice, “je vais vous prouver que les mathématiques peuvent être aussi cool qu’un chaton jouant avec une pelote de laine… et je parle bien sûr de l’IA générative!”. Représente un chercheur en mathématiques en train de présenter l’IA générative devant un large auditoire. DALL·E 2 Le professeur Jacques Leclair, célèbre directeur de l’Institut de Mathématiques du CNRS monte Pre-training: next token prediction. Generation: auto-regressive. Pre-training: denoising. Generation: dynamic transport.
  4. Eulerian vs. Lagrangian representations Evolution of distributions t → αt

    Sampling (flow matching) Optimization (perceptron) Transformers (depth) samples neurons tokens α0 α1 αt x(0) x(t) Genomics (developpement) cells
  5. Eulerian vs. Lagrangian representations Evolution of distributions t → αt

    Sampling (flow matching) Optimization (perceptron) Transformers (depth) samples neurons tokens α0 α1 αt v0 v1 vt x(0) x(t) Eulerian Lagrangian αt vt div(αt vt ) + ∂αt ∂t = 0 Genomics (developpement) cells
  6. Eulerian vs. Lagrangian representations Evolution of distributions t → αt

    Sampling (flow matching) Optimization (perceptron) Transformers (depth) samples neurons tokens Transport map: T : x(0) ↦ x(1), dx(t) dt = vt (x(t)) if then X0 ∼ α0 T(X0 ) ∼ α1 Sampling by transport: α0 α1 αt v0 v1 vt x(0) x(t) Eulerian Lagrangian αt vt div(αt vt ) + ∂αt ∂t = 0 Genomics (developpement) cells
  7. Gradient Structure Riemannian structure at : α ∥v∥2 L2(α) :=

    ∫ ℝd ∥v(x)∥2dα(x) Otto’s Calculus Density manifold Felix Otto John Lafferty Eulerian αt Lagrangian vt ?
  8. Gradient Structure Riemannian structure at : α ∥v∥2 L2(α) :=

    ∫ ℝd ∥v(x)∥2dα(x) Otto’s Calculus Density manifold Felix Otto John Lafferty Least squares inversion: min vt {∫ 1 0 ∫ ℝd ∥vt (x)∥2 dαt (x) dt : div(αt vt ) + ∂αt ∂t = 0} Optimality conditions: vt = ∇ψt ψt = − Δ−1 αt [∂t αt ] Δα ψ := div(α∇ψ) Eulerian αt Lagrangian vt ?
  9. Gradient Structure Riemannian structure at : α ∥v∥2 L2(α) :=

    ∫ ℝd ∥v(x)∥2dα(x) Otto’s Calculus Density manifold Felix Otto John Lafferty Intractable in high dimension. → Leverage specific structure of → αt Flow matching Stochastic interpolant Optimal transport Least squares inversion: min vt {∫ 1 0 ∫ ℝd ∥vt (x)∥2 dαt (x) dt : div(αt vt ) + ∂αt ∂t = 0} Optimality conditions: vt = ∇ψt ψt = − Δ−1 αt [∂t αt ] Δα ψ := div(α∇ψ) Eulerian αt Lagrangian vt ?
  10. α0 αt α1 Flow Matching and Diffusion Stochastic interpolant (convolution):

    X0 ∼ α0 , X1 ∼ α1 X0 , X1 indepentant . where αt := Law((1 − t)X0 +tX1 )
  11. α0 αt α1 Flow Matching and Diffusion Stochastic interpolant (convolution):

    X0 ∼ α0 , X1 ∼ α1 X0 , X1 indepentant . where αt := Law((1 − t)X0 +tX1 )
  12. α0 αt α1 Flow Matching and Diffusion Stochastic interpolant (convolution):

    X0 ∼ α0 , X1 ∼ α1 X0 , X1 indepentant . where αt := Law((1 − t)X0 +tX1 ) Flow matching: → infvt ∫ ∥x1 − x0 − vt ((1 − t)x0 +tx1 )∥2 dα0 (x0 )dα1 (x1 )dt Prop: vt (x) = 𝔼 X1 X0 [X1 − X0 | x = (1 − t)X0 +tX1] div(αt vt ) + ∂αt ∂t = 0 satisfies x
  13. α0 αt α1 Flow Matching and Diffusion Stochastic interpolant (convolution):

    X0 ∼ α0 , X1 ∼ α1 X0 , X1 indepentant . where min vt {∫ 1 0 ∫ ℝd ∥vt (x)∥2 dαt (x) dt : div(αt vt ) + ∂αt ∂t = 0} Proposition: if , solves α0 = 𝒩 (0,Id) vt (Equivalent to diffusion model) αt := Law((1 − t)X0 +tX1 ) Flow matching: → infvt ∫ ∥x1 − x0 − vt ((1 − t)x0 +tx1 )∥2 dα0 (x0 )dα1 (x1 )dt Prop: vt (x) = 𝔼 X1 X0 [X1 − X0 | x = (1 − t)X0 +tX1] div(αt vt ) + ∂αt ∂t = 0 satisfies x
  14. min vt {∫ ∥vt ∥2 L2(αt ) dt : div(αt

    vt ) + ∂t αt = 0} Diffusion model: α0 αt α1 Diffusion vs Optimal Transport αt := Law((1 − t)X0 +tX1 )
  15. min vt {∫ ∥vt ∥2 L2(αt ) dt : div(αt

    vt ) + ∂t αt = 0} Diffusion model: α0 αt α1 Diffusion vs Optimal Transport Optimal transport: min vt ,αt {∫ ∥vt ∥2 L2(αt ) dt : div(αt vt ) + ∂t αt = 0} =: W2 (α0 , α1 )2 (Wasserstein distance) T αt := Law((1 − t)X0 +tX1 )
  16. min vt {∫ ∥vt ∥2 L2(αt ) dt : div(αt

    vt ) + ∂t αt = 0} Diffusion model: α0 αt α1 Theorem: [Benamou-Brenier] W2 (α0 , α1 )2 = inf T {∫ ∥x − T(x)∥2dα0 (x) : T♯ α0 = α1} αt = ((1 − t)Id + tT)♯ α0 Yann Brenier Jean-David Benamou Gaspard Monge Diffusion vs Optimal Transport Optimal transport: min vt ,αt {∫ ∥vt ∥2 L2(αt ) dt : div(αt vt ) + ∂t αt = 0} =: W2 (α0 , α1 )2 (Wasserstein distance) T αt := Law((1 − t)X0 +tX1 )
  17. αt+τ := arg min α 1 2τ W2 (αt ,

    α)2 + f(α) Implicit Euler step: Wasserstein Gradient Flows Felix Otto David Kinderlehrer Richard Jordan αt αt+τ αt+2τ Optimization over distributions: min α f(α)
  18. αt+τ := arg min α 1 2τ W2 (αt ,

    α)2 + f(α) Implicit Euler step: Wasserstein Gradient Flows ∂αt ∂t + div(vt αt ) = 0 τ → 0 Proposition: on can take vt = − ∇W f(α) := − ∇ℝd [δf(α)] Frechet derivative: f(α + τβ) = f(α) + τ∫ [δf(α)]dβ + o(τ) Felix Otto David Kinderlehrer Richard Jordan αt αt+τ αt+2τ Optimization over distributions: min α f(α)
  19. αt+τ := arg min α 1 2τ W2 (αt ,

    α)2 + f(α) Implicit Euler step: Single Dirac: αt = δx(t) , x(t + τ) := arg min x 1 2τ ∥x−x(t)∥2 + h(x) h(x) := f(δx ) dx(t) dt = − ∇h(x(t)) Wasserstein Gradient Flows ∂αt ∂t + div(vt αt ) = 0 τ → 0 Proposition: on can take vt = − ∇W f(α) := − ∇ℝd [δf(α)] Frechet derivative: f(α + τβ) = f(α) + τ∫ [δf(α)]dβ + o(τ) Felix Otto David Kinderlehrer Richard Jordan αt αt+τ αt+2τ x(t) x(t + τ) x(t + 2τ) Optimization over distributions: min α f(α)
  20. αt+τ := arg min α 1 2τ W2 (αt ,

    α)2 + f(α) Implicit Euler step: Single Dirac: αt = δx(t) , x(t + τ) := arg min x 1 2τ ∥x−x(t)∥2 + h(x) h(x) := f(δx ) dx(t) dt = − ∇h(x(t)) Wasserstein Gradient Flows ∂αt ∂t + div(vt αt ) = 0 τ → 0 Proposition: on can take vt = − ∇W f(α) := − ∇ℝd [δf(α)] Frechet derivative: f(α + τβ) = f(α) + τ∫ [δf(α)]dβ + o(τ) Felix Otto David Kinderlehrer Richard Jordan Linear: f(α) = ∫ h(x)dα(x) ∇W f(α) = ∇h Neg-entropy: f(α) = ∫ log(dα dx (x))dα(x) ∇W f(α) = ∇log(dα dx ) Quadratic: f(α) := ∬ k(x, y)dα(x)dα(y) ∇W f(α) = 2∫ ∇x k(x, y)dα(y) ∂αt ∂t = Δαt dx(t) dt = − ∇h(x(t)) Interacting particles αt αt+τ αt+2τ x(t) x(t + τ) x(t + 2τ) Optimization over distributions: min α f(α)
  21. Training Dynamics of 2 layers MLP 2 layers perceptron: ϕx

    (z) = u σ(⟨z, v⟩) σ (uk )k (vk )k z g(x1 ,…,xn ) (z) g(x1 ,…,xn ) (z) := 1 n ∑n k=1 ϕxk (z) parameters , x = (u, v)
  22. min x1 ,…,xn F(x1 , …, xn ) := ∑

    i ∥gx1 ,…,xn (zi ) − yi ∥2 Training dxi (t) dt = − ∇xi F(xi (t)) Training Dynamics of 2 layers MLP 2 layers perceptron: ϕx (z) = u σ(⟨z, v⟩) σ (uk )k (vk )k z g(x1 ,…,xn ) (z) g(x1 ,…,xn ) (z) := 1 n ∑n k=1 ϕxk (z) parameters , x = (u, v)
  23. min x1 ,…,xn F(x1 , …, xn ) := ∑

    i ∥gx1 ,…,xn (zi ) − yi ∥2 Training dxi (t) dt = − ∇xi F(xi (t)) Training Dynamics of 2 layers MLP f(α) = ∫ kdα ⊗ α + ∫ hdα k(θ, θ′  ) := ∑ i ⟨ϕθ (zi )ϕθ′  (zi )⟩ h(θ) := − ∑ i ⟨yi , ϕθ (zi )⟩ α = 1 n ∑ k δxk minα f(α) := ∑ i ∥Gα (zi ) − yi ∥2 ∂αt ∂t − div(∇W f(αt ) αt ) = 0 Gα (z) := ∫ ϕθ (z)dα(θ) 2 layers perceptron: ϕx (z) = u σ(⟨z, v⟩) σ (uk )k (vk )k z g(x1 ,…,xn ) (z) g(x1 ,…,xn ) (z) := 1 n ∑n k=1 ϕxk (z) parameters , x = (u, v)
  24. min x1 ,…,xn F(x1 , …, xn ) := ∑

    i ∥gx1 ,…,xn (zi ) − yi ∥2 Training dxi (t) dt = − ∇xi F(xi (t)) Training Dynamics of 2 layers MLP f(α) = ∫ kdα ⊗ α + ∫ hdα k(θ, θ′  ) := ∑ i ⟨ϕθ (zi )ϕθ′  (zi )⟩ h(θ) := − ∑ i ⟨yi , ϕθ (zi )⟩ α = 1 n ∑ k δxk minα f(α) := ∑ i ∥Gα (zi ) − yi ∥2 ∂αt ∂t − div(∇W f(αt ) αt ) = 0 Gα (z) := ∫ ϕθ (z)dα(θ) 2 layers perceptron: ϕx (z) = u σ(⟨z, v⟩) Theorem: for perceptrons, if has enough neurons, can only converge to a global minimum. αt=0 αt « Global » convergence, despite not being convex. → F Lenaic Chizat Francis Bach σ (uk )k (vk )k z g(x1 ,…,xn ) (z) g(x1 ,…,xn ) (z) := 1 n ∑n k=1 ϕxk (z) parameters , x = (u, v)
  25. ˜ xi := ∑ j e⟨Qxi ,Kxj ⟩ ∑ ℓ

    e⟨Qxi ,Kxℓ ⟩ Vxj Transformers and attention mechanism … + <latexit sha1_base64="aTL0Qvb1dLhAur6wfZM9PGylzLY=">AAA9iHictVttcxu3EYbTt1h9c9qPnelcq7iTdFyNpHqadjKaifViSbFiySYlOwltDV9O1NknHs0jJdkM/0e/tn+kv6P/oP3Uv9DdBXDAkbhbQHV1IwkH4nl2sQcsdoFjZ5gm+Xh19Z+3Pvje93/wwx99eHvpxz/56c9+fuejX5zk2WTUjY+7WZqNnnfaeZwmg/h4nIzT+PlwFLcvOmn8rPN6Cz9/dhmP8iQbNMdvh/GLi3Z/kJwl3fYYql62iGE6inuz69O10zvLqyur9BMtFtZUYVmon6Pso1+vi5boiUx0xURciFgMxBjKqWiLHK5vxZpYFUOoeyGmUDeCUkKfx2ImlgA7gVYxtGhD7Wv424e7b1XtAO6RMyd0F6Sk8DsCZCTuAiaDdiMoo7SIPp8QM9ZWcU+JE3V7C/87iusCasfiHGo5nG7pi8O+jMWZ+DP1IYE+DakGe9dVLBOyCmoeWb0aA8MQ6rDcg89HUO4SUts5IkxOfUfbtunzf1FLrMX7rmo7Ef8mLe/CFYmG6n1WMLTFJfFH9DQn8JnUJwXJfWCIVR+xdEW2vqDeD6D9FOofwzWjkrZJB64p1c5qkVtwuZBbLHIXLhdyl0UewOVCHrDII7hcyCOFROyIbO7GN+By4Rus5CdwuZBPWORTuFzIpyzyBC4X8oRFfgOXC/kNi3wIlwv5kEU+gsuFfMQim3C5kE0WeQyXC3nMInfgciF3FLJ6po7gyognYWblAyiXZaCnSKHmAavfJnlHF3bTY053K7D8rN6G/27stodN4wrsjse4O6vA8iNvF3ykG8v7oj1aTVzYPRa7DyPAjd1nsV+KVxXYLz1m2usKLD/XDqCdG8t736/gzo39isU+hpIby69Rh1Djxh56rBjDCuwRi30i3lRgfbz+qALL+/0G+BU3ll+nmtDejfXxppMKLO9PTyCCcWP51eoZ1Lqxz1jsc3FdgX3OYr8G7+7Gfu2xwr6rwOo1dolWkD7FIzHM2Dq2djErsTQEtjYjPy3WlpRi4w7Uc5h+gekT5oJF7BaIXU/EQYE48NYrL/xoTvEuL6VRIBqeiE6xNmFpzLbvFe2xlHogtgvE9hyiLiLFZ637cknRha7hkONi5cKST5+ywn9jKVbjod7zasRhCSHH9jmN/HuULWEGhZaqYzsv1niJjOi+DnFF2ZvupZbB48aFV7BR1yyq40B1WNRbB+oti5o4UBMWdelAXbIoM/NtXMtjBBj747OY0p0cATJGrr4iiAoewKqzB3M0gvFzBFHgU6o5hP8Nyr25q04zzOZxncRdjhclTzyC0lQsQ73JCrcpv05phsWgmWx5qHJ8vMO9jamac9ILz4qVPCp2TPx5EtKnX/BgtBjRfArjeUQ1M4ruZCkMv1fMe10Kw++QxWcUxctSGH6stB/fQPemwjZvgG3AbBoq65tyKIfcf5EcurxEqy56XHyqF2rMIN91IP++ejL7N3guW1SS9jHlMI7c6l9e6l8Ih7Fzbtk5jAWjJxn16lIU3JOByntNOVSHjFbRgdLD3IU+GWzTU09Gl8M4jiDi2qKce2qVQ0fvsOiNKYdxnAi57zmjSF6Xwzj6dC/tYcphHLjb0lZ5vimHena0gMydTTnUqw9oFxj3gOSYlzUmKhpRnDRRbAnFB/W7NXbMv7iO4Z7NyyJHqGcysW01T6dYy+o10vFCDF5tHKgHxhcTKwYrc0zFOptfSR3GpfV9kces8Wj5A7BiBLNfngFwe+YpaKj3JNB7p8C4xmZd5Z5p3DqLw1FyNodqqdoxGy0auXLXqFx3SrVcXmZ6a+zYIn+d09gbUkx4QJbl7HBQ+YSrGDkLHZQsxPOF2O6dmq9l66+yuOEcYliMtC6dCMmTtPo81WX1hmXju+qUZwyXPPMx4xd3m8+Ut8GcJyNfhLrUybTb6X0kuw7X1XvC7HHLzyJ6ouivLslrJHQilbNZqN4tltH4lO4N9zGdyaEMydGF5xgplqGQp2a4i4776RF5VNvfcrLRXnqHTpZz8rraH9ej+xa670CH5zhbsGI8hlITcoZjuGt6ZDlLha0ysvhI/KE4Hc3oCdZn9GnJQ2oO6W/ikoesy7LPSyxXgMbRILN0f455Ho1vLTDxWb9LH5O7lj3/XTq51efbbRrj1aO5eiemR1LXSWpEs0ae6sq7eQlSg6nzk3WKX+t7ifJCJKIP5aS+tCRLuwzoxD+mDHZIkXFKs42bHeXW9v7U/Cda0pHQZ+d4mp2Rh4zI/0WwPmU0JiP6td8d0Cfo0iOk5CN9/E5SRDeuWCdhx5iJ4xIh32ow4y0mXzYh+ZrXnl05jUWZMch1YDY3trVNDigWjEnqSHl3M7frVx9Emvck7FEiGc1Y+YTkf0p/9a8eJ8sLIwItjE8gV77O9TwyylnQRm1a5et9kG5ra/lxocNLpbVZ/4xOH5c026aMC/XB1boHkrt0L2XhKBmR3vlCG7mO1u3mIvNwzo7Y2zPK4qXf76sVGPW+R6vkMs25Fo2SPoyCcZFF6LbcLvK83HpZZXY/7vz/wm5sXbYaMkbC7OBKC3H7+zFla7aWKYxqOX5f02xyW30016pezoDG4oU1l7+D2t/AX623vvfj6ZS8wiaNAclg7oxFZE200MJP1mZJlh6ZmsvcG3lmTOpWds1N8mvp3UyOfRnMckSj5lrtWujyTTheWRyvPG3YpLNGY0Vdrz3RKZtbNNVppa+8EGnNAOYJy8xHZBqVeGhp51J+rD2Wlc/xNeody7XKcrVhttqnAfac90G65/r87P6uWN0j8ZBimy5FYDJ/6dEsTSjm0rX1mZpkQMn3lX+1Z3+LalB6hzwoMsv3OHHGyFOnLl2zQtPfqZUtIz9vPIJ+b+lKtdE+tkXlPy4gL2hO5DQvNeI+tYiV/rYe0ZxHWrFijoh2/tsUU8m4oz5ntlubZxKV4gmTb8pZZWTJTGFA9ud23vYXstd9K3+NKCecqOi6A1zhTxgZJEbvJLgjy5yeEK5y8iRBRrQd8p+Lfkqe4g0sjVZI66nY8PAxMus1Y90eW7rHum+/h5ZodfPUXS14eam3RE7eTU702rSqXagYdTp3fzOutlrlyvd1dpjMyTX2mFAbO7MwWV4Z0xKfe0uRGoVJkRgfKWG9CNE/TPMQneXplC+zbq2ZyzsN0secU77EvQeKCFd094kzmvuU6Udnga9DWJtN1nBMuBuXqf0B29PirtTthXVI1t6uXY1SayWqWik0u71aGP8tPWRM3i8V3J6NbG3r3iplKfwujGToCvlGb1V+aHN+Dhf+jYQrO9QSffYOGxDfPhBbYuc9vA3xRpXljmZENegLenO5d1v1s9yi3kZvLHab30eCv4wEbM1pn9BKGqq7ZOY1t9n9+a/IC4xEzGpvWob3wZbC92RRUkh/EvJsfG8Sob+LE9oXLcGnJ2Up/nLkuQbXizOhv9MU1gfNzvegLCFEhn6Pwe+Zm9bhsmxJ9fZalOIrQ64C+sRF4/DkrzpXMe18PNTIeiLvXwJ6h7Madr1a/K/90HKMpHBZvtJy+q7ZK4+nLtvFakcW4+HwOWOk+Yzmaon+MrOidyZacsuTcV8U9KQyqzfvnx/jUTMGtKypkPugvHYSb48io68vC54LuHTIxH/EP27x30Z4U3BU6RHCpM8pqtl0C55Nf+PS1Tv9mY9OhqdKpzKbySMa9EbsltgXD+F3q4gAQ98Old+llP8R6/7+bA9qz8h76F10uXPQorqYdj/MKVqP7tUe4+md5bX5byEvFk7WV9b+tHL/yf3lLzbVN5Q/FL8Sv4W8ZE18Jr4Qe9DfYzpX+Kv4m/j7xtLG6sZnG3+RTT+4pTC/FKWfjc3/Ajzs2dE=</latexit> x1 <latexit sha1_base64="7Z/IumRXp79HdyogVfnC2DA+LeM=">AAA9iHictVttcxu3EYbTt1h9c9qPnelcq7iTdFyNpHqadjKaifViSbFiySYlOwltDV9O1NknHs0jJdkM/0e/tn+kv6P/oP3Uv9DdBXDAkbhbQHV1IwkH4nl2sQcsdoFjZ5gm+Xh19Z+3Pvje93/wwx99eHvpxz/56c9+fuejX5zk2WTUjY+7WZqNnnfaeZwmg/h4nIzT+PlwFLcvOmn8rPN6Cz9/dhmP8iQbNMdvh/GLi3Z/kJwl3fYYql62iGE6inuz69P10zvLqyur9BMtFtZUYVmon6Pso1+vi5boiUx0xURciFgMxBjKqWiLHK5vxZpYFUOoeyGmUDeCUkKfx2ImlgA7gVYxtGhD7Wv424e7b1XtAO6RMyd0F6Sk8DsCZCTuAiaDdiMoo7SIPp8QM9ZWcU+JE3V7C/87iusCasfiHGo5nG7pi8O+jMWZ+DP1IYE+DakGe9dVLBOyCmoeWb0aA8MQ6rDcg89HUO4SUts5IkxOfUfbtunzf1FLrMX7rmo7Ef8mLe/CFYmG6n1WMLTFJfFH9DQn8JnUJwXJfWCIVR+xdEW2vqDeD6D9FOofwzWjkrZJB64p1c5qkVtwuZBbLHIXLhdyl0UewOVCHrDII7hcyCOFROyIbO7GN+By4Rus5CdwuZBPWORTuFzIpyzyBC4X8oRFfgOXC/kNi3wIlwv5kEU+gsuFfMQim3C5kE0WeQyXC3nMInfgciF3FLJ6po7gyognYWblAyiXZaCnSKHmAavfJnlHF3bTY053K7D8rN6G/27stodN4wrsjse4O6vA8iNvF3ykG8v7oj1aTVzYPRa7DyPAjd1nsV+KVxXYLz1m2usKLD/XDqCdG8t736/gzo39isU+hpIby69Rh1Djxh56rBjDCuwRi30i3lRgfbz+qALL+/0G+BU3ll+nmtDejfXxppMKLO9PTyCCcWP51eoZ1Lqxz1jsc3FdgX3OYr8G7+7Gfu2xwr6rwOo1dolWkD7FIzHM2Dq2djErsTQEtjYjPy3WlpRi4w7Uc5h+gekT5oJF7BaIXU/EQYE48NYrL/xoTvEuL6VRIBqeiE6xNmFpzLbvFe2xlHogtgvE9hyiLiLFZ637cknRha7hkONi5cKST5+ywn9jKVbjod7zasRhCSHH9jmN/HuULWEGhZaqYzsv1niJjOi+DnFF2ZvupZbB48aFV7BR1yyq40B1WNRbB+oti5o4UBMWdelAXbIoM/NtXMtjBBj747OY0p0cATJGrr4iiAoewKqzB3M0gvFzBFHgU6o5hP8Nyr25q04zzOZxncRdjhclTzyC0lQsQ73JCrcpv05phsWgmWx5qHJ8vMO9jamac9ILz4qVPCp2TPx5EtKnX/BgtBjRfArjeUQ1M4ruZCkMv1fMe10Kw++QxWcUxctSGH6stB/fQPemwjZvgG3AbBoq65tyKIfcf5EcurxEqy56XHyqF2rMIN91IP++ejL7N3guW1SS9jHlMI7c6l9e6l8Ih7Fzbtk5jAWjJxn16lIU3JOByntNOVSHjFbRgdLD3IU+GWzTU09Gl8M4jiDi2qKce2qVQ0fvsOiNKYdxnAi57zmjSF6Xwzj6dC/tYcphHLjb0lZ5vimHena0gMydTTnUqw9oFxj3gOSYlzUmKhpRnDRRbAnFB/W7NXbMv7iO4Z7NyyJHqGcysW01T6dYy+o10vFCDF5tHKgHxhcTKwYrc0zFOptfSR3GpfV9kces8Wj5A7BiBLNfngFwe+YpaKj3JNB7p8C4xmZd5Z5p3DqLw1FyNodqqdoxGy0auXLXqFx3SrVcXmZ6a+zYIn+d09gbUkx4QJbl7HBQ+YSrGDkLHZQsxPOF2O6dmq9l66+yuOEcYliMtC6dCMmTtPo81WX1hmXju+qUZwyXPPMx4xd3m8+Ut8GcJyNfhLrUybTb6X0kuw7X1XvC7HHLzyJ6ouivLslrJHQilbNZqN4tltH4lO4N9zGdyaEMydGF5xgplqGQp2a4i4776RF5VNvfcrLRXnqHTpZz8rraH9ej+xa670CH5zhbsGI8hlITcoZjuGt6ZDlLha0ysvhI/KE4Hc3oCdZn9GnJQ2oO6W/ikoesy7LPSyxXgMbRILN0f455Ho1vLTDxWb9LH5O7lj3/XTq51efbbRrj1aO5eiemR1LXSWpEs0ae6sq7eQlSg6nzk3WKX+t7ifJCJKIP5aS+tCRLuwzoxD+mDHZIkXFKs42bHeXW9v7U/Cda0pHQZ+d4mp2Rh4zI/0WwPmU0JiP6td8d0Cfo0iOk5CN9/E5SRDeuWCdhx5iJ4xIh32ow4y0mXzYh+ZrXnl05jUWZMch1YDY3trVNDigWjEnqSHl3M7frVx9Emvck7FEiGc1Y+YTkf0p/9a8eJ8sLIwItjE8gV77O9TwyylnQRm1a5et9kG5ra/lxocNLpbVZ/4xOH5c026aMC/XB1boHkrt0L2XhKBmR3vlCG7mO1u3mIvNwzo7Y2zPK4qXf76sVGPW+R6vkMs25Fo2SPoyCcZFF6LbcLvK83HpZZXY/7vz/wm5sXbYaMkbC7OBKC3H7+zFla7aWKYxqOX5f02xyW30016pezoDG4oU1l7+D2t/AX623vvfj6ZS8wiaNAclg7oxFZE200MJP1mZJlh6ZmsvcG3lmTOpWds1N8mvp3UyOfRnMckSj5lrtWujyTTheWRyvPG3YpLNGY0Vdrz3RKZtbNNVppa+8EGnNAOYJy8xHZBqVeGhp51J+rD2Wlc/xNeody7XKcrVhttqnAfac90G65/r87P6uWN0j8ZBimy5FYDJ/6dEsTSjm0rX1mZpkQMn3lX+1Z3+LalB6hzwoMsv3OHHGyFOnLl2zQtPfqZUtIz9vPIJ+b+lKtdE+tkXlPy4gL2hO5DQvNeI+tYiV/rYe0ZxHWrFijoh2/tsUU8m4oz5ntlubZxKV4gmTb8pZZWTJTGFA9ud23vYXstd9K3+NKCecqOi6A1zhTxgZJEbvJLgjy5yeEK5y8iRBRrQd8p+Lfkqe4g0sjVZI66nY8PAxMus1Y90eW7rHum+/h5ZodfPUXS14eam3RE7eTU702rSqXagYdTp3fzOutlrlyvd1dpjMyTX2mFAbO7MwWV4Z0xKfe0uRGoVJkRgfKWG9CNE/TPMQneXplC+zbq2ZyzsN0secU77EvQeKCFd094kzmvuU6Udnga9DWJtN1nBMuBuXqf0B29PirtTthXVI1t6uXY1SayWqWik0u71aGP8tPWRM3i8V3J6NbG3r3iplKfwujGToCvlGb1V+aHN+Dhf+jYQrO9QSffYOGxDfPhBbYuc9vA3xRpXljmZENegLenO5d1v1s9yi3kZvLHab30eCv4wEbM1pn9BKGqq7ZOY1t9n9+a/IC4xEzGpvWob3wZbC92RRUkh/EvJsfG8Sob+LE9oXLcGnJ2Up/nLkuQbXizOhv9MU1gfNzvegLCFEhn6Pwe+Zm9bhsmxJ9fZalOIrQ64C+sRF4/DkrzpXMe18PNTIeiLvXwJ6h7Madr1a/K/90HKMpHBZvtJy+q7ZK4+nLtvFakcW4+HwOWOk+Yzmaon+MrOidyZacsuTcV8U9KQyqzfvnx/jUTMGtKypkPugvHYSb48io68vC54LuHTIxH/EP27x30Z4U3BU6RHCpM8pqtl0C55Nf+PS1Tv9mY9OhqdKpzKbySMa9EbsltgXD+F3q4gAQ98Old+llP8R6/7+bA9qz8h76F10uXPQorqYdj/MKVqP7tUe4+md5bX5byEvFk7WV9b+tHL/yf3lLzbVN5Q/FL8Sv4W8ZE18Jr4Qe9DfYzpX+Kv4m/j7xtLG6sZnG3+RTT+4pTC/FKWfjc3/AnoD2dI=</latexit> x2 <latexit sha1_base64="Fgw+vWgPriclgLxpVoHDEicBDLw=">AAA9h3ictVv9chu3EYfTr9j9cto/O9O5VnYnybiqpHrSzGQ0E1uSJcWKJZuU7CS0Nfw40WcfeTSPlGQzfI7+2z5Jn6Nv0P7VV+juAjjgSNwtoLrCSMKB+O0uFsB+AMfOKE3yydraP6998IMf/ujHP/nw+o2f/uznv/jlzY9+dZJn03E3Pu5maTZ+1mnncZoM4+NJMknjZ6Nx3B500vhp5/UWfv70PB7nSTZsTt6O4ueDdn+YnCXd9gSant9qzS5Pk9b8dJbMb53eXFlbXaOfaLmyriorQv0cZR/9dkO0RE9koiumYiBiMRQTqKeiLXIo34l1sSZG0PZczKBtDLWEPo/FXNwA7BR6xdCjDa2v4W8fnr5TrUN4Rpo5obvAJYXfMSAjcRswGfQbQx25RfT5lChjaxXtGdFE2d7C/46iNYDWiXgJrRxO9/TF4Vgm4kx8TmNIYEwjasHRdRWVKWkFJY+sUU2AwgjasN6Dz8dQ7xJS6zkiTE5jR9226fN/UU9sxeeu6jsV/yYpb0OJREONPisotMU50Y9oNqfwmZQnBc59oBCrMWLtgnQ9oNEPof8M2h9BmVNN66QDZUat81rkFhQXcotF7kJxIXdZ5AEUF/KARR5BcSGPFBKxY9K5G9+A4sI3WM6PobiQj1nkEygu5BMWeQLFhTxhkd9CcSG/ZZEPoLiQD1jkQygu5EMW2YTiQjZZ5DEUF/KYRe5AcSF3FLJ6p46hZEQnYXblPaiXeaClSKHlHivffbKOLux9jz3drcDyu3ob/rux2x46jSuwOx7r7qwCy6+8XbCRbixvi/bIm7iweyx2H1aAG7vPYr8SryqwX3nstNcVWH6vHUA/N5a3vl/Dkxv7NYt9BDU3lvdRh9Dixh56eIxRBfaIxT4WbyqwPlZ/XIHl7X4D7Ioby/upJvR3Y32s6bQCy9vTE4hg3FjeWz2FVjf2KYt9Ji4rsM9Y7Ddg3d3Ybzw87LsKrPaxN8iD9CkeiWHH1lFrF7sSayOg1mb4p4VvSSk27kA7h+kXmD5hBixit0DseiIOCsSBt1x5YUdzind5Lo0C0fBEdArfhLUJ279X9Mda6oHYLhDbC4i6iBTnWo/lnKIL3cIhJ4XnwprPmLLCfmMtVuuh3vJqxGEJIdf2S1r5dyhbwgwKNVVH7WXh4yUyouc6xAVlb3qUmgePmxRWwUZdsqiOA9VhUW8dqLcsaupATVnUuQN1zqLMzrdxLY8VYPSPczGjJ7kCZIxcXSKICu6B19mDPRrB+jmCKPAJtRzC/wbl3lypkwyzefSTeMrxvGSJx1CbiRVoN1nhNuXXKe2wGCSTPQ9Vjo9PeLYxU3tOWuF54cmj4sTEn05C8vQLOhgtRrSfwug8pJY5RXeyFobfK/a9roXhd0jjc4riZS0MP1HST64ge1Nhm1fANmA3jZT2TT2Uhjx/kTR0/QZ5XbS4OKsDtWaQ3mUg/X01M/tXmJctqkn9mHoYjdwaX14aXwgNo+fc0nMYFYyeZNSra1HwSIYq7zX1UBky8qJDJYd5Cp0Z7NNTM6PrYTSOIOLaopx7ZtVDV++oGI2ph9E4EfLcc06RvK6H0ejTs9SHqYfRwNOWtsrzTT3UsqMGZO5s6qFWfUinwHgGJNe8bDFR0ZjipKmillB8UH9aY8f8y34Mz2xeFDlCPSUT21bT6RS+rF4iHS/EYNUmgXJgfDG1YrAyjZnYYPMrKcOk5N+X6Rgfj5o/AC1GsPvlHQB3Zp6ChPpMAq13ChTX2ayrPDKN22BxuErOFlAt1Tpho0XDV54aldtOqZXLy8xojR5bZK9zWnsjigkPSLOcHg4qZ7iKIqehg5KGeHohunun9mtZ+2ssbrSAGBUrrUs3QvImrT5PdWm9Yen4trrlmUCRdz5m/eJp85myNpjzZGSLUJY6nnY/fY5kt6FfvSPMGbf8LKIZRXt1TlYjoRupnM1C9WmxjMZn9GxoH9OdHPKQNLowj5GiMhLy1gxP0fE8PSKLattbjjfqS5/QyXpOVlfb43p030L3HejwHGcLPMYjqDUhZziGp6ZHlnOj0FVGGh+LPxa3oxnNYH1Gn5YspKYh7U1cspB1WfbLEpULQONqkFm6P41FOhrfWqLEZ/0ueUzuWrb8t+nmVt9vt2mNV6/m6pOYHnHdIK4R7Rp5qyufFjlICWbOTzYofq0fJfIL4Yg2lOP6wuIs9TKkG/+YMtgRRcYp7TZud5R72+dTi59oTkdC353jbXZGFjIi+xeBf8poTUb0a787oG/QpUVIyUb62J2kiG5csU7CrjETxyVCvtVg1ltMtmxK/DVde3fltBZlxiD9wHxhbWudHFAsGBPXsbLuZm/Xex9Emvck7FUiKZq18jHx/4T+6l+9TlaWVgRqGGcgV7bONR8Z5SyoozZ5+XobpPvaUt4qZHihpDb+z8h0qyTZNmVcKA966x5w7tKz5IWrZExy50t9pB+tO81FyqMFPeJozyiLl3a/rzwwyn2HvOQK7bkWrZI+rIJJkUXovtwp8iLfel5l6n608/8LdaPrstaQYiTMCa7UEHe+H1O2ZkuZwqqW6/c17Sa31scLver5DGktDqy9/D20/g7+arn1sx+dTskq3Kc1ICmYJ6MR2RIt9fDjdb/ES69MTcs8G35mTepedstV8mtp3UyOfR5M5YhWzaU6tdD1q9B4ZdF45anDJt01Gi3qdm2JTtncoqluK335hXBrBlCespT5iEyjEg8p7VzKj2qPpcrn+Br1jqW1xtJqw261bwPsPe+DdO/1xd39feHdI/GAYpsuRWAyf+nRLk0o5tKt9ZmapICc7yr7au/+FrUg9w5ZUKQs3+PEHSNvnbpU5oWkf1CeLSM7byyCfm/pQvXRNrZF9T8vIQe0J3Lalxpxl3rESn5bjmjBIq1aMUdEJ/9tiqlk3FGfM9u9zZxEpXjC5JtyVxleMlMYkv65k7f9pex138pfI8oJpyq67gCt8BlGChKjTxLckWVOM4ReTt4kyIi2Q/Zz2U7JW7yhJdEqST0Tmx42Rma9Zq3ba0uPWI/tU+iJWjez7urB80u9OXL8rnKj1yavNlAx6mzh+Wq02srLlZ/r9DBd4Gv0MaU+dmZhsrwypiW+8OYiJQrjIjE+XMJGESJ/mOQhMsvbKV/KuremXD5pkDbmJeVL3HugiHBFdx87o7lPmHF0luh1CGtTky0cJTyNy9T5gG1p8VTq+pIfkq3Xa71RanmiKk+hqdvewthvaSFjsn6p4M5sZG9b9lYpS+FPYSSFrpBv9FblhzbNL6Dg30i4skPN0efssAHx7T2xJXbew9sQb1RdnmhG1IK2oLeQe7fVOMs96nX0xqJu0/fh4M8jAV1z0ifkSUNll5R5yW3q/vQvyAqMRcxKb3qGj8Hmwo9kmVPIeBKybPxoEqG/ixM6Fs3BZyRlLv585L0GN4ozob/TFDYGTZ0fQZlDCA/9HoPfnJve4bxsTvX6Wubiy0N6AX3jonF481edq5h+PhZqbM3I++eA1uGshrr2Fv/rODQfwymcly+3nL5r9spj1mW/WJ3IYjwcvmcMN5/VXM3Rn2dWjM5ES25+Mu6LgmYqs0bz/uljPGrWgOY1E/IclJdO4u1VZOT1pYL3Ai4ZMvEf8Y9r/LcR3hQ0quQIoaTvKaqp6R48Nf2NS9fo9Gc+Mhk6VTKVqZk8okFvxG6JffEAfreKCDD07VD5XUr5H7Hu78/2oPWMrIc+RZcnBy1qi+n0w9yi9ehZnTGe3lxZX/wW8nLlZGN1/bPVu483Vr68r76h/KH4jfg95CXr4i/iS7EH4z0mTf1V/E38ffP65p82P9v8XHb94JrC/FqUfjbv/Rd5M9kH</latexit> {xi }i Points cloud Positional encoding Token encoding Tokenize Le groupe thématique SMAI- S I G M A ( S i g n a l - I m a g e - Géométrie-Modélisation- Approximation) est issu de l ’A s s o c i a t i o n F r a n ç a i s e d ’A p p r o x i m a t i o n ( A FA ) , association créée en 1989 et intégrée en tant que groupe au sein de la SMAI en 2000. Le groupe thématique SMAI- S I G M A ( S i g n a l - I m a g e - G é o m é t r i e - M o d é l i s a t i o n - Approximation) est issu de l ’ A s s o c i a t i o n F r a n ç a i s e d ’ A p p ro x i m a t i o n ( A FA ) , association créée en 1989 et intégrée en tant que groupe au sein de la SMAI en 2000. xi xj (Unmasked) Attention layer … next token probabilities Attention Norm MLP Classif N × …
  26. ˜ xi := ∑ j e⟨Qxi ,Kxj ⟩ ∑ ℓ

    e⟨Qxi ,Kxℓ ⟩ Vxj Transformers and attention mechanism … + <latexit sha1_base64="aTL0Qvb1dLhAur6wfZM9PGylzLY=">AAA9iHictVttcxu3EYbTt1h9c9qPnelcq7iTdFyNpHqadjKaifViSbFiySYlOwltDV9O1NknHs0jJdkM/0e/tn+kv6P/oP3Uv9DdBXDAkbhbQHV1IwkH4nl2sQcsdoFjZ5gm+Xh19Z+3Pvje93/wwx99eHvpxz/56c9+fuejX5zk2WTUjY+7WZqNnnfaeZwmg/h4nIzT+PlwFLcvOmn8rPN6Cz9/dhmP8iQbNMdvh/GLi3Z/kJwl3fYYql62iGE6inuz69O10zvLqyur9BMtFtZUYVmon6Pso1+vi5boiUx0xURciFgMxBjKqWiLHK5vxZpYFUOoeyGmUDeCUkKfx2ImlgA7gVYxtGhD7Wv424e7b1XtAO6RMyd0F6Sk8DsCZCTuAiaDdiMoo7SIPp8QM9ZWcU+JE3V7C/87iusCasfiHGo5nG7pi8O+jMWZ+DP1IYE+DakGe9dVLBOyCmoeWb0aA8MQ6rDcg89HUO4SUts5IkxOfUfbtunzf1FLrMX7rmo7Ef8mLe/CFYmG6n1WMLTFJfFH9DQn8JnUJwXJfWCIVR+xdEW2vqDeD6D9FOofwzWjkrZJB64p1c5qkVtwuZBbLHIXLhdyl0UewOVCHrDII7hcyCOFROyIbO7GN+By4Rus5CdwuZBPWORTuFzIpyzyBC4X8oRFfgOXC/kNi3wIlwv5kEU+gsuFfMQim3C5kE0WeQyXC3nMInfgciF3FLJ6po7gyognYWblAyiXZaCnSKHmAavfJnlHF3bTY053K7D8rN6G/27stodN4wrsjse4O6vA8iNvF3ykG8v7oj1aTVzYPRa7DyPAjd1nsV+KVxXYLz1m2usKLD/XDqCdG8t736/gzo39isU+hpIby69Rh1Djxh56rBjDCuwRi30i3lRgfbz+qALL+/0G+BU3ll+nmtDejfXxppMKLO9PTyCCcWP51eoZ1Lqxz1jsc3FdgX3OYr8G7+7Gfu2xwr6rwOo1dolWkD7FIzHM2Dq2djErsTQEtjYjPy3WlpRi4w7Uc5h+gekT5oJF7BaIXU/EQYE48NYrL/xoTvEuL6VRIBqeiE6xNmFpzLbvFe2xlHogtgvE9hyiLiLFZ637cknRha7hkONi5cKST5+ywn9jKVbjod7zasRhCSHH9jmN/HuULWEGhZaqYzsv1niJjOi+DnFF2ZvupZbB48aFV7BR1yyq40B1WNRbB+oti5o4UBMWdelAXbIoM/NtXMtjBBj747OY0p0cATJGrr4iiAoewKqzB3M0gvFzBFHgU6o5hP8Nyr25q04zzOZxncRdjhclTzyC0lQsQ73JCrcpv05phsWgmWx5qHJ8vMO9jamac9ILz4qVPCp2TPx5EtKnX/BgtBjRfArjeUQ1M4ruZCkMv1fMe10Kw++QxWcUxctSGH6stB/fQPemwjZvgG3AbBoq65tyKIfcf5EcurxEqy56XHyqF2rMIN91IP++ejL7N3guW1SS9jHlMI7c6l9e6l8Ih7Fzbtk5jAWjJxn16lIU3JOByntNOVSHjFbRgdLD3IU+GWzTU09Gl8M4jiDi2qKce2qVQ0fvsOiNKYdxnAi57zmjSF6Xwzj6dC/tYcphHLjb0lZ5vimHena0gMydTTnUqw9oFxj3gOSYlzUmKhpRnDRRbAnFB/W7NXbMv7iO4Z7NyyJHqGcysW01T6dYy+o10vFCDF5tHKgHxhcTKwYrc0zFOptfSR3GpfV9kces8Wj5A7BiBLNfngFwe+YpaKj3JNB7p8C4xmZd5Z5p3DqLw1FyNodqqdoxGy0auXLXqFx3SrVcXmZ6a+zYIn+d09gbUkx4QJbl7HBQ+YSrGDkLHZQsxPOF2O6dmq9l66+yuOEcYliMtC6dCMmTtPo81WX1hmXju+qUZwyXPPMx4xd3m8+Ut8GcJyNfhLrUybTb6X0kuw7X1XvC7HHLzyJ6ouivLslrJHQilbNZqN4tltH4lO4N9zGdyaEMydGF5xgplqGQp2a4i4776RF5VNvfcrLRXnqHTpZz8rraH9ej+xa670CH5zhbsGI8hlITcoZjuGt6ZDlLha0ysvhI/KE4Hc3oCdZn9GnJQ2oO6W/ikoesy7LPSyxXgMbRILN0f455Ho1vLTDxWb9LH5O7lj3/XTq51efbbRrj1aO5eiemR1LXSWpEs0ae6sq7eQlSg6nzk3WKX+t7ifJCJKIP5aS+tCRLuwzoxD+mDHZIkXFKs42bHeXW9v7U/Cda0pHQZ+d4mp2Rh4zI/0WwPmU0JiP6td8d0Cfo0iOk5CN9/E5SRDeuWCdhx5iJ4xIh32ow4y0mXzYh+ZrXnl05jUWZMch1YDY3trVNDigWjEnqSHl3M7frVx9Emvck7FEiGc1Y+YTkf0p/9a8eJ8sLIwItjE8gV77O9TwyylnQRm1a5et9kG5ra/lxocNLpbVZ/4xOH5c026aMC/XB1boHkrt0L2XhKBmR3vlCG7mO1u3mIvNwzo7Y2zPK4qXf76sVGPW+R6vkMs25Fo2SPoyCcZFF6LbcLvK83HpZZXY/7vz/wm5sXbYaMkbC7OBKC3H7+zFla7aWKYxqOX5f02xyW30016pezoDG4oU1l7+D2t/AX623vvfj6ZS8wiaNAclg7oxFZE200MJP1mZJlh6ZmsvcG3lmTOpWds1N8mvp3UyOfRnMckSj5lrtWujyTTheWRyvPG3YpLNGY0Vdrz3RKZtbNNVppa+8EGnNAOYJy8xHZBqVeGhp51J+rD2Wlc/xNeody7XKcrVhttqnAfac90G65/r87P6uWN0j8ZBimy5FYDJ/6dEsTSjm0rX1mZpkQMn3lX+1Z3+LalB6hzwoMsv3OHHGyFOnLl2zQtPfqZUtIz9vPIJ+b+lKtdE+tkXlPy4gL2hO5DQvNeI+tYiV/rYe0ZxHWrFijoh2/tsUU8m4oz5ntlubZxKV4gmTb8pZZWTJTGFA9ud23vYXstd9K3+NKCecqOi6A1zhTxgZJEbvJLgjy5yeEK5y8iRBRrQd8p+Lfkqe4g0sjVZI66nY8PAxMus1Y90eW7rHum+/h5ZodfPUXS14eam3RE7eTU702rSqXagYdTp3fzOutlrlyvd1dpjMyTX2mFAbO7MwWV4Z0xKfe0uRGoVJkRgfKWG9CNE/TPMQneXplC+zbq2ZyzsN0secU77EvQeKCFd094kzmvuU6Udnga9DWJtN1nBMuBuXqf0B29PirtTthXVI1t6uXY1SayWqWik0u71aGP8tPWRM3i8V3J6NbG3r3iplKfwujGToCvlGb1V+aHN+Dhf+jYQrO9QSffYOGxDfPhBbYuc9vA3xRpXljmZENegLenO5d1v1s9yi3kZvLHab30eCv4wEbM1pn9BKGqq7ZOY1t9n9+a/IC4xEzGpvWob3wZbC92RRUkh/EvJsfG8Sob+LE9oXLcGnJ2Up/nLkuQbXizOhv9MU1gfNzvegLCFEhn6Pwe+Zm9bhsmxJ9fZalOIrQ64C+sRF4/DkrzpXMe18PNTIeiLvXwJ6h7Madr1a/K/90HKMpHBZvtJy+q7ZK4+nLtvFakcW4+HwOWOk+Yzmaon+MrOidyZacsuTcV8U9KQyqzfvnx/jUTMGtKypkPugvHYSb48io68vC54LuHTIxH/EP27x30Z4U3BU6RHCpM8pqtl0C55Nf+PS1Tv9mY9OhqdKpzKbySMa9EbsltgXD+F3q4gAQ98Old+llP8R6/7+bA9qz8h76F10uXPQorqYdj/MKVqP7tUe4+md5bX5byEvFk7WV9b+tHL/yf3lLzbVN5Q/FL8Sv4W8ZE18Jr4Qe9DfYzpX+Kv4m/j7xtLG6sZnG3+RTT+4pTC/FKWfjc3/Ajzs2dE=</latexit> x1 <latexit sha1_base64="7Z/IumRXp79HdyogVfnC2DA+LeM=">AAA9iHictVttcxu3EYbTt1h9c9qPnelcq7iTdFyNpHqadjKaifViSbFiySYlOwltDV9O1NknHs0jJdkM/0e/tn+kv6P/oP3Uv9DdBXDAkbhbQHV1IwkH4nl2sQcsdoFjZ5gm+Xh19Z+3Pvje93/wwx99eHvpxz/56c9+fuejX5zk2WTUjY+7WZqNnnfaeZwmg/h4nIzT+PlwFLcvOmn8rPN6Cz9/dhmP8iQbNMdvh/GLi3Z/kJwl3fYYql62iGE6inuz69P10zvLqyur9BMtFtZUYVmon6Pso1+vi5boiUx0xURciFgMxBjKqWiLHK5vxZpYFUOoeyGmUDeCUkKfx2ImlgA7gVYxtGhD7Wv424e7b1XtAO6RMyd0F6Sk8DsCZCTuAiaDdiMoo7SIPp8QM9ZWcU+JE3V7C/87iusCasfiHGo5nG7pi8O+jMWZ+DP1IYE+DakGe9dVLBOyCmoeWb0aA8MQ6rDcg89HUO4SUts5IkxOfUfbtunzf1FLrMX7rmo7Ef8mLe/CFYmG6n1WMLTFJfFH9DQn8JnUJwXJfWCIVR+xdEW2vqDeD6D9FOofwzWjkrZJB64p1c5qkVtwuZBbLHIXLhdyl0UewOVCHrDII7hcyCOFROyIbO7GN+By4Rus5CdwuZBPWORTuFzIpyzyBC4X8oRFfgOXC/kNi3wIlwv5kEU+gsuFfMQim3C5kE0WeQyXC3nMInfgciF3FLJ6po7gyognYWblAyiXZaCnSKHmAavfJnlHF3bTY053K7D8rN6G/27stodN4wrsjse4O6vA8iNvF3ykG8v7oj1aTVzYPRa7DyPAjd1nsV+KVxXYLz1m2usKLD/XDqCdG8t736/gzo39isU+hpIby69Rh1Djxh56rBjDCuwRi30i3lRgfbz+qALL+/0G+BU3ll+nmtDejfXxppMKLO9PTyCCcWP51eoZ1Lqxz1jsc3FdgX3OYr8G7+7Gfu2xwr6rwOo1dolWkD7FIzHM2Dq2djErsTQEtjYjPy3WlpRi4w7Uc5h+gekT5oJF7BaIXU/EQYE48NYrL/xoTvEuL6VRIBqeiE6xNmFpzLbvFe2xlHogtgvE9hyiLiLFZ637cknRha7hkONi5cKST5+ywn9jKVbjod7zasRhCSHH9jmN/HuULWEGhZaqYzsv1niJjOi+DnFF2ZvupZbB48aFV7BR1yyq40B1WNRbB+oti5o4UBMWdelAXbIoM/NtXMtjBBj747OY0p0cATJGrr4iiAoewKqzB3M0gvFzBFHgU6o5hP8Nyr25q04zzOZxncRdjhclTzyC0lQsQ73JCrcpv05phsWgmWx5qHJ8vMO9jamac9ILz4qVPCp2TPx5EtKnX/BgtBjRfArjeUQ1M4ruZCkMv1fMe10Kw++QxWcUxctSGH6stB/fQPemwjZvgG3AbBoq65tyKIfcf5EcurxEqy56XHyqF2rMIN91IP++ejL7N3guW1SS9jHlMI7c6l9e6l8Ih7Fzbtk5jAWjJxn16lIU3JOByntNOVSHjFbRgdLD3IU+GWzTU09Gl8M4jiDi2qKce2qVQ0fvsOiNKYdxnAi57zmjSF6Xwzj6dC/tYcphHLjb0lZ5vimHena0gMydTTnUqw9oFxj3gOSYlzUmKhpRnDRRbAnFB/W7NXbMv7iO4Z7NyyJHqGcysW01T6dYy+o10vFCDF5tHKgHxhcTKwYrc0zFOptfSR3GpfV9kces8Wj5A7BiBLNfngFwe+YpaKj3JNB7p8C4xmZd5Z5p3DqLw1FyNodqqdoxGy0auXLXqFx3SrVcXmZ6a+zYIn+d09gbUkx4QJbl7HBQ+YSrGDkLHZQsxPOF2O6dmq9l66+yuOEcYliMtC6dCMmTtPo81WX1hmXju+qUZwyXPPMx4xd3m8+Ut8GcJyNfhLrUybTb6X0kuw7X1XvC7HHLzyJ6ouivLslrJHQilbNZqN4tltH4lO4N9zGdyaEMydGF5xgplqGQp2a4i4776RF5VNvfcrLRXnqHTpZz8rraH9ej+xa670CH5zhbsGI8hlITcoZjuGt6ZDlLha0ysvhI/KE4Hc3oCdZn9GnJQ2oO6W/ikoesy7LPSyxXgMbRILN0f455Ho1vLTDxWb9LH5O7lj3/XTq51efbbRrj1aO5eiemR1LXSWpEs0ae6sq7eQlSg6nzk3WKX+t7ifJCJKIP5aS+tCRLuwzoxD+mDHZIkXFKs42bHeXW9v7U/Cda0pHQZ+d4mp2Rh4zI/0WwPmU0JiP6td8d0Cfo0iOk5CN9/E5SRDeuWCdhx5iJ4xIh32ow4y0mXzYh+ZrXnl05jUWZMch1YDY3trVNDigWjEnqSHl3M7frVx9Emvck7FEiGc1Y+YTkf0p/9a8eJ8sLIwItjE8gV77O9TwyylnQRm1a5et9kG5ra/lxocNLpbVZ/4xOH5c026aMC/XB1boHkrt0L2XhKBmR3vlCG7mO1u3mIvNwzo7Y2zPK4qXf76sVGPW+R6vkMs25Fo2SPoyCcZFF6LbcLvK83HpZZXY/7vz/wm5sXbYaMkbC7OBKC3H7+zFla7aWKYxqOX5f02xyW30016pezoDG4oU1l7+D2t/AX623vvfj6ZS8wiaNAclg7oxFZE200MJP1mZJlh6ZmsvcG3lmTOpWds1N8mvp3UyOfRnMckSj5lrtWujyTTheWRyvPG3YpLNGY0Vdrz3RKZtbNNVppa+8EGnNAOYJy8xHZBqVeGhp51J+rD2Wlc/xNeody7XKcrVhttqnAfac90G65/r87P6uWN0j8ZBimy5FYDJ/6dEsTSjm0rX1mZpkQMn3lX+1Z3+LalB6hzwoMsv3OHHGyFOnLl2zQtPfqZUtIz9vPIJ+b+lKtdE+tkXlPy4gL2hO5DQvNeI+tYiV/rYe0ZxHWrFijoh2/tsUU8m4oz5ntlubZxKV4gmTb8pZZWTJTGFA9ud23vYXstd9K3+NKCecqOi6A1zhTxgZJEbvJLgjy5yeEK5y8iRBRrQd8p+Lfkqe4g0sjVZI66nY8PAxMus1Y90eW7rHum+/h5ZodfPUXS14eam3RE7eTU702rSqXagYdTp3fzOutlrlyvd1dpjMyTX2mFAbO7MwWV4Z0xKfe0uRGoVJkRgfKWG9CNE/TPMQneXplC+zbq2ZyzsN0secU77EvQeKCFd094kzmvuU6Udnga9DWJtN1nBMuBuXqf0B29PirtTthXVI1t6uXY1SayWqWik0u71aGP8tPWRM3i8V3J6NbG3r3iplKfwujGToCvlGb1V+aHN+Dhf+jYQrO9QSffYOGxDfPhBbYuc9vA3xRpXljmZENegLenO5d1v1s9yi3kZvLHab30eCv4wEbM1pn9BKGqq7ZOY1t9n9+a/IC4xEzGpvWob3wZbC92RRUkh/EvJsfG8Sob+LE9oXLcGnJ2Up/nLkuQbXizOhv9MU1gfNzvegLCFEhn6Pwe+Zm9bhsmxJ9fZalOIrQ64C+sRF4/DkrzpXMe18PNTIeiLvXwJ6h7Madr1a/K/90HKMpHBZvtJy+q7ZK4+nLtvFakcW4+HwOWOk+Yzmaon+MrOidyZacsuTcV8U9KQyqzfvnx/jUTMGtKypkPugvHYSb48io68vC54LuHTIxH/EP27x30Z4U3BU6RHCpM8pqtl0C55Nf+PS1Tv9mY9OhqdKpzKbySMa9EbsltgXD+F3q4gAQ98Old+llP8R6/7+bA9qz8h76F10uXPQorqYdj/MKVqP7tUe4+md5bX5byEvFk7WV9b+tHL/yf3lLzbVN5Q/FL8Sv4W8ZE18Jr4Qe9DfYzpX+Kv4m/j7xtLG6sZnG3+RTT+4pTC/FKWfjc3/AnoD2dI=</latexit> x2 <latexit sha1_base64="Fgw+vWgPriclgLxpVoHDEicBDLw=">AAA9h3ictVv9chu3EYfTr9j9cto/O9O5VnYnybiqpHrSzGQ0E1uSJcWKJZuU7CS0Nfw40WcfeTSPlGQzfI7+2z5Jn6Nv0P7VV+juAjjgSNwtoLrCSMKB+O0uFsB+AMfOKE3yydraP6998IMf/ujHP/nw+o2f/uznv/jlzY9+dZJn03E3Pu5maTZ+1mnncZoM4+NJMknjZ6Nx3B500vhp5/UWfv70PB7nSTZsTt6O4ueDdn+YnCXd9gSant9qzS5Pk9b8dJbMb53eXFlbXaOfaLmyriorQv0cZR/9dkO0RE9koiumYiBiMRQTqKeiLXIo34l1sSZG0PZczKBtDLWEPo/FXNwA7BR6xdCjDa2v4W8fnr5TrUN4Rpo5obvAJYXfMSAjcRswGfQbQx25RfT5lChjaxXtGdFE2d7C/46iNYDWiXgJrRxO9/TF4Vgm4kx8TmNIYEwjasHRdRWVKWkFJY+sUU2AwgjasN6Dz8dQ7xJS6zkiTE5jR9226fN/UU9sxeeu6jsV/yYpb0OJREONPisotMU50Y9oNqfwmZQnBc59oBCrMWLtgnQ9oNEPof8M2h9BmVNN66QDZUat81rkFhQXcotF7kJxIXdZ5AEUF/KARR5BcSGPFBKxY9K5G9+A4sI3WM6PobiQj1nkEygu5BMWeQLFhTxhkd9CcSG/ZZEPoLiQD1jkQygu5EMW2YTiQjZZ5DEUF/KYRe5AcSF3FLJ6p46hZEQnYXblPaiXeaClSKHlHivffbKOLux9jz3drcDyu3ob/rux2x46jSuwOx7r7qwCy6+8XbCRbixvi/bIm7iweyx2H1aAG7vPYr8SryqwX3nstNcVWH6vHUA/N5a3vl/Dkxv7NYt9BDU3lvdRh9Dixh56eIxRBfaIxT4WbyqwPlZ/XIHl7X4D7Ioby/upJvR3Y32s6bQCy9vTE4hg3FjeWz2FVjf2KYt9Ji4rsM9Y7Ddg3d3Ybzw87LsKrPaxN8iD9CkeiWHH1lFrF7sSayOg1mb4p4VvSSk27kA7h+kXmD5hBixit0DseiIOCsSBt1x5YUdzind5Lo0C0fBEdArfhLUJ279X9Mda6oHYLhDbC4i6iBTnWo/lnKIL3cIhJ4XnwprPmLLCfmMtVuuh3vJqxGEJIdf2S1r5dyhbwgwKNVVH7WXh4yUyouc6xAVlb3qUmgePmxRWwUZdsqiOA9VhUW8dqLcsaupATVnUuQN1zqLMzrdxLY8VYPSPczGjJ7kCZIxcXSKICu6B19mDPRrB+jmCKPAJtRzC/wbl3lypkwyzefSTeMrxvGSJx1CbiRVoN1nhNuXXKe2wGCSTPQ9Vjo9PeLYxU3tOWuF54cmj4sTEn05C8vQLOhgtRrSfwug8pJY5RXeyFobfK/a9roXhd0jjc4riZS0MP1HST64ge1Nhm1fANmA3jZT2TT2Uhjx/kTR0/QZ5XbS4OKsDtWaQ3mUg/X01M/tXmJctqkn9mHoYjdwaX14aXwgNo+fc0nMYFYyeZNSra1HwSIYq7zX1UBky8qJDJYd5Cp0Z7NNTM6PrYTSOIOLaopx7ZtVDV++oGI2ph9E4EfLcc06RvK6H0ejTs9SHqYfRwNOWtsrzTT3UsqMGZO5s6qFWfUinwHgGJNe8bDFR0ZjipKmillB8UH9aY8f8y34Mz2xeFDlCPSUT21bT6RS+rF4iHS/EYNUmgXJgfDG1YrAyjZnYYPMrKcOk5N+X6Rgfj5o/AC1GsPvlHQB3Zp6ChPpMAq13ChTX2ayrPDKN22BxuErOFlAt1Tpho0XDV54aldtOqZXLy8xojR5bZK9zWnsjigkPSLOcHg4qZ7iKIqehg5KGeHohunun9mtZ+2ssbrSAGBUrrUs3QvImrT5PdWm9Yen4trrlmUCRdz5m/eJp85myNpjzZGSLUJY6nnY/fY5kt6FfvSPMGbf8LKIZRXt1TlYjoRupnM1C9WmxjMZn9GxoH9OdHPKQNLowj5GiMhLy1gxP0fE8PSKLattbjjfqS5/QyXpOVlfb43p030L3HejwHGcLPMYjqDUhZziGp6ZHlnOj0FVGGh+LPxa3oxnNYH1Gn5YspKYh7U1cspB1WfbLEpULQONqkFm6P41FOhrfWqLEZ/0ueUzuWrb8t+nmVt9vt2mNV6/m6pOYHnHdIK4R7Rp5qyufFjlICWbOTzYofq0fJfIL4Yg2lOP6wuIs9TKkG/+YMtgRRcYp7TZud5R72+dTi59oTkdC353jbXZGFjIi+xeBf8poTUb0a787oG/QpUVIyUb62J2kiG5csU7CrjETxyVCvtVg1ltMtmxK/DVde3fltBZlxiD9wHxhbWudHFAsGBPXsbLuZm/Xex9Emvck7FUiKZq18jHx/4T+6l+9TlaWVgRqGGcgV7bONR8Z5SyoozZ5+XobpPvaUt4qZHihpDb+z8h0qyTZNmVcKA966x5w7tKz5IWrZExy50t9pB+tO81FyqMFPeJozyiLl3a/rzwwyn2HvOQK7bkWrZI+rIJJkUXovtwp8iLfel5l6n608/8LdaPrstaQYiTMCa7UEHe+H1O2ZkuZwqqW6/c17Sa31scLver5DGktDqy9/D20/g7+arn1sx+dTskq3Kc1ICmYJ6MR2RIt9fDjdb/ES69MTcs8G35mTepedstV8mtp3UyOfR5M5YhWzaU6tdD1q9B4ZdF45anDJt01Gi3qdm2JTtncoqluK335hXBrBlCespT5iEyjEg8p7VzKj2qPpcrn+Br1jqW1xtJqw261bwPsPe+DdO/1xd39feHdI/GAYpsuRWAyf+nRLk0o5tKt9ZmapICc7yr7au/+FrUg9w5ZUKQs3+PEHSNvnbpU5oWkf1CeLSM7byyCfm/pQvXRNrZF9T8vIQe0J3Lalxpxl3rESn5bjmjBIq1aMUdEJ/9tiqlk3FGfM9u9zZxEpXjC5JtyVxleMlMYkv65k7f9pex138pfI8oJpyq67gCt8BlGChKjTxLckWVOM4ReTt4kyIi2Q/Zz2U7JW7yhJdEqST0Tmx42Rma9Zq3ba0uPWI/tU+iJWjez7urB80u9OXL8rnKj1yavNlAx6mzh+Wq02srLlZ/r9DBd4Gv0MaU+dmZhsrwypiW+8OYiJQrjIjE+XMJGESJ/mOQhMsvbKV/KuremXD5pkDbmJeVL3HugiHBFdx87o7lPmHF0luh1CGtTky0cJTyNy9T5gG1p8VTq+pIfkq3Xa71RanmiKk+hqdvewthvaSFjsn6p4M5sZG9b9lYpS+FPYSSFrpBv9FblhzbNL6Dg30i4skPN0efssAHx7T2xJXbew9sQb1RdnmhG1IK2oLeQe7fVOMs96nX0xqJu0/fh4M8jAV1z0ifkSUNll5R5yW3q/vQvyAqMRcxKb3qGj8Hmwo9kmVPIeBKybPxoEqG/ixM6Fs3BZyRlLv585L0GN4ozob/TFDYGTZ0fQZlDCA/9HoPfnJve4bxsTvX6Wubiy0N6AX3jonF481edq5h+PhZqbM3I++eA1uGshrr2Fv/rODQfwymcly+3nL5r9spj1mW/WJ3IYjwcvmcMN5/VXM3Rn2dWjM5ES25+Mu6LgmYqs0bz/uljPGrWgOY1E/IclJdO4u1VZOT1pYL3Ai4ZMvEf8Y9r/LcR3hQ0quQIoaTvKaqp6R48Nf2NS9fo9Gc+Mhk6VTKVqZk8okFvxG6JffEAfreKCDD07VD5XUr5H7Hu78/2oPWMrIc+RZcnBy1qi+n0w9yi9ehZnTGe3lxZX/wW8nLlZGN1/bPVu483Vr68r76h/KH4jfg95CXr4i/iS7EH4z0mTf1V/E38ffP65p82P9v8XHb94JrC/FqUfjbv/Rd5M9kH</latexit> {xi }i Points cloud Positional encoding Token encoding Tokenize Le groupe thématique SMAI- S I G M A ( S i g n a l - I m a g e - Géométrie-Modélisation- Approximation) est issu de l ’A s s o c i a t i o n F r a n ç a i s e d ’A p p r o x i m a t i o n ( A FA ) , association créée en 1989 et intégrée en tant que groupe au sein de la SMAI en 2000. Le groupe thématique SMAI- S I G M A ( S i g n a l - I m a g e - G é o m é t r i e - M o d é l i s a t i o n - Approximation) est issu de l ’ A s s o c i a t i o n F r a n ç a i s e d ’ A p p ro x i m a t i o n ( A FA ) , association créée en 1989 et intégrée en tant que groupe au sein de la SMAI en 2000. xi xj (Unmasked) Attention layer Arbitrary number of tokens Arbitrary number of layers Expressivity Understanding … next token probabilities Attention Norm MLP Classif N × …
  27. Deep Transformers Tokens: X := (xi )i . Aω [X](x)

    := ∑ j e⟨Qx,Kxj⟩Vxj ∑ ℓ e⟨Qx,Kxℓ⟩ Parameters: ω := (Q, K, V) x Aω [X](x)
  28. Deep Transformers Tokens: X := (xi )i . Aω [X](x)

    := ∑ j e⟨Qx,Kxj⟩Vxj ∑ ℓ e⟨Qx,Kxℓ⟩ Parameters: ω := (Q, K, V) x Aω [X](x) Permutation invariance 𝒜 ω [α](x) := ∫ e⟨Qx,Ky⟩Vy dα(y) ∫ e⟨Qx,Kz⟩ dα(z) α = 1 n ∑ k δxk
  29. Deep Transformers Tokens: X := (xi )i . Aω [X](x)

    := ∑ j e⟨Qx,Kxj⟩Vxj ∑ ℓ e⟨Qx,Kxℓ⟩ Parameters: ω := (Q, K, V) Deep transformers with layers: T xi ↦ xi + 1 T 𝒜 ω [α](xi ) x Aω [X](x) Permutation invariance 𝒜 ω [α](x) := ∫ e⟨Qx,Ky⟩Vy dα(y) ∫ e⟨Qx,Kz⟩ dα(z) α = 1 n ∑ k δxk
  30. Deep Transformers Tokens: X := (xi )i . Aω [X](x)

    := ∑ j e⟨Qx,Kxj⟩Vxj ∑ ℓ e⟨Qx,Kxℓ⟩ Parameters: ω := (Q, K, V) Deep transformers with layers: T xi ↦ xi + 1 T 𝒜 ω [α](xi ) T → + ∞ dx(t) dt = 𝒜 ω [αt ](x(t)) x Aω [X](x) Permutation invariance 𝒜 ω [α](x) := ∫ e⟨Qx,Ky⟩Vy dα(y) ∫ e⟨Qx,Kz⟩ dα(z) α = 1 n ∑ k δxk
  31. Deep Transformers Tokens: X := (xi )i . Aω [X](x)

    := ∑ j e⟨Qx,Kxj⟩Vxj ∑ ℓ e⟨Qx,Kxℓ⟩ Parameters: ω := (Q, K, V) Deep transformers with layers: T xi ↦ xi + 1 T 𝒜 ω [α](xi ) T → + ∞ dx(t) dt = 𝒜 ω [αt ](x(t)) αt = 1 n ∑ i δxi (t) ∂αt ∂t + div( 𝒜 ω [αt ] αt ) = 0 x Aω [X](x) Permutation invariance 𝒜 ω [α](x) := ∫ e⟨Qx,Ky⟩Vy dα(y) ∫ e⟨Qx,Kz⟩ dα(z) α = 1 n ∑ k δxk
  32. Deep Transformers Tokens: X := (xi )i . Aω [X](x)

    := ∑ j e⟨Qx,Kxj⟩Vxj ∑ ℓ e⟨Qx,Kxℓ⟩ Parameters: ω := (Q, K, V) Deep transformers with layers: T xi ↦ xi + 1 T 𝒜 ω [α](xi ) T → + ∞ dx(t) dt = 𝒜 ω [αt ](x(t)) αt = 1 n ∑ i δxi (t) ∂αt ∂t + div( 𝒜 ω [αt ] αt ) = 0 is not a Wasserstein flow! αt Twisted distance f(α) := ∬ e⟨Qx,Ky⟩dα(x)dα(y) minvt ,αt {∬ Sαt ∥vt ∥2dαt dt : div(αt vt ) + ∂t αt = 0} Sα (x) := ∫ e⟨Qx,Ky⟩dα(y) Michael Sander x Aω [X](x) Permutation invariance 𝒜 ω [α](x) := ∫ e⟨Qx,Ky⟩Vy dα(y) ∫ e⟨Qx,Kz⟩ dα(z) α = 1 n ∑ k δxk
  33. Gaussian Case and Clustering dμ dt + div(μΓθ [μ]) =

    0 Theorem: If , then μ(0) = 𝒩 (m(0), Σ(0)) · m = V(Id+ΣQ⊤K)m · Σ = VΣQ⊤KΣ + ΣK⊤QΣV⊤ Γθ [μ](x) := ∫ e⟨Qx,Ky⟩ ∫ e⟨Qx,Ky′  ⟩dμ(y′  ) Vy dμ(y) θ(t) = (Q(t), K(t), V(t)) μ(s) = 𝒩 (m(s), Σ(s)) t μ(0) μ(t) Valérie Castin
  34. Gaussian Case and Clustering dμ dt + div(μΓθ [μ]) =

    0 Theorem: If , then μ(0) = 𝒩 (m(0), Σ(0)) · m = V(Id+ΣQ⊤K)m · Σ = VΣQ⊤KΣ + ΣK⊤QΣV⊤ Γθ [μ](x) := ∫ e⟨Qx,Ky⟩ ∫ e⟨Qx,Ky′  ⟩dμ(y′  ) Vy dμ(y) θ(t) = (Q(t), K(t), V(t)) μ(s) = 𝒩 (m(s), Σ(s)) Theorem [Valérie Castin]: If and symmetric, stationary points of have rank less than V(t) = Id K(t)⊤Q(t) Σ(t) d/2. Conjecture: low-rank stationary covariances for any . K, Q, V … t μ(0) μ(∞) [Geshkovski, Letrouit, Polyanskiy, Rigollet 2023] The attention matrix converges to low-rank. → Clustering of for un-normalized attention. → μ t μ(0) μ(t) Valérie Castin
  35. . . . . . . . . . on

    . . . . . . . . . . . . . . . . OT as a cell-cell distance . . . . . . . . . . . . . . . . . . Wasserstein Singular Vectors . . . . . . . . . . . . . . . . . . OT-based joint dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OT-based trajectory inference lications of multimodal omics CD103+ CD8+ TEM Zebrafish embryos along development Sampling Optimizing Transformers Genomics
  36. 1013 cells in the human body, with vastly different functions.

    Early efforts to cartography cell identity relied on microscopy1. Recent initiatives me molecular profile of s in the human body, ly different functions. Early efforts to cartography cell identity relied on microscopy1. Recent initiatives measure th molecular profile of the cell e human body, erent functions. Early efforts to cartography cell identity relied on microscopy1. Recent initiatives measure the molecular profile of the cell2. ~ cells in the human body, with vastly different functions. 1013 Early efforts to cartography cell identity relied on microscopy. [Ramón y Cajal, 1899] Recent initiatives measure the molecular pro fi le of the cell. [Regev et al., eLife, 2017] Unraveling cell diversity
  37. Single Cell Multi-omics Understanding cell diversity: many types, many states

    for each type. Applications: cancer mutations, dynamic of adaptation, development, … <latexit sha1_base64="JmboHyrN9W6kgItyZjvFMpB0lgs=">AABBxXictVzbchu5EYU3t7Vz8yaPeZlE65Q35Tiy4kpStZWqlSVZ1pq2aZOSvbu0XbyMaNpDDs0h6QtXlU/Ia/I1+Y78QfKUX0hfgAGGxExjFMcoSRgQp7vRAzS6G6B702SUzbe3/3nho+9893vf/8HHFy/98Ec//slPL3/ys5MsXcz68XE/TdLZk143i5PRJD6ej+ZJ/GQ6i7vjXhI/7r3aw88fL+NZNkon7fm7afx03B1ORqejfncOTcf9OEmy55e3tq9v079os3JDV7aU/tdMP4mOVUcNVKr6aqHGKlYTNYd6oroqg/KNuqG21RTanqoVtM2gNqLPY3WmLgF2Ab1i6NGF1lfwewhP3+jWCTwjzYzQfeCSwM8MkJG6ApgU+s2gjtwi+nxBlLG1jPaKaKJs7+BvT9MaQ+tcvYBWCWd6huJwLHN1qv5EYxjBmKbUgqPrayoL0gpKHjmjmgOFKbRhfQCfz6DeJ6TRc0SYjMaOuu3S5/+intiKz33dd6H+TVJegRKplh59mlPoqiXRj+htLuAzlicBzkOgEOsxYu0N6XpMo59A/xW034dyRjWjkx6UFbWeVSL3oPiQeyLyEIoPeSgiG1B8yIaIbELxIZsaidgZ6dyPb0Hx4Vsi54dQfMiHIvIRFB/ykYg8geJDnojIr6H4kF+LyNtQfMjbIvIuFB/yrohsQ/Eh2yLyGIoPeSwiD6D4kAcaWb5SZ1BSojMSVuUu1Is80FIk0LIryneLrKMPeytgTfdLsPKq3oe/fux+gE7jEuxBwLw7LcHKM+8QbKQfK9uiO7Sb+LB3ROwRzAA/9kjEfqlelmC/DFhpr0qw8lprQD8/Vra+9+DJj70nYu9DzY+V96gH0OLHPgjYMaYl2KaIfahel2BDrP6sBCvb/RbYFT9W3qfa0N+PDbGmixKsbE9PwIPxY+Xd6jG0+rGPRewT9bYE+0TEfgXW3Y/9KmCHfV+CNXvsJdpBhuSPxLBiq6h181WJtSlQ6wr8k3xvScg37kG7hBnmmCFhxiLiMEccBiIaOaIRLFeW29GM/F2ZSytHtAIRvXxvwtpc7D/I+2MtCUDs54j9NUSVR4rv2oxlSd6FaZGQ83znwlrImNLcfmMt1vOh2vIaxIMCguf2C5r51yhawggKNVVF7UW+xzMyoucqxBuK3swoDQ8ZN8+tgot6K6J6HlRPRL3zoN6JqIUHtRBRSw9qKaLsyndxnYAZYPWP72JFTzwD2EcuLxF4Bbuw69yBNRrB/GmCF/iIWh7A3xbF3lKpkgyjedwnMcvxtGCJZ1BbqS1ot1HhPsXXCa2wGCTjng90jI9PmNtY6TXHVvgs38mjPGMSTmdE8gxzOugtRrSe6tG5Sy1n5N1xrR7+Tr7uTa0e/oA0fkZePNfq4eda+vk5ZG9rbPsc2BaspqnWvq3XpcH5F6Zh6pdo10WLi291rOcM0ntbk/6RfjNH53gve1Rj/dh6PRqZM76sML46NKyeM0fP9aig98Rer6lFtUcy0XGvrdeVIaVddKLlsE913wz2Geg3Y+r1aDTB49qjmHvl1OvO3mk+GluvR+NEcd7zjDx5U69HY0jPrA9br0cDsy1dHefbel3Ljhrg2NnW61r1CWWBMQfEc55brFc0Iz9poamNyD+ozta4Pv/mPoY5m2d5jFBNyfq25XR6+V5WLZHxF2KwavOacqB/sXB8sCKNldoR4yuWYV7Y3zfp2D0eNd8ALUaw+vkMQMqZJyChyUmg9U6A4g0x6iqOzOB2RBzOktM1VEe3zkVv0fLlrFGx7Tm1SnGZHa3VY4fsdUZzb0o+YYM0K+mhUfqGyyhKGmoUNCTTq6O793q9FrW/LeKma4hpPtP6dCLEJ2nVcapP6y1Hx1f0Kc8cCp/52PmL2eZTbW0w5knJFqEsVTzdfiaP5LbhvnpN2Rw3fxbRG0V7tSSrMaITqUyMQk22mL3xFT1b2sd0Joc8mEYf3mOkqUwVn5phFh3z6RFZVNfeSrxRXyZDx/WMrK6xx9XooYMeetD1Y5w92DHuQ60NMcMxPLUDopxLua5S0vhM/TY/HU3pDVZH9EnBQhoabG/igoWsirJfFKi8ATTOBo7Sw2ms0zH4zgYlOer3yWNj16Llv0Int+Z8u0tzvHw2l2diBsR1h7hGtGr4VJef1jmwBCvvJzvkv1aPEvnV4Yg2VOL6zOHMepnQiX9MEeyUPOOEVpu0Ooq93fzU+ieGU1OZs3M8zU7JQkZk/yLYn1KakxH9uHcHzAk6W4SEbGSI3Rnl3o3P1xmJc8z6cSPFtxrsfIvJli2Iv6Hrrq6M5iJHDLwPnK3NbaOTBvmCMXGdaetu13b17oNIe0/CnSVM0c6Vq8T/M/ptfsw82dqYEahhfAOZtnW+95FSzII66tIuX22DTF9Xyk9zGZ5pqe3+Z2X6tCDZPkVcKA/u1gPg3Kdn5oWzZEZyZxt9eB+tyuYi5emaHnG0pxTFs90f6h0Y5b5Gu+QWrbkOzZIhzIJ5HkWYvlIWeZ1vNa8i9TDa2f+FutV1UWtIMVI2g8sakvL7MUVrrpQJzGqev69oNfm1PlvrVc1nQnNx7Kzlb6H1l/DbyG2ew+j0ClbhFs0BpmCfrEa4JdroEcbrVoGXmZmGln22/OycNL3clvPE12zdbIy9rE2lSbPmrc5amPp5aLx0aLwM1GGbzhqtFk27sUTPxdiirU8rQ/nV4dauQXkhUpY9MoMaBUjpxlJhVAciVTnGN6j3Iq1tkVYXVqt7GuCu+RCkf62vr+5v8909UrfJt+mTB8bxy4BW6Yh8LtNaHakxBeR8U9tXd/V3qAW598iCImW+x4krhk+d+lTOckl/rXe2lOy8tQjm3tIb3cfY2A7Vf7+BHNOayGhdGsRN6hFr+V05ojWLdN3xOSLK/HfJp2K/ozpmdnvbdxIV/Akbb/Kqsrw4UpiQ/qXM29FG9HrkxK8RxYQL7V33gFb9N4wUGGMyCX7PMqM3hLscnySwR9sj+7lpp/gUb+JIdJ2kXqk/B9gYjnrtXHfnlhmxGdtvoCdq3b51Xw+ZXxLMUeJ3nhO9Lu1qY+2jrtaez0erq3e54nOVHhZrfK0+FtTHjSxslFfEdNTnwVxYonpcGBPCpd4o6shfT/I6MvPpVChl09tQLmYa2Ma8oHhJugeKCJ93d9XrzX0mjKO3Qa9HWJcat0iUMBuX6vyAa2kxK3VxYx/i1ouVu1Hi7ERlO4Wh7u4W1n6zhYzJ+iVKytlwb1f2TiFKkbMwTKGv+EZvWXzo0vwcCv6OlC86NBxDcoct8G931Z46+AC3IV7rOmc0I2pBWzBYi727epzFHtU6eu1Qd+mHcAjnMQJdS9KPaCetKztTliV3qYfTf0NWYKZiUXrbs/4YXC7ySDY51RnPiCybPJqRMt/FqTsWwyFkJEUu4Xz4XEMaxaky32mqNwZDXR5BkUMdHuYeQ9g7t73r83I5Vetrk0soD94FzImLweHJX3msYvuFWKiZ80Y+PAe0DqcV1M1u8b+Ow/CxnOrzCuWW0XfNXga8de4X64ws+sP114zlFjKbyzmG80zz0Vlvyc+P/b6o1ptKndF8eProj9o5YHitFOdBZekY784iK28oFTwX8MmQqv+of1yQv43wOqdRJkcdSuacopya6SFTM9+49I3OfBYik6VTJlORmo0jWnQjdk8dqdvws5d7gHVvh/J3KfkvYv3fnx1A6ylZD5NF58xBh9piyn7YU7QBPdv7s2US411evtvbhhY8C29QK97zvU/98a5vuzC28m+Q8Fq/p1I1KEQk66d7dl31YATFkzfOAZnv+UZ0l56zWHzzbBxwtmjuT61LtKJP5JsFvVJ8z5GyT3N1qs/q8eQAb9h38/xQpH5HbV1t53HPlTg3Szk31zhnpJ0ih7fOZ9V3s8q47DlcBnnubKn7pRRn2/O86tzofikXvoNejR9W4IeOlC3S/iuKhGeqOpu3qKC50DK5J6wTZTKRrAeMM7v5+66ObJcVvJYB479bir7rSHoIsvQo/x3RCduM6CVaNwckPd90rM6k3qmQVn+P8vnlrRvr/5fBZuVk5/qNP1y/+XBn64tb+v85+Fj9Qv1KXYU1/kf1BVBrqmM6d/+r+pv6++7h7nh3vrvkrh9d0Jifq8K/3b/8F2JKomY=</latexit> cells <latexit sha1_base64="6LS8OfUSD/ef5J7/bEX8BJJLTug=">AABDBXictVxLkxPJES7WrwW/WPvoS9uzOFgHiwdM2I7YcMQyD4ZZBAwjzQC7AkKPlhC01EItDQ/tnP0DfLV/gm8OX/d3+B/YJx/8B5yPqq5qqbqzeozpmJnqUn2ZWVlVWZlZJbrTZJTNNzf/ce6Db337O9/93ofnL3z/Bz/80Y8vfvST4yxdzHrxUS9N0tmjbieLk9EkPpqP5kn8aDqLO+NuEj/svtzGzx+exLNslE5a87fT+Mm4M5yMBqNeZw5Vj9ujSdQ+PHzaf3ZxY/PqJv2L1gvXdGFD6X8H6UfRf1Rb9VWqemqhxipWEzWHcqI6KoPnK3VNbaop1D1RS6ibQWlEn8fqVF0A7AJaxdCiA7Uv4fcQ3r7StRN4R5oZoXvAJYGfGSAjdQkwKbSbQRm5RfT5gihjbRntJdFE2d7C366mNYbauXoOtRLOtAzFYV/maqB+T30YQZ+mVIO962kqC9IKSh45vZoDhSnUYbkPn8+g3COk0XNEmIz6jrrt0Of/pJZYi+893Xah/kVSXoInUk3d+zSn0FEnRD+i0VzAZyxPApyHQCHWfcTSa9L1mHo/gfZLqL8HzymVjE668Cyp9rQSuQ2PD7ktIvfg8SH3RGQDHh+yISIP4PEhDzQSsTPSuR/fhMeHb4qcH8DjQz4QkYfw+JCHIvIYHh/yWER+CY8P+aWIvAWPD3lLRN6Bx4e8IyJb8PiQLRF5BI8PeSQid+HxIXc1snylzuBJic5IWJU3oVzkgZYigZqbonxbZB192K2ANd0rwcqregf++rE7ATqNS7C7AfNuUIKVZ94e2Eg/VrZFt2k38WFvi9h9mAF+7L6I/UK9KMF+EbDSXpZg5bXWgHZ+rGx978KbH3tXxN6Dkh8r71H3ocaPvR+wY0xLsAci9oF6VYINsfqzEqxs95tgV/xYeZ9qQXs/NsSaLkqwsj09Bg/Gj5V3q4dQ68c+FLGP1JsS7CMR+xisux/7OGCHfVeCNXvsBdpBhuSPxLBiq6h18lWJpSlQ6wj8k3xvScg37kK9hBnmmCFhxiJiL0fsBSIaOaIRLFeW29GM/F2ZSzNHNAMR3XxvwtJcbN/P22MpCUDs5IidFUSVR4pjbfpyQt6FqZGQ83znwlJIn9LcfmMp1vOh2vIaxP0Cguf2c5r5VyhawggKNVVF7Xm+xzMyovcqxGuK3kwvDQ8ZN8+tgot6I6K6HlRXRL31oN6KqIUHtRBRJx7UiYiyK9/FtQNmgNU/jsWS3ngGsI9c/kTgFdyEXec2rNEI5s8BeIGHVHMf/jYp9paeKskwmsd9ErMcTwqWeAalpdqAehsV7lB8ndAKi0Eybnlfx/j4hrmNpV5zbIVP8508yjMm4XRGJM8wp4PeYkTrqR6dO1RzSt4dl+rhb+fr3pTq4XdJ46fkxXOpHn6upZ+fQfaWxrbOgG3Cappq7dtyXRqcf2EapnyBdl20uDiqYz1nkN6bmvT39cjsn2FctqnE+rHlejQyp39ZoX91aFg9Z46e61FB74m9XlOKavdkouNeW64rQ0q76ETLYd/qjgy26euRMeV6NA7A49qmmHvplOvO3mneG1uuR+NYcd7zlDx5U65HY0jvrA9brkcDsy0dHefbcl3Ljhrg2NmW61r1CWWBMQfEc55rrFc0Iz9poamNyD+ozta4Pv/6PoY5m6d5jFBNyfq25XS6+V5WLZHxF2KwavOacqB/sXB8sCKNpbouxlcsw7ywv6/TsXs8ar4BWoxg9fMZgJQzT0BCk5NA650AxWti1FXsmcFdF3E4SwYrqLaunYveouXLWaNi3TOqleIy21urxzbZ64zm3pR8wgZpVtJDo3SEyyhKGmoUNCTTq6O7d3q9FrW/KeKmK4hpPtN6dCLEJ2nVcapP601Hx5f0Kc8cHj7zsfMXs80DbW0w5knJFqEsVTzddiaP5NbhvnpF2Rw3fxbRiKK9OiGrMaITqUyMQk22mL3xJb1b2kd0Joc8mEYPxjHSVKaKT80wi4759IgsqmtvJd6oL5Oh43JGVtfY42r00EEPPej6Mc427Bj3oNSCmOEI3loBUc6FXFcpaXymPs1PR1MaweqIPilYSEOD7U1csJBVUfbzApXXgMbZwFF6OI1VOgbfXqMkR/0+eWzsWrT8l+jk1pxvd2iOl8/m8kxMn7heJ64RrRo+1eW3VQ4swdL7yXXyX6t7ifzqcEQbKnF96nBmvUzoxD+mCHZKnnFCq01aHcXWbn5q9RPD6UCZs3M8zU7JQkZk/yLYn1KakxH9uHcHzAk6W4SEbGSI3Rnl3o3P1xmJc8z6cSPFtxrsfIvJli2Iv6Hrrq6M5iJHDLwPnK7MbaOTBvmCMXGdaetu13b17oNIe0/CnSVM0c6Vy8T/E/ptfsw82VibEahhHIFM2zrfeKQUs6COOrTLV9sg09aV8uNchqdaarv/WZk+Lki2QxEXyoO7dR849+ideeEsmZHc2Vob3kersrlIebqiR+ztgKJ4tvtDvQOj3Fdol9ygNdemWTKEWTDPowjTVsoir/Kt5lWkHkY7+79Qt7ouag0pRspmcFlDUn4/pmjNlTKBWc3z9yWtJr/WZyutqvlMaC6OnbX8NdT+HH4buc17GJ1uwSps0RxgCvbNaoRrorUWYby2CrzMzDS07LvlZ+ekaeXWnCW+ZutmY+yT2lQOaNa80VkLUz4LjRcOjReBOmzRWaPVoqk3luiZGFu09GllKL863Fo1KC9EyrJHZlCjACndWCqMal+kKsf4BvVOpLUp0urAanVPA9w1H4L0r/XV1f11vrtH6hb5Nj3ywDh+6dMqHZHPZWqrIzWmgJxvaPvqrv421SD3LllQpMz3OHHF8KlTj57TXNJf6p0tJTtvLYK5t/RatzE2tk3l36whx7QmMlqXBnGDWsRafleOaMUiXXV8jogy/x3yqdjvqI6Z3dZ2TKKCP2HjTV5VlhdHChPSv5R521+LXved+DWimHChvesu0Ko/wkiBMSaT4PcsMxoh3OX4JIE92i7Zz3U7xad4E0eiqyT1Uv0hwMZw1Gvnuju3TI9N334FLVHrdtR9LWR+STBHid9ZTvQ6tKuNtY+6XHk/G62O3uWK71V6WKzwtfpYUBs3srBRXhHTVp8Fc2GJ6nFhTAiXer2oI389yevIzKdToZRNa0O5mGlgG/Oc4iXpHigifN7dZa8394nQj+4avS5hXWpcI1HCbFyq8wOupcWs1Pm1fYhrz1fuRomzE5XtFIa6u1tY+80WMibrlygpZ8OtXdnbhShFzsIwhZ7iG71l8aFL8zN48HekfNGh4RiSO2yCf3tTbavd93Ab4pUuc0Yzohq0Bf2V2Luj+1lsUa2jVw51l34Ih3AeI9C1JP2IdtK6sjNlWXKXejj912QFZioWpbct6/fB5SL3ZJ1Tnf6MyLLJvRkp812cun0xHEJ6UuQSzofPNaReDJT5TlO9Phjqcg+KHOrwMPcYwsbctq7Py+VUra91LqE8eBcwJy4Ghyd/5bGKbRdioWbOiLx/DmgdBhXUzW7xv/bD8LGc6vMK5ZbRd81eBIw6t4t1Rhb94fprxnILmc3lHMN5pnnvrLfk58d+X1RrpFKnN++fPvqjdg4YXkvFeVBZOsa7s8jKG0oFzwV8MqTq3+qbc/K3EV7lNMrkqEPJnFOUUzMtZGrmG5e+3pnPQmSydMpkKlKzcUSTbsRuq311C362cw+w7u1Q/i4l/0Ws//uzfagdkPUwWXTOHLSpLqbshz1F69O7vT9bJjHe5eW7vS2owbPwBtXiPd971B7v+rYKfSv/Bgmv9bsqVf1CRLJ6umfXVRd6UDx54xyQ+Z5vRHfpOYvFN8/GAWeL5v7UqkRL+kS+WdAtxXcdKXs0V6f6rB5PDvCGfSfPD0Xq11TX0XYe91yJ80Ep54MVzhlpp8jhjfNZ9d2sMi7bDpd+njs70e1SirPteV51bnSnlAvfQa/GDyvwQ0fKJmn/JUXCM1WdzVtU0FxomdwT1okymUjWA8aZnXy8qyPbkwpeJwH9v1OKvuNIugeydCn/HdEJ24zoJVo3uyQ933SszqTerpDWfI+Sadq7jnYemFuL1Vn6RM87zlyY/41gSesBd1NzM1HKnsQldLp0IzAmSnxHsprSQJBnIFIYipLomfrs4sa11f8HYr1wfP3qtd9evfHgxsbnW/r/iPhQ/Uz9Ql0G+/g79TmMxIE6Ak5j9Sf1Z/WXrT9u/XXrb1t/56YfnNOYn6rCv61v/guvM+Qz</latexit> 2 Rd Tissue Dissociation isolation RNA amplification sequencing … <latexit sha1_base64="6L8H4Gt+fXCCPCipj/akDBzsUqw=">AABDDXictVzbchu5EYU3t7VzWW/ymJdJZKe8KUeRFFeSqq1UrXWxrLVsyyYle3dpu3gZ0rSHHJpDyheuviEfkNfkE/KWSh7zDfmD5CkP+YH0BRhgSMw0RnE8ZQkD4nQ3GkCjuwGqM0mG2Wxj4x8XPvjGN7/17e98ePHSd7/3/R98dPnjH55k6XzajY+7aZJOH3faWZwMx/HxbDhL4seTadwedZL4UeflDn7+6DSeZsN03Jy9ncRPRu3BeNgfdtszqHp2+aMrvaiVDUfR5sbTxdbZlWeX1zbWN+hftFrY1IU1pf8dpR9H/1Et1VOp6qq5GqlYjdUMyolqqwyer9Sm2lATqHuiFlA3hdKQPo/VmboE2Dm0iqFFG2pfws8BvH2la8fwjjQzQneBSwL/p4CM1FXApNBuCmXkFtHnc6KMtWW0F0QTZXsLvzua1ghqZ+o51Eo40zIUh32Zqb76LfVhCH2aUA32rqupzEkrKHnk9GoGFCZQh+UefD6FcpeQRs8RYTLqO+q2TZ//k1piLb53ddu5+hdJeRWeSDV079OcQludEv2IRnMOn7E8CXAeAIVY9xFLr0nXI+r9GNovoP4ePGdUMjrpwLOg2rNK5A48PuSOiNyHx4fcF5GH8PiQhyLyCB4f8kgjETslnfvxDXh8+IbI+QE8PuQDEfkQHh/yoYg8gceHPBGRX8LjQ34pIm/B40PeEpF34PEh74jIJjw+ZFNEHsPjQx6LyD14fMg9jSxfqVN4UqIzFFblTSgXeaClSKDmpijfNllHH3Y7YE13S7Dyqt6F337sboBO4xLsXsC865dg5Zm3DzbSj5Vt0W3aTXzY2yL2AGaAH3sgYj9XL0qwnwestJclWHmtHUI7P1a2vnfhzY+9K2LvQcmPlfeo+1Djx94P2DEmJdgjEftAvSrBhlj9aQlWtvsNsCt+rLxPNaG9HxtiTeclWNmenoAH48fKu9UjqPVjH4nYx+pNCfaxiP0CrLsf+0XADvuuBGv22Eu0gwzIH4lhxVZRa+erEksToNYW+Cf53pKQb9yBegkzyDEDwoxExH6O2A9EHOaIw2C5styOZuTvylwaOaIRiOjkexOWZmL7Xt4eS0kAYjdH7C4hqjxSHGvTl1PyLkyNhJzlOxeWQvqU5vYbS7GeD9WW1yDuFxA8t5/TzL9O0RJGUKipKmrP8z2ekRG9VyFeU/Rmeml4yLhZbhVc1BsR1fGgOiLqrQf1VkTNPai5iDr1oE5FlF35Lq4VMAOs/nEsFvTGM4B95PInAq/gJuw6t2GNRjB/jsALfEg19+F3g2Jv6amSDKN53Ccxy/GkYImnUFqoNai3UeEuxdcJrbAYJOOW93WMj2+Y21joNcdW+CzfyaM8YxJOZ0jyDHI66C1GtJ7q0blDNWfk3XGpHv52vu5NqR5+jzR+Rl48l+rhZ1r62Tlkb2ps8xzYBqymida+LdelwfkXpmHKl2jXRYuLozrScwbpvalJ/0CPzME5xmWHSqwfW65HI3P6lxX6V4eG1XPm6LkeFfSe2Os1pah2T8Y67rXlujKktIuOtRz2re7IYJueHhlTrkfjCDyuHYq5F0657uyd5L2x5Xo0ThTnPc/IkzflejQG9M76sOV6NDDb0tZxvi3XteyoAY6dbbmuVR9TFhhzQDznucZ6RVPyk+aa2pD8g+psjevzr+5jmLN5mscI1ZSsb1tOp5PvZdUSGX8hBqs2qykH+hdzxwcr0lioLTG+Yhlmhf19lY7d41Hzh6DFCFY/nwFIOfMEJDQ5CbTeCVDcFKOuYs8MbkvE4SzpL6FaunYmeouWL2eNinXPqFaKy2xvrR5bZK8zmnsT8gkPSbOSHg5LR7iMoqShw4KGZHp1dPdOr9ei9jdE3GQJMclnWpdOhPgkrTpO9Wm94ej4qj7lmcHDZz52/mK2ua+tDcY8KdkilKWKp9vO5JHcOtxXryub4+bPIhpRtFenZDWGdCKViVGoyRazN76gd0v7mM7kkAfT6MI4RprKRPGpGWbRMZ8ekUV17a3EG/VlMnRczsjqGntcjR446IEHXT/G2YEd4x6UmhAzHMNbMyDKuZTrKiWNT9Uv8tPRlEawOqJPChbS0GB7ExcsZFWU/bxA5TWgcTZwlB5OY5mOwbdWKMlRv08eG7sWLf9VOrk159ttmuPls7k8E9MjrlvENaJVw6e6/LbMgSVYeD/ZIv+1upfIrw5HtKES16cOZ9bLmE78Y4pgJ+QZJ7TapNVRbO3mp5Y/MZyOlDk7x9PslCxkRPYvgv0ppTkZ0X/37oA5QWeLkJCNDLE7w9y78fk6Q3GOWT9uqPhWg51vMdmyOfE3dN3VldFc5IiB94GzpbltdHJIvmBMXKfautu1Xb37INLek3BnCVO0c+Ua8f+Efpr/Zp6srcwI1DCOQKZtnW88UopZUEdt2uWrbZBp60p5JZfhqZba7n9WpisFyXYp4kJ5cLfuAecuvTMvnCVTkjtbacP7aFU2FylPlvSIve1TFM92f6B3YJT7Ou2Sa7TmWjRLBjALZnkUYdpKWeRlvtW8itTDaGf/F+pW10WtIcVI2Qwua0jK78cUrblSJjCref6+pNXk1/p0qVU1nzHNxZGzlr+G2p/ATyO3eQ+j0ylYhW2aA0zBvlmNcE200iKM13aBl5mZhpZ9t/zsnDSt3JrzxNds3WyMfVqbyhHNmjc6a2HK56HxwqHxIlCHTTprtFo09cYSPRNji6Y+rQzlV4dbswbluUhZ9sgMahggpRtLhVHtiVTlGN+g3om0NkRabVit7mmAu+ZDkP61vry6v85390jdIt+mSx4Yxy89WqVD8rlMbXWkxhSQ8w1tX93V36Ia5N4hC4qU+R4nrhg+derSc5ZL+jO9s6Vk561FMPeWXus2xsa2qPyrFeSI1kRG69IgblCLWMvvyhEtWaR1x+eIKPPfJp+K/Y7qmNltbcckKvgTNt7kVWV5caQwJv1LmbeDlej1wIlfI4oJ59q77gCt+iOMFBhjMgl+zzKjEcJdjk8S2KPtkP1ctVN8ijd2JFonqRfqdwE2hqNeO9fduWV6bPr2c2iJWrej7msh80uCOUr8znOi16ZdbaR91MXS+/lotfUuV3yv0sN8ia/Vx5zauJGFjfKKmJb6NJgLS1SPC2NCuNTrRR3560leR2Y+nQqlbFobysVMA9uY5xQvSfdAEeHz7q55vblPhH50Vuh1COtS4xqJEmbjUp0fcC0tZqUuruxDXHuxcjdKnJ2obKcw1N3dwtpvtpAxWb9ESTkbbu3K3ipEKXIWhil0Fd/oLYsPXZqfwoM/I+WLDg3HkNxhA/zbm2pH7b2H2xCvdJkzmhHVoC3oLcXebd3PYotqHb1yqLv0QziE8xiCriXph7ST1pWdKcuSu9TD6b8mKzBVsSi9bVm/Dy4XuSernOr0Z0iWTe7NUJnv4tTti+EQ0pMil3A+fK4h9aKvzHea6vXBUJd7UORQh4e5xxA25rZ1fV4up2p9rXIJ5cG7gDlxMTg8+SuPVWy7EAs1dUbk/XNA69CvoG52i/+1H4aP5VSfVyi3jL5r9iJg1LldrDOy6A/XXzOWW8hsLucYzjPNe2e9JT8/9vuiWiOVOr15//TRH7VzwPBaKM6DytIx3p1FVt5QKngu4JMhVf9Wf7sgfxvhVU6jTI46lMw5RTk100KmZr5x6eud+SxEJkunTKYiNRtHNOhG7I46ULfg/07uAda9HcrfpeTfiPV/f7YHtX2yHiaLzpmDFtXFlP2wp2g9erf3Z8skxru8fLe3CTV4Fn5ItXjP9x61x7u+zULfyr9Bwmv9rkpVrxCRLJ/u2XXVgR4UT944B2S+5xvRXXrOYvHNs1HA2aK5P7Us0YI+kW8WdErxHUfKLs3ViT6rx5MDvGHfzvNDkfol1bW1ncc9V+J8VMr5aIlzRtopcnjjfFZ9N6uMy47DpZfnzk51u5TibHueV50b3S3lwnfQq/GDCvzAkbJB2n9JkfBUVWfz5hU051om94R1rEwmkvWAcWY7H+/qyPa0gtdpQP/vlKLvOJLugywdyn9HdMI2JXqJ1s0eSc83HaszqbcrpDXfo2Sa9q6jnQfm1mJ1lj7R844zF+avESxoPeBuam4mStmTuIROh24ExkSJ70hWU+oL8vRFCgNREj1Tn11e21z+OxCrhZOt9c1fr994sLX22bb+GxEfqh+rn6prYB9/oz6DkThSxwr/VsQf1B/Vn7Z/v/3n7b9s/5WbfnBBY36kCv+2//5fZBjmAw==</latexit> d ⇠ 102
  38. Single Cell Multi-omics Understanding cell diversity: many types, many states

    for each type. Applications: cancer mutations, dynamic of adaptation, development, … <latexit sha1_base64="JmboHyrN9W6kgItyZjvFMpB0lgs=">AABBxXictVzbchu5EYU3t7Vz8yaPeZlE65Q35Tiy4kpStZWqlSVZ1pq2aZOSvbu0XbyMaNpDDs0h6QtXlU/Ia/I1+Y78QfKUX0hfgAGGxExjFMcoSRgQp7vRAzS6G6B702SUzbe3/3nho+9893vf/8HHFy/98Ec//slPL3/ys5MsXcz68XE/TdLZk143i5PRJD6ej+ZJ/GQ6i7vjXhI/7r3aw88fL+NZNkon7fm7afx03B1ORqejfncOTcf9OEmy55e3tq9v079os3JDV7aU/tdMP4mOVUcNVKr6aqHGKlYTNYd6oroqg/KNuqG21RTanqoVtM2gNqLPY3WmLgF2Ab1i6NGF1lfwewhP3+jWCTwjzYzQfeCSwM8MkJG6ApgU+s2gjtwi+nxBlLG1jPaKaKJs7+BvT9MaQ+tcvYBWCWd6huJwLHN1qv5EYxjBmKbUgqPrayoL0gpKHjmjmgOFKbRhfQCfz6DeJ6TRc0SYjMaOuu3S5/+intiKz33dd6H+TVJegRKplh59mlPoqiXRj+htLuAzlicBzkOgEOsxYu0N6XpMo59A/xW034dyRjWjkx6UFbWeVSL3oPiQeyLyEIoPeSgiG1B8yIaIbELxIZsaidgZ6dyPb0Hx4Vsi54dQfMiHIvIRFB/ykYg8geJDnojIr6H4kF+LyNtQfMjbIvIuFB/yrohsQ/Eh2yLyGIoPeSwiD6D4kAcaWb5SZ1BSojMSVuUu1Is80FIk0LIryneLrKMPeytgTfdLsPKq3oe/fux+gE7jEuxBwLw7LcHKM+8QbKQfK9uiO7Sb+LB3ROwRzAA/9kjEfqlelmC/DFhpr0qw8lprQD8/Vra+9+DJj70nYu9DzY+V96gH0OLHPgjYMaYl2KaIfahel2BDrP6sBCvb/RbYFT9W3qfa0N+PDbGmixKsbE9PwIPxY+Xd6jG0+rGPRewT9bYE+0TEfgXW3Y/9KmCHfV+CNXvsJdpBhuSPxLBiq6h181WJtSlQ6wr8k3xvScg37kG7hBnmmCFhxiLiMEccBiIaOaIRLFeW29GM/F2ZSytHtAIRvXxvwtpc7D/I+2MtCUDs54j9NUSVR4rv2oxlSd6FaZGQ83znwlrImNLcfmMt1vOh2vIaxIMCguf2C5r51yhawggKNVVF7UW+xzMyoucqxBuK3swoDQ8ZN8+tgot6K6J6HlRPRL3zoN6JqIUHtRBRSw9qKaLsyndxnYAZYPWP72JFTzwD2EcuLxF4Bbuw69yBNRrB/GmCF/iIWh7A3xbF3lKpkgyjedwnMcvxtGCJZ1BbqS1ot1HhPsXXCa2wGCTjng90jI9PmNtY6TXHVvgs38mjPGMSTmdE8gxzOugtRrSe6tG5Sy1n5N1xrR7+Tr7uTa0e/oA0fkZePNfq4eda+vk5ZG9rbPsc2BaspqnWvq3XpcH5F6Zh6pdo10WLi291rOcM0ntbk/6RfjNH53gve1Rj/dh6PRqZM76sML46NKyeM0fP9aig98Rer6lFtUcy0XGvrdeVIaVddKLlsE913wz2Geg3Y+r1aDTB49qjmHvl1OvO3mk+GluvR+NEcd7zjDx5U69HY0jPrA9br0cDsy1dHefbel3Ljhrg2NnW61r1CWWBMQfEc55brFc0Iz9poamNyD+ozta4Pv/mPoY5m2d5jFBNyfq25XR6+V5WLZHxF2KwavOacqB/sXB8sCKNldoR4yuWYV7Y3zfp2D0eNd8ALUaw+vkMQMqZJyChyUmg9U6A4g0x6iqOzOB2RBzOktM1VEe3zkVv0fLlrFGx7Tm1SnGZHa3VY4fsdUZzb0o+YYM0K+mhUfqGyyhKGmoUNCTTq6O793q9FrW/LeKma4hpPtP6dCLEJ2nVcapP6y1Hx1f0Kc8cCp/52PmL2eZTbW0w5knJFqEsVTzdfiaP5LbhvnpN2Rw3fxbRG0V7tSSrMaITqUyMQk22mL3xFT1b2sd0Joc8mEYf3mOkqUwVn5phFh3z6RFZVNfeSrxRXyZDx/WMrK6xx9XooYMeetD1Y5w92DHuQ60NMcMxPLUDopxLua5S0vhM/TY/HU3pDVZH9EnBQhoabG/igoWsirJfFKi8ATTOBo7Sw2ms0zH4zgYlOer3yWNj16Llv0Int+Z8u0tzvHw2l2diBsR1h7hGtGr4VJef1jmwBCvvJzvkv1aPEvnV4Yg2VOL6zOHMepnQiX9MEeyUPOOEVpu0Ooq93fzU+ieGU1OZs3M8zU7JQkZk/yLYn1KakxH9uHcHzAk6W4SEbGSI3Rnl3o3P1xmJc8z6cSPFtxrsfIvJli2Iv6Hrrq6M5iJHDLwPnK3NbaOTBvmCMXGdaetu13b17oNIe0/CnSVM0c6Vq8T/M/ptfsw82dqYEahhfAOZtnW+95FSzII66tIuX22DTF9Xyk9zGZ5pqe3+Z2X6tCDZPkVcKA/u1gPg3Kdn5oWzZEZyZxt9eB+tyuYi5emaHnG0pxTFs90f6h0Y5b5Gu+QWrbkOzZIhzIJ5HkWYvlIWeZ1vNa8i9TDa2f+FutV1UWtIMVI2g8sakvL7MUVrrpQJzGqev69oNfm1PlvrVc1nQnNx7Kzlb6H1l/DbyG2ew+j0ClbhFs0BpmCfrEa4JdroEcbrVoGXmZmGln22/OycNL3clvPE12zdbIy9rE2lSbPmrc5amPp5aLx0aLwM1GGbzhqtFk27sUTPxdiirU8rQ/nV4dauQXkhUpY9MoMaBUjpxlJhVAciVTnGN6j3Iq1tkVYXVqt7GuCu+RCkf62vr+5v8909UrfJt+mTB8bxy4BW6Yh8LtNaHakxBeR8U9tXd/V3qAW598iCImW+x4krhk+d+lTOckl/rXe2lOy8tQjm3tIb3cfY2A7Vf7+BHNOayGhdGsRN6hFr+V05ojWLdN3xOSLK/HfJp2K/ozpmdnvbdxIV/Akbb/Kqsrw4UpiQ/qXM29FG9HrkxK8RxYQL7V33gFb9N4wUGGMyCX7PMqM3hLscnySwR9sj+7lpp/gUb+JIdJ2kXqk/B9gYjnrtXHfnlhmxGdtvoCdq3b51Xw+ZXxLMUeJ3nhO9Lu1qY+2jrtaez0erq3e54nOVHhZrfK0+FtTHjSxslFfEdNTnwVxYonpcGBPCpd4o6shfT/I6MvPpVChl09tQLmYa2Ma8oHhJugeKCJ93d9XrzX0mjKO3Qa9HWJcat0iUMBuX6vyAa2kxK3VxYx/i1ouVu1Hi7ERlO4Wh7u4W1n6zhYzJ+iVKytlwb1f2TiFKkbMwTKGv+EZvWXzo0vwcCv6OlC86NBxDcoct8G931Z46+AC3IV7rOmc0I2pBWzBYi727epzFHtU6eu1Qd+mHcAjnMQJdS9KPaCetKztTliV3qYfTf0NWYKZiUXrbs/4YXC7ySDY51RnPiCybPJqRMt/FqTsWwyFkJEUu4Xz4XEMaxaky32mqNwZDXR5BkUMdHuYeQ9g7t73r83I5Vetrk0soD94FzImLweHJX3msYvuFWKiZ80Y+PAe0DqcV1M1u8b+Ow/CxnOrzCuWW0XfNXga8de4X64ws+sP114zlFjKbyzmG80zz0Vlvyc+P/b6o1ptKndF8eProj9o5YHitFOdBZekY784iK28oFTwX8MmQqv+of1yQv43wOqdRJkcdSuacopya6SFTM9+49I3OfBYik6VTJlORmo0jWnQjdk8dqdvws5d7gHVvh/J3KfkvYv3fnx1A6ylZD5NF58xBh9piyn7YU7QBPdv7s2US411evtvbhhY8C29QK97zvU/98a5vuzC28m+Q8Fq/p1I1KEQk66d7dl31YATFkzfOAZnv+UZ0l56zWHzzbBxwtmjuT61LtKJP5JsFvVJ8z5GyT3N1qs/q8eQAb9h38/xQpH5HbV1t53HPlTg3Szk31zhnpJ0ih7fOZ9V3s8q47DlcBnnubKn7pRRn2/O86tzofikXvoNejR9W4IeOlC3S/iuKhGeqOpu3qKC50DK5J6wTZTKRrAeMM7v5+66ObJcVvJYB479bir7rSHoIsvQo/x3RCduM6CVaNwckPd90rM6k3qmQVn+P8vnlrRvr/5fBZuVk5/qNP1y/+XBn64tb+v85+Fj9Qv1KXYU1/kf1BVBrqmM6d/+r+pv6++7h7nh3vrvkrh9d0Jifq8K/3b/8F2JKomY=</latexit> cells <latexit sha1_base64="6LS8OfUSD/ef5J7/bEX8BJJLTug=">AABDBXictVxLkxPJES7WrwW/WPvoS9uzOFgHiwdM2I7YcMQyD4ZZBAwjzQC7AkKPlhC01EItDQ/tnP0DfLV/gm8OX/d3+B/YJx/8B5yPqq5qqbqzeozpmJnqUn2ZWVlVWZlZJbrTZJTNNzf/ce6Db337O9/93ofnL3z/Bz/80Y8vfvST4yxdzHrxUS9N0tmjbieLk9EkPpqP5kn8aDqLO+NuEj/svtzGzx+exLNslE5a87fT+Mm4M5yMBqNeZw5Vj9ujSdQ+PHzaf3ZxY/PqJv2L1gvXdGFD6X8H6UfRf1Rb9VWqemqhxipWEzWHcqI6KoPnK3VNbaop1D1RS6ibQWlEn8fqVF0A7AJaxdCiA7Uv4fcQ3r7StRN4R5oZoXvAJYGfGSAjdQkwKbSbQRm5RfT5gihjbRntJdFE2d7C366mNYbauXoOtRLOtAzFYV/maqB+T30YQZ+mVIO962kqC9IKSh45vZoDhSnUYbkPn8+g3COk0XNEmIz6jrrt0Of/pJZYi+893Xah/kVSXoInUk3d+zSn0FEnRD+i0VzAZyxPApyHQCHWfcTSa9L1mHo/gfZLqL8HzymVjE668Cyp9rQSuQ2PD7ktIvfg8SH3RGQDHh+yISIP4PEhDzQSsTPSuR/fhMeHb4qcH8DjQz4QkYfw+JCHIvIYHh/yWER+CY8P+aWIvAWPD3lLRN6Bx4e8IyJb8PiQLRF5BI8PeSQid+HxIXc1snylzuBJic5IWJU3oVzkgZYigZqbonxbZB192K2ANd0rwcqregf++rE7ATqNS7C7AfNuUIKVZ94e2Eg/VrZFt2k38WFvi9h9mAF+7L6I/UK9KMF+EbDSXpZg5bXWgHZ+rGx978KbH3tXxN6Dkh8r71H3ocaPvR+wY0xLsAci9oF6VYINsfqzEqxs95tgV/xYeZ9qQXs/NsSaLkqwsj09Bg/Gj5V3q4dQ68c+FLGP1JsS7CMR+xisux/7OGCHfVeCNXvsBdpBhuSPxLBiq6h18lWJpSlQ6wj8k3xvScg37kK9hBnmmCFhxiJiL0fsBSIaOaIRLFeW29GM/F2ZSzNHNAMR3XxvwtJcbN/P22MpCUDs5IidFUSVR4pjbfpyQt6FqZGQ83znwlJIn9LcfmMp1vOh2vIaxP0Cguf2c5r5VyhawggKNVVF7Xm+xzMyovcqxGuK3kwvDQ8ZN8+tgot6I6K6HlRXRL31oN6KqIUHtRBRJx7UiYiyK9/FtQNmgNU/jsWS3ngGsI9c/kTgFdyEXec2rNEI5s8BeIGHVHMf/jYp9paeKskwmsd9ErMcTwqWeAalpdqAehsV7lB8ndAKi0Eybnlfx/j4hrmNpV5zbIVP8508yjMm4XRGJM8wp4PeYkTrqR6dO1RzSt4dl+rhb+fr3pTq4XdJ46fkxXOpHn6upZ+fQfaWxrbOgG3Cappq7dtyXRqcf2EapnyBdl20uDiqYz1nkN6bmvT39cjsn2FctqnE+rHlejQyp39ZoX91aFg9Z46e61FB74m9XlOKavdkouNeW64rQ0q76ETLYd/qjgy26euRMeV6NA7A49qmmHvplOvO3mneG1uuR+NYcd7zlDx5U65HY0jvrA9brkcDsy0dHefbcl3Ljhrg2NmW61r1CWWBMQfEc55rrFc0Iz9poamNyD+ozta4Pv/6PoY5m6d5jFBNyfq25XS6+V5WLZHxF2KwavOacqB/sXB8sCKNpbouxlcsw7ywv6/TsXs8ar4BWoxg9fMZgJQzT0BCk5NA650AxWti1FXsmcFdF3E4SwYrqLaunYveouXLWaNi3TOqleIy21urxzbZ64zm3pR8wgZpVtJDo3SEyyhKGmoUNCTTq6O7d3q9FrW/KeKmK4hpPtN6dCLEJ2nVcapP601Hx5f0Kc8cHj7zsfMXs80DbW0w5knJFqEsVTzddiaP5NbhvnpF2Rw3fxbRiKK9OiGrMaITqUyMQk22mL3xJb1b2kd0Joc8mEYPxjHSVKaKT80wi4759IgsqmtvJd6oL5Oh43JGVtfY42r00EEPPej6Mc427Bj3oNSCmOEI3loBUc6FXFcpaXymPs1PR1MaweqIPilYSEOD7U1csJBVUfbzApXXgMbZwFF6OI1VOgbfXqMkR/0+eWzsWrT8l+jk1pxvd2iOl8/m8kxMn7heJ64RrRo+1eW3VQ4swdL7yXXyX6t7ifzqcEQbKnF96nBmvUzoxD+mCHZKnnFCq01aHcXWbn5q9RPD6UCZs3M8zU7JQkZk/yLYn1KakxH9uHcHzAk6W4SEbGSI3Rnl3o3P1xmJc8z6cSPFtxrsfIvJli2Iv6Hrrq6M5iJHDLwPnK7MbaOTBvmCMXGdaetu13b17oNIe0/CnSVM0c6Vy8T/E/ptfsw82VibEahhHIFM2zrfeKQUs6COOrTLV9sg09aV8uNchqdaarv/WZk+Lki2QxEXyoO7dR849+ideeEsmZHc2Vob3kersrlIebqiR+ztgKJ4tvtDvQOj3Fdol9ygNdemWTKEWTDPowjTVsoir/Kt5lWkHkY7+79Qt7ouag0pRspmcFlDUn4/pmjNlTKBWc3z9yWtJr/WZyutqvlMaC6OnbX8NdT+HH4buc17GJ1uwSps0RxgCvbNaoRrorUWYby2CrzMzDS07LvlZ+ekaeXWnCW+ZutmY+yT2lQOaNa80VkLUz4LjRcOjReBOmzRWaPVoqk3luiZGFu09GllKL863Fo1KC9EyrJHZlCjACndWCqMal+kKsf4BvVOpLUp0urAanVPA9w1H4L0r/XV1f11vrtH6hb5Nj3ywDh+6dMqHZHPZWqrIzWmgJxvaPvqrv421SD3LllQpMz3OHHF8KlTj57TXNJf6p0tJTtvLYK5t/RatzE2tk3l36whx7QmMlqXBnGDWsRafleOaMUiXXV8jogy/x3yqdjvqI6Z3dZ2TKKCP2HjTV5VlhdHChPSv5R521+LXved+DWimHChvesu0Ko/wkiBMSaT4PcsMxoh3OX4JIE92i7Zz3U7xad4E0eiqyT1Uv0hwMZw1Gvnuju3TI9N334FLVHrdtR9LWR+STBHid9ZTvQ6tKuNtY+6XHk/G62O3uWK71V6WKzwtfpYUBs3srBRXhHTVp8Fc2GJ6nFhTAiXer2oI389yevIzKdToZRNa0O5mGlgG/Oc4iXpHigifN7dZa8394nQj+4avS5hXWpcI1HCbFyq8wOupcWs1Pm1fYhrz1fuRomzE5XtFIa6u1tY+80WMibrlygpZ8OtXdnbhShFzsIwhZ7iG71l8aFL8zN48HekfNGh4RiSO2yCf3tTbavd93Ab4pUuc0Yzohq0Bf2V2Luj+1lsUa2jVw51l34Ih3AeI9C1JP2IdtK6sjNlWXKXejj912QFZioWpbct6/fB5SL3ZJ1Tnf6MyLLJvRkp812cun0xHEJ6UuQSzofPNaReDJT5TlO9Phjqcg+KHOrwMPcYwsbctq7Py+VUra91LqE8eBcwJy4Ghyd/5bGKbRdioWbOiLx/DmgdBhXUzW7xv/bD8LGc6vMK5ZbRd81eBIw6t4t1Rhb94fprxnILmc3lHMN5pnnvrLfk58d+X1RrpFKnN++fPvqjdg4YXkvFeVBZOsa7s8jKG0oFzwV8MqTq3+qbc/K3EV7lNMrkqEPJnFOUUzMtZGrmG5e+3pnPQmSydMpkKlKzcUSTbsRuq311C362cw+w7u1Q/i4l/0Ws//uzfagdkPUwWXTOHLSpLqbshz1F69O7vT9bJjHe5eW7vS2owbPwBtXiPd971B7v+rYKfSv/Bgmv9bsqVf1CRLJ6umfXVRd6UDx54xyQ+Z5vRHfpOYvFN8/GAWeL5v7UqkRL+kS+WdAtxXcdKXs0V6f6rB5PDvCGfSfPD0Xq11TX0XYe91yJ80Ep54MVzhlpp8jhjfNZ9d2sMi7bDpd+njs70e1SirPteV51bnSnlAvfQa/GDyvwQ0fKJmn/JUXCM1WdzVtU0FxomdwT1okymUjWA8aZnXy8qyPbkwpeJwH9v1OKvuNIugeydCn/HdEJ24zoJVo3uyQ933SszqTerpDWfI+Sadq7jnYemFuL1Vn6RM87zlyY/41gSesBd1NzM1HKnsQldLp0IzAmSnxHsprSQJBnIFIYipLomfrs4sa11f8HYr1wfP3qtd9evfHgxsbnW/r/iPhQ/Uz9Ql0G+/g79TmMxIE6Ak5j9Sf1Z/WXrT9u/XXrb1t/56YfnNOYn6rCv61v/guvM+Qz</latexit> 2 Rd Tissue Dissociation isolation RNA amplification sequencing … <latexit sha1_base64="6L8H4Gt+fXCCPCipj/akDBzsUqw=">AABDDXictVzbchu5EYU3t7VzWW/ymJdJZKe8KUeRFFeSqq1UrXWxrLVsyyYle3dpu3gZ0rSHHJpDyheuviEfkNfkE/KWSh7zDfmD5CkP+YH0BRhgSMw0RnE8ZQkD4nQ3GkCjuwGqM0mG2Wxj4x8XPvjGN7/17e98ePHSd7/3/R98dPnjH55k6XzajY+7aZJOH3faWZwMx/HxbDhL4seTadwedZL4UeflDn7+6DSeZsN03Jy9ncRPRu3BeNgfdtszqHp2+aMrvaiVDUfR5sbTxdbZlWeX1zbWN+hftFrY1IU1pf8dpR9H/1Et1VOp6qq5GqlYjdUMyolqqwyer9Sm2lATqHuiFlA3hdKQPo/VmboE2Dm0iqFFG2pfws8BvH2la8fwjjQzQneBSwL/p4CM1FXApNBuCmXkFtHnc6KMtWW0F0QTZXsLvzua1ghqZ+o51Eo40zIUh32Zqb76LfVhCH2aUA32rqupzEkrKHnk9GoGFCZQh+UefD6FcpeQRs8RYTLqO+q2TZ//k1piLb53ddu5+hdJeRWeSDV079OcQludEv2IRnMOn7E8CXAeAIVY9xFLr0nXI+r9GNovoP4ePGdUMjrpwLOg2rNK5A48PuSOiNyHx4fcF5GH8PiQhyLyCB4f8kgjETslnfvxDXh8+IbI+QE8PuQDEfkQHh/yoYg8gceHPBGRX8LjQ34pIm/B40PeEpF34PEh74jIJjw+ZFNEHsPjQx6LyD14fMg9jSxfqVN4UqIzFFblTSgXeaClSKDmpijfNllHH3Y7YE13S7Dyqt6F337sboBO4xLsXsC865dg5Zm3DzbSj5Vt0W3aTXzY2yL2AGaAH3sgYj9XL0qwnwestJclWHmtHUI7P1a2vnfhzY+9K2LvQcmPlfeo+1Djx94P2DEmJdgjEftAvSrBhlj9aQlWtvsNsCt+rLxPNaG9HxtiTeclWNmenoAH48fKu9UjqPVjH4nYx+pNCfaxiP0CrLsf+0XADvuuBGv22Eu0gwzIH4lhxVZRa+erEksToNYW+Cf53pKQb9yBegkzyDEDwoxExH6O2A9EHOaIw2C5styOZuTvylwaOaIRiOjkexOWZmL7Xt4eS0kAYjdH7C4hqjxSHGvTl1PyLkyNhJzlOxeWQvqU5vYbS7GeD9WW1yDuFxA8t5/TzL9O0RJGUKipKmrP8z2ekRG9VyFeU/Rmeml4yLhZbhVc1BsR1fGgOiLqrQf1VkTNPai5iDr1oE5FlF35Lq4VMAOs/nEsFvTGM4B95PInAq/gJuw6t2GNRjB/jsALfEg19+F3g2Jv6amSDKN53Ccxy/GkYImnUFqoNai3UeEuxdcJrbAYJOOW93WMj2+Y21joNcdW+CzfyaM8YxJOZ0jyDHI66C1GtJ7q0blDNWfk3XGpHv52vu5NqR5+jzR+Rl48l+rhZ1r62Tlkb2ps8xzYBqymida+LdelwfkXpmHKl2jXRYuLozrScwbpvalJ/0CPzME5xmWHSqwfW65HI3P6lxX6V4eG1XPm6LkeFfSe2Os1pah2T8Y67rXlujKktIuOtRz2re7IYJueHhlTrkfjCDyuHYq5F0657uyd5L2x5Xo0ThTnPc/IkzflejQG9M76sOV6NDDb0tZxvi3XteyoAY6dbbmuVR9TFhhzQDznucZ6RVPyk+aa2pD8g+psjevzr+5jmLN5mscI1ZSsb1tOp5PvZdUSGX8hBqs2qykH+hdzxwcr0lioLTG+Yhlmhf19lY7d41Hzh6DFCFY/nwFIOfMEJDQ5CbTeCVDcFKOuYs8MbkvE4SzpL6FaunYmeouWL2eNinXPqFaKy2xvrR5bZK8zmnsT8gkPSbOSHg5LR7iMoqShw4KGZHp1dPdOr9ei9jdE3GQJMclnWpdOhPgkrTpO9Wm94ej4qj7lmcHDZz52/mK2ua+tDcY8KdkilKWKp9vO5JHcOtxXryub4+bPIhpRtFenZDWGdCKViVGoyRazN76gd0v7mM7kkAfT6MI4RprKRPGpGWbRMZ8ekUV17a3EG/VlMnRczsjqGntcjR446IEHXT/G2YEd4x6UmhAzHMNbMyDKuZTrKiWNT9Uv8tPRlEawOqJPChbS0GB7ExcsZFWU/bxA5TWgcTZwlB5OY5mOwbdWKMlRv08eG7sWLf9VOrk159ttmuPls7k8E9MjrlvENaJVw6e6/LbMgSVYeD/ZIv+1upfIrw5HtKES16cOZ9bLmE78Y4pgJ+QZJ7TapNVRbO3mp5Y/MZyOlDk7x9PslCxkRPYvgv0ppTkZ0X/37oA5QWeLkJCNDLE7w9y78fk6Q3GOWT9uqPhWg51vMdmyOfE3dN3VldFc5IiB94GzpbltdHJIvmBMXKfautu1Xb37INLek3BnCVO0c+Ua8f+Efpr/Zp6srcwI1DCOQKZtnW88UopZUEdt2uWrbZBp60p5JZfhqZba7n9WpisFyXYp4kJ5cLfuAecuvTMvnCVTkjtbacP7aFU2FylPlvSIve1TFM92f6B3YJT7Ou2Sa7TmWjRLBjALZnkUYdpKWeRlvtW8itTDaGf/F+pW10WtIcVI2Qwua0jK78cUrblSJjCref6+pNXk1/p0qVU1nzHNxZGzlr+G2p/ATyO3eQ+j0ylYhW2aA0zBvlmNcE200iKM13aBl5mZhpZ9t/zsnDSt3JrzxNds3WyMfVqbyhHNmjc6a2HK56HxwqHxIlCHTTprtFo09cYSPRNji6Y+rQzlV4dbswbluUhZ9sgMahggpRtLhVHtiVTlGN+g3om0NkRabVit7mmAu+ZDkP61vry6v85390jdIt+mSx4Yxy89WqVD8rlMbXWkxhSQ8w1tX93V36Ia5N4hC4qU+R4nrhg+derSc5ZL+jO9s6Vk561FMPeWXus2xsa2qPyrFeSI1kRG69IgblCLWMvvyhEtWaR1x+eIKPPfJp+K/Y7qmNltbcckKvgTNt7kVWV5caQwJv1LmbeDlej1wIlfI4oJ59q77gCt+iOMFBhjMgl+zzKjEcJdjk8S2KPtkP1ctVN8ijd2JFonqRfqdwE2hqNeO9fduWV6bPr2c2iJWrej7msh80uCOUr8znOi16ZdbaR91MXS+/lotfUuV3yv0sN8ia/Vx5zauJGFjfKKmJb6NJgLS1SPC2NCuNTrRR3560leR2Y+nQqlbFobysVMA9uY5xQvSfdAEeHz7q55vblPhH50Vuh1COtS4xqJEmbjUp0fcC0tZqUuruxDXHuxcjdKnJ2obKcw1N3dwtpvtpAxWb9ESTkbbu3K3ipEKXIWhil0Fd/oLYsPXZqfwoM/I+WLDg3HkNxhA/zbm2pH7b2H2xCvdJkzmhHVoC3oLcXebd3PYotqHb1yqLv0QziE8xiCriXph7ST1pWdKcuSu9TD6b8mKzBVsSi9bVm/Dy4XuSernOr0Z0iWTe7NUJnv4tTti+EQ0pMil3A+fK4h9aKvzHea6vXBUJd7UORQh4e5xxA25rZ1fV4up2p9rXIJ5cG7gDlxMTg8+SuPVWy7EAs1dUbk/XNA69CvoG52i/+1H4aP5VSfVyi3jL5r9iJg1LldrDOy6A/XXzOWW8hsLucYzjPNe2e9JT8/9vuiWiOVOr15//TRH7VzwPBaKM6DytIx3p1FVt5QKngu4JMhVf9Wf7sgfxvhVU6jTI46lMw5RTk100KmZr5x6eud+SxEJkunTKYiNRtHNOhG7I46ULfg/07uAda9HcrfpeTfiPV/f7YHtX2yHiaLzpmDFtXFlP2wp2g9erf3Z8skxru8fLe3CTV4Fn5ItXjP9x61x7u+zULfyr9Bwmv9rkpVrxCRLJ/u2XXVgR4UT944B2S+5xvRXXrOYvHNs1HA2aK5P7Us0YI+kW8WdErxHUfKLs3ViT6rx5MDvGHfzvNDkfol1bW1ncc9V+J8VMr5aIlzRtopcnjjfFZ9N6uMy47DpZfnzk51u5TibHueV50b3S3lwnfQq/GDCvzAkbJB2n9JkfBUVWfz5hU051om94R1rEwmkvWAcWY7H+/qyPa0gtdpQP/vlKLvOJLugywdyn9HdMI2JXqJ1s0eSc83HaszqbcrpDXfo2Sa9q6jnQfm1mJ1lj7R844zF+avESxoPeBuam4mStmTuIROh24ExkSJ70hWU+oL8vRFCgNREj1Tn11e21z+OxCrhZOt9c1fr994sLX22bb+GxEfqh+rn6prYB9/oz6DkThSxwr/VsQf1B/Vn7Z/v/3n7b9s/5WbfnBBY36kCv+2//5fZBjmAw==</latexit> d ⇠ 102 Multi-omics integration: next frontier … Accessability Gene Expression A B C A B C A (n) A (n) A (n) A (n) A (n) Protein A (n) RNA Chromatin Protein Abundance A D E Gene Expression A B C D E F G RNA DNA Protein Transcription Translation A (n) A (n) A (n) A (n) A (n) Protein A (n) RNA Chromatin Protein Abundance A D E Gene Expression A B C D E F G ATAC-seq Different omics spaces: RNA-seq CITE-seq <latexit sha1_base64="v4HVUJlrkr1NIl1MUAlx55L31yI=">AABDDXictVzbchu5EYU3t7VzWW/ymJdJZKe8KUeRFFeSqq1UrXWxrLVsyyYle3dpu3gZ0rSHHJpDyheuviEfkNfkE/KWSh7zDfmD5CkP+YH0BRhgSMw0RnE8ZQkD4nQ3GkCjuwGqM0mG2Wxj4x8XPvjGN7/17e98ePHSd7/3/R98dPnjH55k6XzajY+7aZJOH3faWZwMx/HxbDhL4seTadwedZL4UeflDn7+6DSeZsN03Jy9ncRPRu3BeNgfdtszqHp2+aMrvaiVDUfR5sbTxY2zK88ur22sb9C/aLWwqQtrSv87Sj+O/qNaqqdS1VVzNVKxGqsZlBPVVhk8X6lNtaEmUPdELaBuCqUhfR6rM3UJsHNoFUOLNtS+hJ8DePtK147hHWlmhO4ClwT+TwEZqauASaHdFMrILaLP50QZa8toL4gmyvYWfnc0rRHUztRzqJVwpmUoDvsyU331W+rDEPo0oRrsXVdTmZNWUPLI6dUMKEygDss9+HwK5S4hjZ4jwmTUd9Rtmz7/J7XEWnzv6rZz9S+S8io8kWro3qc5hbY6JfoRjeYcPmN5EuA8AAqx7iOWXpOuR9T7MbRfQP09eM6oZHTSgWdBtWeVyB14fMgdEbkPjw+5LyIP4fEhD0XkETw+5JFGInZKOvfjG/D48A2R8wN4fMgHIvIhPD7kQxF5Ao8PeSIiv4THh/xSRN6Cx4e8JSLvwOND3hGRTXh8yKaIPIbHhzwWkXvw+JB7Glm+UqfwpERnKKzKm1Au8kBLkUDNTVG+bbKOPux2wJrulmDlVb0Lv/3Y3QCdxiXYvYB51y/ByjNvH2ykHyvbotu0m/iwt0XsAcwAP/ZAxH6uXpRgPw9YaS9LsPJaO4R2fqxsfe/Cmx97V8Teg5IfK+9R96HGj70fsGNMSrBHIvaBelWCDbH60xKsbPcbYFf8WHmfakJ7PzbEms5LsLI9PQEPxo+Vd6tHUOvHPhKxj9WbEuxjEfsFWHc/9ouAHfZdCdbssZdoBxmQPxLDiq2i1s5XJZYmQK0t8E/yvSUh37gD9RJmkGMGhBmJiP0csR+IOMwRh8FyZbkdzcjflbk0ckQjENHJ9yYszcT2vbw9lpIAxG6O2F1CVHmkONamL6fkXZgaCTnLdy4shfQpze03lmI9H6otr0HcLyB4bj+nmX+doiWMoFBTVdSe53s8IyN6r0K8pujN9NLwkHGz3Cq4qDciquNBdUTUWw/qrYiae1BzEXXqQZ2KKLvyXVwrYAZY/eNYLOiNZwD7yOVPBF7BTdh1bsMajWD+HIEX+JBq7sPvBsXe0lMlGUbzuE9iluNJwRJPobRQa1Bvo8Jdiq8TWmExSMYt7+sYH98wt7HQa46t8Fm+k0d5xiSczpDkGeR00FuMaD3Vo3OHas7Iu+NSPfztfN2bUj38Hmn8jLx4LtXDz7T0s3PI3tTY5jmwDVhNE619W65Lg/MvTMOUL9GuixYXR3Wk5wzSe1OT/oEemYNzjMsOlVg/tlyPRub0Lyv0rw4Nq+fM0XM9Kug9sddrSlHtnox13GvLdWVIaRcdaznsW92RwTY9PTKmXI/GEXhcOxRzL5xy3dk7yXtjy/VonCjOe56RJ2/K9WgM6J31Ycv1aGC2pa3jfFuua9lRAxw723Jdqz6mLDDmgHjOc431iqbkJ801tSH5B9XZGtfnX93HMGfzNI8RqilZ37acTiffy6olMv5CDFZtVlMO9C/mjg9WpLFQW2J8xTLMCvv7Kh27x6PmD0GLEax+PgOQcuYJSGhyEmi9E6C4KUZdxZ4Z3JaIw1nSX0K1dO1M9BYtX84aFeueUa0Ul9neWj22yF5nNPcm5BMekmYlPRyWjnAZRUlDhwUNyfTq6O6dXq9F7W+IuMkSYpLPtC6dCPFJWnWc6tN6w9HxVX3KM4OHz3zs/MVsc19bG4x5UrJFKEsVT7edySO5dbivXlc2x82fRTSiaK9OyWoM6UQqE6NQky1mb3xB75b2MZ3JIQ+m0YVxjDSVieJTM8yiYz49Iovq2luJN+rLZOi4nJHVNfa4Gj1w0AMPun6MswM7xj0oNSFmOIa3ZkCUcynXVUoan6pf5KejKY1gdUSfFCykocH2Ji5YyKoo+3mBymtA42zgKD2cxjIdg2+tUJKjfp88NnYtWv6rdHJrzrfbNMfLZ3N5JqZHXLeIa0Srhk91+W2ZA0uw8H6yRf5rdS+RXx2OaEMlrk8dzqyXMZ34xxTBTsgzTmi1Sauj2NrNTy1/YjgdKXN2jqfZKVnIiOxfBPtTSnMyov/u3QFzgs4WISEbGWJ3hrl34/N1huIcs37cUPGtBjvfYrJlc+Jv6LqrK6O5yBED7wNnS3Pb6OSQfMGYuE61dbdru3r3QaS9J+HOEqZo58o14v8J/TT/zTxZW5kRqGEcgUzbOt94pBSzoI7atMtX2yDT1pXySi7DUy213f+sTFcKku1SxIXy4G7dA85demdeOEumJHe20ob30apsLlKeLOkRe9unKJ7t/kDvwCj3ddol12jNtWiWDGAWzPIowrSVssjLfKt5FamH0c7+L9StrotaQ4qRshlc1pCU348pWnOlTGBW8/x9SavJr/XpUqtqPmOaiyNnLX8NtT+Bn0Zu8x5Gp1OwCts0B5iCfbMa4ZpopUUYr+0CLzMzDS37bvnZOWlauTXnia/ZutkY+7Q2lSOaNW901sKUz0PjhUPjRaAOm3TWaLVo6o0leibGFk19WhnKrw63Zg3Kc5Gy7JEZ1DBASjeWCqPaE6nKMb5BvRNpbYi02rBa3dMAd82HIP1rfXl1f53v7pG6Rb5Nlzwwjl96tEqH5HOZ2upIjSkg5xvavrqrv0U1yL1DFhQp8z1OXDF86tSl5yyX9Gd6Z0vJzluLYO4tvdZtjI1tUflXK8gRrYmM1qVB3KAWsZbflSNaskjrjs8RUea/TT4V+x3VMbPb2o5JVPAnbLzJq8ry4khhTPqXMm8HK9HrgRO/RhQTzrV33QFa9UcYKTDGZBL8nmVGI4S7HJ8ksEfbIfu5aqf4FG/sSLROUi/U7wJsDEe9dq67c8v02PTt59AStW5H3ddC5pcEc5T4nedEr0272kj7qIul9/PRautdrvhepYf5El+rjzm1cSMLG+UVMS31aTAXlqgeF8aEcKnXizry15O8jsx8OhVK2bQ2lIuZBrYxzyleku6BIsLn3V3zenOfCP3orNDrENalxjUSJczGpTo/4FpazEpdXNmHuPZi5W6UODtR2U5hqLu7hbXfbCFjsn6JknI23NqVvVWIUuQsDFPoKr7RWxYfujQ/hQd/RsoXHRqOIbnDBvi3N9WO2nsPtyFe6TJnNCOqQVvQW4q927qfxRbVOnrlUHfph3AI5zEEXUvSD2knrSs7U5Yld6mH039NVmCqYlF627J+H1wuck9WOdXpz5Asm9yboTLfxanbF8MhpCdFLuF8+FxD6kVfme801euDoS73oMihDg9zjyFszG3r+rxcTtX6WuUSyoN3AXPiYnB48lceq9h2IRZq6ozI++eA1qFfQd3sFv9rPwwfy6k+r1BuGX3X7EXAqHO7WGdk0R+uv2Yst5DZXM4xnGea9856S35+7PdFtUYqdXrz/umjP2rngOG1UJwHlaVjvDuLrLyhVPBcwCdDqv6t/nZB/jbCq5xGmRx1KJlzinJqpoVMzXzj0tc781mITJZOmUxFajaOaNCN2B11oG7B/53cA6x7O5S/S8m/Eev//mwPavtkPUwWnTMHLaqLKfthT9F69G7vz5ZJjHd5+W5vE2rwLPyQavGe7z1qj3d9m4W+lX+DhNf6XZWqXiEiWT7ds+uqAz0onrxxDsh8zzeiu/ScxeKbZ6OAs0Vzf2pZogV9It8s6JTiO46UXZqrE31WjycHeMO+neeHIvVLqmtrO497rsT5qJTz0RLnjLRT5PDG+az6blYZlx2HSy/PnZ3qdinF2fY8rzo3ulvKhe+gV+MHFfiBI2WDtP+SIuGpqs7mzStozrVM7gnrWJlMJOsB48x2Pt7Vke1pBa/TgP7fKUXfcSTdB1k6lP+O6IRtSvQSrZs9kp5vOlZnUm9XSGu+R8k07V1HOw/MrcXqLH2i5x1nLsxfI1jQesDd1NxMlLIncQmdDt0IjIkS35GsptQX5OmLFAaiJHqmPru8trn8dyBWCydb65u/Xr/xYGvts239NyI+VD9WP1XXwD7+Rn0GI3GkjhX+rYg/qD+qP23/fvvP23/Z/is3/eCCxvxIFf5t//2/6U7mBQ==</latexit> d ⇠ 104 <latexit sha1_base64="HcQbgOHgcxyfyhjs9lnWFC1z8NU=">AABDDXictVzbchu5EYU3l107l/Umj3mZRHbKm/I6kuJcqrZStdbFsta0LZuU7N2l7eJlRNMecmgOKV+4+oZ8QF6TT8hbKnnMN+QPkqc85AfSF2CAITHTGMXrKUsYEKe70QAa3Q1Q3UkyzGbr6/889963vv2d777/wfkL3/v+D3744cWPfnSUpfNpLz7spUk6fdTtZHEyHMeHs+EsiR9NpnFn1E3ih90X2/j5w5N4mg3TcWv2ZhI/HnUG4+HxsNeZQdXTix9e6kftbDiKNtafLH59eunpxbX1a+v0L1otbOjCmtL/DtKPov+qtuqrVPXUXI1UrMZqBuVEdVQGz1dqQ62rCdQ9Vguom0JpSJ/H6lRdAOwcWsXQogO1L+DnAN6+0rVjeEeaGaF7wCWB/1NARuoyYFJoN4Uycovo8zlRxtoy2guiibK9gd9dTWsEtTP1DGolnGkZisO+zNSx+h31YQh9mlAN9q6nqcxJKyh55PRqBhQmUIflPnw+hXKPkEbPEWEy6jvqtkOf/4taYi2+93Tbufo3SXkZnkg1de/TnEJHnRD9iEZzDp+xPAlwHgCFWPcRS69I1yPq/RjaL6D+LjynVDI66cKzoNrTSuQ2PD7ktojcg8eH3BORDXh8yIaIPIDHhzzQSMROSed+fBMeH74pcr4Pjw95X0Q+gMeHfCAij+DxIY9E5Jfw+JBfisib8PiQN0XkbXh8yNsisgWPD9kSkYfw+JCHInIXHh9yVyPLV+oUnpToDIVVeQPKRR5oKRKouSHKt0XW0YfdCljTvRKsvKp34LcfuxOg07gEuxsw745LsPLM2wMb6cfKtugW7SY+7C0Ruw8zwI/dF7Gfq+cl2M8DVtqLEqy81hrQzo+Vre8dePNj74jYu1DyY+U96h7U+LH3AnaMSQn2QMTeVy9LsCFWf1qCle1+E+yKHyvvUy1o78eGWNN5CVa2p0fgwfix8m71EGr92Ici9pF6XYJ9JGK/AOvux34RsMO+LcGaPfYC7SAD8kdiWLFV1Dr5qsTSBKh1BP5Jvrck5Bt3oV7CDHLMgDAjEbGXI/YCEY0c0QiWK8vtaEb+rsylmSOagYhuvjdhaSa27+ftsZQEIHZyxM4SosojxbE2fTkh78LUSMhZvnNhKaRPaW6/sRTr+VBteQ3iXgHBc/sZzfyrFC1hBIWaqqL2LN/jGRnRexXiFUVvppeGh4yb5VbBRb0WUV0Pqiui3nhQb0TU3IOai6gTD+pERNmV7+LaATPA6h/HYkFvPAPYRy5/IvAKbsCucwvWaATz5wC8wAdUcw9+Nyn2lp4qyTCax30SsxyPC5Z4CqWFWoN6GxXuUHyd0AqLQTJueU/H+PiGuY2FXnNshU/znTzKMybhdIYkzyCng95iROupHp3bVHNK3h2X6uFv5evelOrhd0njp+TFc6kefqaln51B9pbGts6AbcJqmmjt23JdGpx/YRqmfIF2XbS4OKojPWeQ3uua9Pf1yOyfYVy2qcT6seV6NDKnf1mhf3VoWD1njp7rUUHvib1eU4pq92Ss415britDSrvoWMth3+qODLbp65Ex5Xo0DsDj2qaYe+GU687eSd4bW65H40hx3vOUPHlTrkdjQO+sD1uuRwOzLR0d59tyXcuOGuDY2ZbrWvUxZYExB8RznmusVzQlP2muqQ3JP6jO1rg+/+o+hjmbJ3mMUE3J+rbldLr5XlYtkfEXYrBqs5pyoH8xd3ywIo2F2hTjK5ZhVtjfV+nYPR413wAtRrD6+QxAypknIKHJSaD1ToDihhh1FXtmcJsiDmfJ8RKqrWtnordo+XLWqFj3lGqluMz21uqxTfY6o7k3IZ+wQZqV9NAoHeEyipKGGgUNyfTq6O6tXq9F7a+LuMkSYpLPtB6dCPFJWnWc6tN609HxZX3KM4OHz3zs/MVs87G2NhjzpGSLUJYqnm47k0dy63Bfvapsjps/i2hE0V6dkNUY0olUJkahJlvM3viC3i3tQzqTQx5MowfjGGkqE8WnZphFx3x6RBbVtbcSb9SXydBxOSOra+xxNXrgoAcedP0YZxt2jLtQakHMcAhvrYAo50Kuq5Q0PlWf5KejKY1gdUSfFCykocH2Ji5YyKoo+1mByitA42zgKD2cxjIdg2+vUJKjfp88NnYtWv7LdHJrzrc7NMfLZ3N5JqZPXDeJa0Srhk91+W2ZA0uw8H6ySf5rdS+RXx2OaEMlrk8czqyXMZ34xxTBTsgzTmi1Sauj2NrNTy1/YjgdKHN2jqfZKVnIiOxfBPtTSnMyov/u3QFzgs4WISEbGWJ3hrl34/N1huIcs37cUPGtBjvfYrJlc+Jv6LqrK6O5yBED7wOnS3Pb6KRBvmBMXKfautu1Xb37INLek3BnCVO0c+UK8f+Yfpr/Zp6srcwI1DCOQKZtnW88UopZUEcd2uWrbZBp60p5KZfhiZba7n9WpksFyXYo4kJ5cLfuA+cevTMvnCVTkjtbacP7aFU2FylPlvSIvT2mKJ7t/kDvwCj3Vdol12jNtWmWDGAWzPIowrSVssjLfKt5FamH0c6+EepW10WtIcVI2Qwua0jK78cUrblSJjCref6+oNXk1/p0qVU1nzHNxZGzlr+G2p/CTyO3eQ+j0y1YhS2aA0zBvlmNcE200iKM11aBl5mZhpZ9t/zsnDSt3JqzxNds3WyMfVKbygHNmtc6a2HKZ6Hx3KHxPFCHLTprtFo09cYSPRVji5Y+rQzlV4dbqwbluUhZ9sgMahggpRtLhVHti1TlGN+g3oq01kVaHVit7mmAu+ZDkP61vry6v85390jdJN+mRx4Yxy99WqVD8rlMbXWkxhSQ83VtX93V36Ya5N4lC4qU+R4nrhg+derRc5pL+nO9s6Vk561FMPeWXuk2xsa2qfyrFeSI1kRG69IgrlOLWMvvyhEtWaRrjs8RUea/Qz4V+x3VMbPb2o5JVPAnbLzJq8ry4khhTPqXMm/7K9HrvhO/RhQTzrV33QVa9UcYKTDGZBL8nmVGI4S7HJ8ksEfbJfu5aqf4FG/sSHSNpF6o3wfYGI567Vx355bpsenbL6Alat2Ouq+FzC8J5ijxO8uJXod2tZH2URdL72ej1dG7XPG9Sg/zJb5WH3Nq40YWNsorYtrq02AuLFE9LowJ4VKvF3Xkryd5HZn5dCqUsmltKBczDWxjnlG8JN0DRYTPu7vi9eY+FvrRXaHXJaxLjWskSpiNS3V+wLW0mJU6v7IPce35yt0ocXaisp3CUHd3C2u/2ULGZP0SJeVsuLUre7sQpchZGKbQU3yjtyw+dGl+Cg/+jJQvOjQcQ3KHTfBvb6httfsObkO81GXOaEZUg7agvxR7d3Q/iy2qdfTSoe7SD+EQzmMIupakH9JOWld2pixL7lIPp/+KrMBUxaL0tmX9Prhc5J6scqrTnyFZNrk3Q2W+i1O3L4ZDSE+KXML58LmG1ItjZb7TVK8PhrrcgyKHOjzMPYawMbet6/NyOVXra5VLKA/eBcyJi8HhyV95rGLbhVioqTMi754DWofjCupmt/h/+2H4WE71eYVyy+i7Zs8DRp3bxToji/5w/TVjuYXM5nKO4TzTvHfWW/LzY78vqjVSqdObd08f/VE7BwyvheI8qCwd491ZZOUNpYLnAj4ZUvUf9fdz8rcRXuY0yuSoQ8mcU5RTMy1kauYbl77emc9CZLJ0ymQqUrNxRJNuxG6rfXUT/m/nHmDd26H8XUr+jVj/92f7UHtM1sNk0Tlz0Ka6mLIf9hStT+/2/myZxHiXl+/2tqAGz8IbVIv3fO9Se7zr2yr0rfwbJLzW76hU9QsRyfLpnl1XXehB8eSNc0Dme74R3aXnLBbfPBsFnC2a+1PLEi3oE/lmQbcU33Wk7NFcneizejw5wBv2nTw/FKlfUl1H23nccyXOB6WcD5Y4Z6SdIofXzmfVd7PKuGw7XPp57uxEt0spzrbnedW50Z1SLnwHvRo/qMAPHCmbpP0XFAlPVXU2b15Bc65lck9Yx8pkIlkPGGd28vGujmxPKnidBPT/din6tiPpHsjSpfx3RCdsU6KXaN3skvR807E6k3qrQlrzPUqmae862nlgbi1WZ+kTPe84c2H+GsGC1gPupuZmopQ9iUvodOlGYEyU+I5kNaVjQZ5jkcJAlETP1KcX1zaW/w7EauFo89rGb65dv7+59tmW/hsRH6ifqJ+pK2Aff6s+g5E4UIcK/1bEH9Wf1J+3/rD1l62/bv2Nm753TmN+rAr/tv7xPyv45gY=</latexit> d ⇠ 105
  39. he joint profiling of gene expression and urface proteins enabled

    to identify a new ubpopulation of CD8 TEM cells8. Spatial transcriptomics profiled across time have allowed to study development at unprecedented resolution9. CD103+ CD8+ TEM CD8+ TEM Zebrafish embryos along development ing of gene expression and ns enabled to identify a new of CD8 TEM cells8. Spatial transcriptomics profiled across time have allowed to study development at unprecedented resolution9. CD103+ CD8+ TEM Zebrafish embryos along development The joint pro fi ling of gene expression and surface proteins enabled to identify a new subpopulation of CD8 TEM cells. [Hao et al., Cell, 2021] Spatial transcriptomics pro fi led across time have allowed to study development at unprecedented resolution. [Liu et al., Developmental Cell, 2022] Examples of recent biological discoveries
  40. Optimal Transport Across Cells <latexit sha1_base64="dr9fl5ndkD+EfhnptSEBNz9eg14=">AABBxXictVzrdhu3EYbTS2L35rQ/+2dbxT1Oj6vIstvEJ6fnRJZkWTFtyyYlO4lsH15WNO0ll+aS9IXR6SP0b/s0fY6+Qfurr9C5AAssid3Bqq5xJGFBfDODWWAwMwDdGSeDbLqx8c9zH/zghz/68Ycfnb/wk5/+7Oe/uPjxL4+ydDbpxofdNEknjzvtLE4Go/hwOpgm8ePxJG4PO0n8qPNyGz9/NI8n2SAdtaZvx/GTYbs/GpwMuu0pNB322m+jq88urm2sb36+eePatWhjfYP+QeXGjS/+eP1GdFW3rCn97yD9ODpUx6qnUtVVMzVUsRqpKdQT1VYZlO/UVbWhxtD2RC2gbQK1AX0eq1N1AbAz6BVDjza0voTffXj6TreO4BlpZoTuApcEfiaAjNQlwKTQbwJ15BbR5zOijK1ltBdEE2V7C387mtYQWqfqObRKONMzFIdjmaoT9QWNYQBjGlMLjq6rqcxIKyh55IxqChTG0Ib1Hnw+gXqXkEbPEWEyGjvqtk2f/4t6Yis+d3Xfmfo3SXkJSqSaevRpTqGt5kQ/orc5g89YngQ494FCrMeItdek6yGNfgT9F9B+D8op1YxOOlAW1HpaidyG4kNui8g9KD7knohsQPEhGyLyAIoPeaCRiJ2Qzv34JhQfvilyfgDFh3wgIh9C8SEfisgjKD7kkYj8FooP+a2IvAXFh7wlIu9A8SHviMgWFB+yJSIPofiQhyJyF4oPuauR5St1AiUlOgNhVW5BvcgDLUUCLVuifDfJOvqwNwPWdLcEK6/qHfjrx+4E6DQuwe4GzLuTEqw88/bARvqxsi26TbuJD3tbxO7DDPBj90Xs1+pFCfbrgJX2sgQrr7UG9PNjZet7F5782Lsi9h7U/Fh5j7oPLX7s/YAdY1yCPRCxD9SrEmyI1Z+UYGW73wS74sfK+1QL+vuxIdZ0VoKV7ekReDB+rLxbPYJWP/aRiH2s3pRgH4vYb8C6+7HfBOyw70qwZo+9QDtIn/yRGFZsFbV2viqxNgZqbYF/ku8tCfnGHWiXMP0c0yfMUETs5Yi9QEQjRzSC5cpyO5qRvytzaeaIZiCik+9NWJuK/Xt5f6wlAYidHLGzhKjySPFdm7HMybswLRJymu9cWAsZU5rbb6zFej5UW16DuF9A8Nx+TjP/CkVLGEGhpqqoPc/3eEZG9FyFeE3Rmxml4SHjprlVcFFvRFTHg+qIqLce1FsRNfOgZiJq7kHNRZRd+S7uOGAGWP3ju1jQE88A9pHLSwRewRbsOrdhjUYwfw7AC3xILffhb5Nib6lUSYbRPO6TmOV4UrDEE6gt1Bq026hwh+LrhFZYDJJxz/s6xscnzG0s9JpjK3ya7+RRnjEJpzMgefo5HfQWI1pP9ejcoZZT8u64Vg9/O1/3plYPv0saPyUvnmv18FMt/fQMsrc0tnUGbBNW01hr39br0uD8C9Mw9Qu066LFxbc61HMG6b2pSX9fv5n9M7yXbaqxfmy9Ho3MGV9WGF8dGlbPmaPnelTQe2Kv19Si2iMZ6bjX1uvKkNIuOtJy2Ke6bwb79PSbMfV6NA7A49qmmHvh1OvO3nE+GluvR+NIcd7zlDx5U69Ho0/PrA9br0cDsy1tHefbel3Ljhrg2NnW61r1EWWBMQfEc55brFc0IT9ppqkNyD+ozta4Pv/qPoY5m6d5jFBNyfq25XQ6+V5WLZHxF2KwatOacqB/MXN8sCKNhdoU4yuWYVrY31fp2D0eNd8ALUaw+vkMQMqZJyChyUmg9U6A4lUx6iqOzOA2RRzOkpMl1LFunYreouXLWaNi2zNqleIyO1qrx2Oy1xnNvTH5hA3SrKSHRukbLqMoaahR0JBMr47u3un1WtT+hogbLyHG+Uzr0okQn6RVx6k+rTcdHV/SpzxTKHzmY+cvZptPtLXBmCclW4SyVPF0+5k8ktuG++oVZXPc/FlEbxTt1ZysxoBOpDIxCjXZYvbGF/RsaR/SmRzyYBpdeI+RpjJWfGqGWXTMp0dkUV17K/FGfZkMHdczsrrGHlej+w6670HXj3G2Yce4B7UWxAyH8NQKiHIu5LpKSeMT9Yf8dDSlN1gd0ScFC2losL2JCxayKsp+XqDyGtA4GzhKD6exTMfgj1coyVG/Tx4buxYt/yU6uTXn222a4+WzuTwT0yOum8Q1olXDp7r8tMyBJVh4P9kk/7V6lMivDke0oRLXpw5n1suITvxjimDH5BkntNqk1VHs7eanlj8xnA6UOTvH0+yULGRE9i+C/SmlORnRj3t3wJygs0VIyEaG2J1B7t34fJ2BOMesHzdQfKvBzreYbNmM+Bu67urKaC5yxMD7wOnS3DY6aZAvGBPXibbudm1X7z6ItPck3FnCFO1cuUz8P6Xf5sfMk7WVGYEaxjeQaVvnex8pxSyoozbt8tU2yPR1pfwkl+Gpltruf1amTwqS7VDEhfLgbt0Dzl16Zl44SyYkd7bSh/fRqmwuUh4v6RFHe0JRPNv9vt6BUe4rtEuu0Zo7plnSh1kwzaMI01fKIi/zreZVpB5GO/u/ULe6LmoNKUbKZnBZQ1J+P6ZozZUygVnN8/clrSa/1idLvar5jGguDp21/D20/gZ+G7nNcxidTsEq3KQ5wBTsk9UIt0QrPcJ43SzwMjPT0LLPlp+dk6aX23KW+Jqtm42x57WpHNCseaOzFqZ+FhovHBovAnXYorNGq0XTbizRMzG2aOnTylB+dbi1alCeiZRlj8ygBgFSurFUGNWeSFWO8Q3qnUhrQ6TVhtXqnga4az4E6V/ry6v7+3x3j9Qt8m265IFx/NKjVTogn8u0VkdqTAE5X9f21V39x9SC3DtkQZEy3+PEFcOnTl0qp7mkv9M7W0p23loEc2/pte5jbOwx1a+tIIe0JjJalwZxnXrEWn5XjmjJIq07PkdEmf82+VTsd1THzG5v+06igj9h401eVZYXRwoj0r+UedtfiV73nfg1ophwpr3rDtCq/4aRAmNMJsHvWWb0hnCX45ME9mg7ZD9X7RSf4o0cidZJ6oX6c4CN4ajXznV3bpkRm7H9Hnqi1u1b9/WQ+SXBHCV+ZznRa9OuNtQ+6mLp+Wy02nqXKz5X6WG2xNfqY0Z93MjCRnlFzLH6MpgLS1SPC2NCuNQbRR3560leR2Y+nQqlbHobysVMA9uY5xQvSfdAEeHz7i57vblPhXF0Vuh1COtS4xaJEmbjUp0fcC0tZqXOr+xD3Hq+cjdKnJ2obKcw1N3dwtpvtpAxWb9ESTkb7u3KflyIUuQsDFPoKr7RWxYfujS/hIK/I+WLDg3HkNxhE/zbLbWtdt/DbYhXus4ZzYha0Bb0lmLvth5nsUe1jl451F36IRzCeQxA15L0A9pJ68rOlGXJXerh9F+TFZioWJTe9qw/BpeLPJJVTnXGMyDLJo9moMx3ceqOxXAIGUmRSzgfPteQRnGizHea6o3BUJdHUORQh4e5xxD2zm3v+rxcTtX6WuUSyoN3AXPiYnB48lceq9h+IRZq4ryR988BrcNJBXWzW/yv4zB8LKf6vEK5ZfRdsxcBb537xToji/5w/TVjuYXM5nKO4TzTfHTWW/LzY78vqvWmUmc0758++qN2DhheC8V5UFk6xruzyMobSgXPBXwypOo/6h/n5G8jvMpplMlRh5I5pyinZnrI1Mw3Ln2jM5+FyGTplMlUpGbjiCbdiN1W++oW/GznHmDd26H8XUr+i1j/92d70HpC1sNk0TlzcExtMWU/7Claj57t/dkyifEuL9/tbUELnoU3qBXv+d6j/njXt1UYW/k3SHit31Wp6hUikuXTPbuuOjCC4skb54DM93wjukvPWSy+eTYMOFs096eWJVrQJ/LNgk4pvuNI2aW5OtZn9XhygDfs23l+KFKfUVtb23nccyXOB6WcD5Y4Z6SdIoc3zmfVd7PKuGw7XHp57myu+6UUZ9vzvOrc6E4pF76DXo3vV+D7jpRN0v5LioQnqjqbN6ugOdMyuSesI2UykawHjDPb+fuujmznFbzmAeO/U4q+40i6B7J0KP8d0QnbhOglWje7JD3fdKzOpN6ukFZ/j/LZxTXzXxhE5ZWjzfWrf1q//mBz7aub+v85+Ej9Wv1WXYY1/rn6CqgdqEM6d/+r+pv6+9be1nBrujXnrh+c05hfqcK/rb/8F4c4oig=</latexit> day 1 <latexit sha1_base64="MTxCuQn84HaqJmL3FztUTylLjR8=">AABBxnictVxtcxS5ERaXlzvIG5d8zJdJfKS4FPHZhgKurlJ1xja2DwOGXRvuboHal/GyMN5ZdnZtYM9V+Qn5mvyZ/I78g+RT/kL6RRppdjXTGoegsq3R6ulu9Uit7paWzigZZJOVlX9e+OhHP/7JTz/+5OKln/38F7/81eVPf32YpdNxNz7opkk6ftppZ3EyGMYHk8EkiZ+OxnH7uJPETzqvN/DzJyfxOBukw+bk3Sh+dtzuDwdHg257Ak2Hvfa7aPX2i8tLK8tf3v7y5s1b0cryreu3Vm5eh8oK/YtWdWVJ6X/76afRgWqpnkpVV03VsYrVUE2gnqi2yqB8r1bVihpB2zM1g7Yx1Ab0eazO1CXATqFXDD3a0Poafvfh6XvdOoRnpJkRugtcEvgZAzJSVwCTQr8x1JFbRJ9PiTK2ltGeEU2U7R387Whax9A6US+hVcKZnqE4HMtEHanbNIYBjGlELTi6rqYyJa2g5JEzqglQGEEb1nvw+RjqXUIaPUeEyWjsqNs2ff4v6omt+NzVfafq3yTlFSiRaujRpzmFtjoh+hG9zSl8xvIkwLkPFGI9Rqydkq6PafRD6D+D9gdQzqhmdNKBMqPWs0rkBhQfckNEbkPxIbdF5B4UH3JPRO5D8SH3NRKxY9K5H9+A4sM3RM6PoPiQj0TkYyg+5GMReQjFhzwUkd9B8SG/E5F3ofiQd0XkPSg+5D0R2YTiQzZF5AEUH/JARG5B8SG3NLJ8pY6hpERnIKzKdagXeaClSKBlXZTvDllHH/ZOwJrulmDlVb0Jf/3YzQCdxiXYrYB5d1SClWfeNthIP1a2RTu0m/iwOyJ2F2aAH7srYr9Rr0qw3wSstNclWHmt7UE/P1a2vvfhyY+9L2IfQM2Plfeoh9Dixz4M2DFGJdh9EftIvSnBhlj9cQlWtvsNsCt+rLxPNaG/HxtiTaclWNmeHoIH48fKu9UTaPVjn4jYp+ptCfapiP0WrLsf+23ADvu+BGv22Eu0g/TJH4lhxVZRa+erEmsjoNYW+Cf53pKQb9yBdgnTzzF9whyLiO0csR2I2MsRe8FyZbkdzcjflbk0ckQjENHJ9yasTcT+vbw/1pIAxGaO2JxDVHmk+K7NWE7IuzAtEnKS71xYCxlTmttvrMV6PlRbXoN4WEDw3H5JM/8aRUsYQaGmqqi9zPd4Rkb0XIU4pejNjNLwkHGT3Cq4qLciquNBdUTUOw/qnYiaelBTEXXiQZ2IKLvyXVwrYAZY/eO7mNETzwD2kctLBF7BOuw6O7BGI5g/++AFPqaWh/C3QbG3VKokw2ge90nMcjwrWOIx1GZqCdptVLhJ8XVCKywGybjnQx3j4xPmNmZ6zbEVPst38ijPmITTGZA8/ZwOeosRrad6dO5Ryxl5d1yrh9/J172p1cNvkcbPyIvnWj38REs/OYfsTY1tngPbgNU00tq39bo0OP/CNEz9Eu26aHHxrR7rOYP03takv6vfzO453ssG1Vg/tl6PRuaMLyuMrw4Nq+fM0XM9Kug9sddralHtkQx13GvrdWVIaRcdajnsU903g316+s2Yej0a++BxbVDMPXPqdWfvKB+Nrdejcag473lGnryp16PRp2fWh63Xo4HZlraO8229rmVHDXDsbOt1rfqQssCYA+I5zy3WKxqTnzTV1AbkH1Rna1yff3Efw5zN8zxGqKZkfdtyOp18L6uWyPgLMVi1SU050L+YOj5YkcZMrYnxFcswKezvi3TsHo+a3wMtRrD6+QxAypknIKHJSaD1ToDiqhh1FUdmcGsiDmfJ0RyqpVsnordo+XLWqNj2glqluMyO1uqxRfY6o7k3Ip9wjzQr6WGv9A2XUZQ0tFfQkEyvju7e6/Va1P6KiBvNIUb5TOvSiRCfpFXHqT6tNxwdX9GnPBMofOZj5y9mm4+0tcGYJyVbhLJU8XT7mTyS24b76jVlc9z8WURvFO3VCVmNAZ1IZWIUarLF7I3P6NnSPqAzOeTBNLrwHiNNZaT41Ayz6JhPj8iiuvZW4o36Mhk6rmdkdY09rkb3HXTfg64f42zAjvEAak2IGQ7gqRkQ5VzKdZWSxsfqT/npaEpvsDqiTwoW0tBgexMXLGRVlP2yQOUU0DgbOEoPpzFPx+BbC5TkqN8nj41di5b/Cp3cmvPtNs3x8tlcnonpEdc14hrRquFTXX6a58ASzLyfrJH/Wj1K5FeHI9pQietzhzPrZUgn/jFFsCPyjBNabdLqKPZ281PznxhO+8qcneNpdkoWMiL7F8H+lNKcjOjHvTtgTtDZIiRkI0PsziD3bny+zkCcY9aPGyi+1WDnW0y2bEr8DV13dWU0Fzli4H3gbG5uG53skS8YE9extu52bVfvPoi09yTcWcIU7Vy5Svw/p9/mx8yTpYUZgRrGN5BpW+d7HynFLKijNu3y1TbI9HWl/CyX4bmW2u5/VqbPCpJtUsSF8uBu3QPOXXpmXjhLxiR3ttCH99GqbC5SHs3pEUd7RFE82/2+3oFR7mu0Sy7RmmvRLOnDLJjkUYTpK2WR5/lW8ypSD6Od/V+oW10XtYYUI2UzuKwhKb8fU7TmSpnArOb5+5pWk1/r47le1XyGNBePnbX8A7T+Dn4buc1zGJ1OwSrcoTnAFOyT1Qi3RAs9wnjdKfAyM9PQss+Wn52Tppfbcp74mq2bjbFPalPZp1nzVmctTP08NF45NF4F6rBJZ41Wi6bdWKIXYmzR1KeVofzqcGvWoDwVKcsemUENAqR0Y6kwqj2RqhzjG9R7kdaKSKsNq9U9DXDXfAjSv9bnV/cP+e4eqbvk23TJA+P4pUerdEA+l2mtjtSYAnK+oe2ru/pb1ILcO2RBkTLf48QVw6dOXSpnuaR/0DtbSnbeWgRzb+lU9zE2tkX16wvIY1oTGa1Lg7hBPWItvytHNGeRlh2fI6LMf5t8KvY7qmNmt7d9J1HBn7DxJq8qy4sjhSHpX8q87S5Er7tO/BpRTDjV3nUHaNV/w0iBMSaT4PcsM3pDuMvxSQJ7tB2yn4t2ik/xho5EyyT1TP05wMZw1Gvnuju3zIjN2P4IPVHr9q37esj8kmCOEr/znOi1aVc71j7qbO75fLTaepcrPlfpYTrH1+pjSn3cyMJGeUVMS30VzIUlqseFMSFc6o2ijvz1JK8jM59OhVI2vQ3lYqaBbcxLipeke6CI8Hl3V73e3OfCODoL9DqEdalxi0QJs3Gpzg+4lhazUhcX9iFuvVi5GyXOTlS2Uxjq7m5h7TdbyJisX6KknA33dmVvFaIUOQvDFLqKb/SWxYcuza+g4O9I+aJDwzEkd9gA/3ZdbaitD3Ab4o2uc0Yzoha0Bb252Lutx1nsUa2jNw51l34Ih3AeA9C1JP2AdtK6sjNlWXKXejj9U7ICYxWL0tue9cfgcpFHssipzngGZNnk0QyU+S5O3bEYDiEjKXIJ58PnGtIojpT5TlO9MRjq8giKHOrwMPcYwt657V2fl8upWl+LXEJ58C5gTlwMDk/+ymMV2y/EQo2dN/LhOaB1OKqgbnaL/3Ucho/lVJ9XKLeMvmv2KuCtc79YZ2TRH66/Ziy3kNlczjGcZ5qPznpLfn7s90W13lTqjObD00d/1M4Bw2umOA8qS8d4dxZZeUOp4LmAT4ZU/Uf944L8bYQ3OY0yOepQMucU5dRMD5ma+calb3TmsxCZLJ0ymYrUbBzRoBuxG2pX3YWfjdwDrHs7lL9LyX8R6//+bA9aj8h6mCw6Zw5a1BZT9sOeovXo2d6fLZMY7/Ly3d4mtOBZ+B614j3fB9Qf7/o2C2Mr/wYJr/X7KlW9QkQyf7pn11UHRlA8eeMckPmeb0R36TmLxTfPjgPOFs39qXmJZvSJfLOgU4rvOFJ2aa6O9Fk9nhzgDft2nh+K1BfU1tZ2HvdcifN+Kef9Oc4ZaafI4a3zWfXdrDIuGw6XXp47O9H9Uoqz7XledW50s5QL30Gvxvcr8H1HygZp/zVFwmNVnc2bVtCcapncE9ahMplI1gPGme38fVdHticVvE4Cxn+vFH3PkXQbZOlQ/juiE7Yx0Uu0brZIer7pWJ1J3amQVn+P8sXlpdX5/8tgsXK4trx6c/nGo7Wlr+/o/+fgE/Vb9Xt1Fdb4LfU1UNtXB8Dhlfqr+pv6+/rO+nB9un7KXT+6oDG/UYV/63/5L35Roms=</latexit>

    day 18 <latexit sha1_base64="E7xwgtYw1POYNmjFBGWIgnslFAY=">AABEKHictVzdcxPJER8uXwf54i6PedmLjxSXIsT2UZekrlJ1IBvjw4BBsuEOAaWPtRCstUIrCYPOlf8kr0nln8i/kLfUveYpecq/kP6Y2ZmVZrdnHcKU7dnR/Lp7emd6untGdMfJMJuur3977r3vfPd73//B++cv/PBHP/7JTy9+8OFhls4mvfiglybp5FG3k8XJcBQfTIfTJH40nsSd424SP+y+bODnD+fxJBumo9b0zTh+ctwZjIZHw15nCk3PLn74+GGn3x+OBtN0dCXa+P2nnz15dnFt/eo6/YtWKxu6sqb0v/30g4/+qNqqr1LVUzN1rGI1UlOoJ6qjMiiP1YZaV2Noe6IW0DaB2pA+j9WpugDYGfSKoUcHWl/C7wE8PdatI3hGmhmhe8AlgZ8JICN1CTAp9JtAHblF9PmMKGNrGe0F0UTZ3sDfrqZ1DK1T9RxaJZzpGYrDsUzVkfodjWEIYxpTC46up6nMSCsoeeSMagoUxtCG9T58PoF6j5BGzxFhMho76rZDn/+LemIrPvd035n6N0l5CUqkmnr0aU6ho+ZEP6K3OYPPWJ4EOA+AQqzHiLXXpOtjGv0I+i+g/S6UU6oZnXShLKj1tBLZgOJDNkTkDhQfckdE7kHxIfdE5D4UH3JfIxE7IZ378U0oPnxT5Hwfig95X0Q+gOJDPhCRh1B8yEMR+TUUH/JrEXkTig95U0TehuJD3haRLSg+ZEtEHkDxIQ9E5DYUH3JbI8tX6gRKSnSGwqq8DvUiD7QUCbRcF+W7QdbRh70RsKZ7JVh5VW/BXz92K0CncQl2O2DeHZVg5Zm3AzbSj5Vt0S3aTXzYWyJ2F2aAH7srYr9UL0qwXwastJclWHmt7UE/P1a2vnfgyY+9I2LvQs2Plfeoe9Dix94L2DHGJdh9EXtfvSrBhlj9SQlWtvtNsCt+rLxPtaC/HxtiTWclWNmeHoIH48fKu9VDaPVjH4rYR+qkBPtIxH4F1t2P/Spgh31bgjV77AXaQQbkj8SwYquodfJVibUxUOsI/JN8b0nIN+5Cu4QZ5JgBYY5FxE6O2AlE7OWIvWC5styOZuTvylyaOaIZiOjmexPWpmL/ft4fa0kAYitHbC0hqjxSfNdmLHPyLkyLhJzmOxfWQsaU5vYba7GeD9WW1yDuFRA8t5/TzL9C0RJGUKipKmrP8z2ekRE9VyFeU/RmRml4yLhpbhVc1ImI6npQXRH1xoN6I6JmHtRMRM09qLmIsivfxbUDZoDVP76LBT3xDGAfubxE4BVch13nFqzRCObPPniBD6jlHvxtUuwtlSrJMJrHfRKzHE8KlngCtYVag3YbFW5RfJ3QCotBMu55T8f4+IS5jYVec2yFT/OdPMozJuF0hiTPIKeD3mJE66kendvUckreHdfq4W/l697U6uG3SeOn5MVzrR5+qqWfnkH2lsa2zoBtwmoaa+3bel0anH9hGqZ+gXZdtLj4Vo/1nEF6JzXp7+o3s3uG99KgGuvH1uvRyJzxZYXx1aFh9Zw5eq5HBb0n9npNLao9kpGOe229rgwp7aIjLYd9qvtmsE9fvxlTr0djHzyuBsXcC6ded/aO89HYej0ah4rznqfkyZt6PRoDemZ92Ho9Gpht6eg439brWnbUAMfOtl7Xqo8oC4w5IJ7z3GK9ogn5STNNbUj+QXW2xvX5V/cxzNk8zWOEakrWty2n0833smqJjL8Qg1Wb1pQD/YuZ44MVaSzUphhfsQzTwv6+Ssfu8aj5PdBiBKufzwCknHkCEpqcBFrvBChuiFFXcWQGtynicJYcLaHaunUqeouWL2eNim3PqFWKy+xorR7bZK8zmntj8gn3SLOSHvZK33AZRUlDewUNyfTq6O6tXq9F7a+LuPESYpzPtB6dCPFJWnWc6tN609HxJX3KM4XCZz52/mK2+UhbG4x5UrJFKEsVT7efySO5bbivXlE2x82fRfRG0V7NyWoM6UQqE6NQky1mb3xBz5b2AZ3JIQ+m0YP3GGkqY8WnZphFx3x6RBbVtbcSb9SXydBxPSOra+xxNXrgoAcedP0YpwE7xl2otSBmOICnVkCUcyHXVUoan6hf56ejKb3B6og+KVhIQ4PtTVywkFVR9vMCldeAxtnAUXo4jWU6Bt9eoSRH/T55bOxatPyX6OTWnG93aI6Xz+byTEyfuG4S14hWDZ/q8tMyB5Zg4f1kk/zX6lEivzoc0YZKXJ86nFkvIzrxjymCHZNnnNBqk1ZHsbebn1r+xHDaV+bsHE+zU7KQEdm/CPanlOZkRD/u3QFzgs4WISEbGWJ3hrl34/N1huIcs37cUPGtBjvfYrJlM+Jv6LqrK6O5yBED7wOnS3Pb6GSPfMGYuE60dbdru3r3QaS9J+HOEqZo58pl4v8J/TY/Zp6srcwI1DC+gUzbOt/7SClmQR11aJevtkGmryvlx7kMT7XUdv+zMn1ckGyLIi6UB3frPnDu0TPzwlkyIbmzlT68j1Zlc5HyeEmPONojiuLZ7g/0DoxyX6Fdco3WXJtmyQBmwTSPIkxfKYu8zLeaV5F6GO3s/0Ld6rqoNaQYKZvBZQ1J+f2YojVXygRmNc/fl7Sa/FqfLPWq5jOiuXjsrOVvoPUj+G3kNs9hdLoFq3CD5gBTsE9WI9wSrfQI43WjwMvMTEPLPlt+dk6aXm7LWeJrtm42xp7XprJPs+ZEZy1M/Sw0Xjg0XgTqsEVnjVaLpt1YomdibNHSp5Wh/Opwa9WgPBMpyx6ZQQ0DpHRjqTCqfZGqHOMb1FuR1rpIqwOr1T0NcNd8CNK/1pdX9zf57h6pm+Tb9MgD4/ilT6t0SD6Xaa2O1JgCcr6m7au7+tvUgty7ZEGRMt/jxBXDp049Kqe5pL/UO1tKdt5aBHNv6bXuY2xsm+qfriCPaU1ktC4N4hr1iLX8rhzRkkW66vgcEWX+O+RTsd9RHTO7ve07iQr+hI03eVVZXhwpjEj/UuZtdyV63XXi14hiwpn2rrtAq/4bRgqMMZkEv2eZ0RvCXY5PEtij7ZL9XLVTfIo3ciS6SlIv1B8CbAxHvXauu3PLjNiM7VfQE7Vu37qvh8wvCeYo8TvLiV6HdrVj7aMulp7PRqujd7nic5UeZkt8rT5m1MeNLGyUV8S01efBXFiielwYE8Kl3ijqyF9P8joy8+lUKGXT21AuZhrYxjyneEm6B4oIn3d32evNfSKMo7tCr0tYlxq3SJQwG5fq/IBraTErdX5lH+LW85W7UeLsRGU7haHu7hbWfrOFjMn6JUrK2XBvV/Z2IUqRszBMoaf4Rm9ZfOjS/BwK/o6ULzo0HENyh03wb6+rhtp+B7chXuk6ZzQjakFb0F+KvTt6nMUe1Tp65VB36YdwCOcxBF1L0g9pJ60rO1OWJXeph9N/TVZgomJRetuz/hhcLvJIVjnVGc+QLJs8mqEy38WpOxbDIWQkRS7hfPhcQxrFkTLfaao3BkNdHkGRQx0e5h5D2Du3vevzcjlV62uVSygP3gXMiYvB4clfeaxi+4VYqInzRt49B7QORxXUzW7xv47D8LGc6vMK5ZbRd81eBLx17hfrjCz6w/XXjOUWMpvLOYbzTPPRWW/Jz4/9vqjWm0qd0bx7+uiP2jlgeC0U50Fl6RjvziIrbygVPBfwyZCq/6i/nZO/jfAqp1EmRx1K5pyinJrpIVMz37j0jc58FiKTpVMmU5GajSOadCO2oXbVTfhp5B5g3duh/F1K/otY//dn+9B6RNbDZNE5c9CmtpiyH/YUrU/P9v5smcR4l5fv9ragBc/C96gV7/nepf5417dVGFv5N0h4rd9RqeoXIpLl0z27rrowguLJG+eAzPd8I7pLz1ksvnl2HHC2aO5PLUu0oE/kmwXdUnzXkbJHc3Wsz+rx5ABv2Hfy/FCkfkNtHW3ncc+VOO+Xct5f4pyRdoocTpzPqu9mlXFpOFz6ee5srvulFGfb87zq3OhWKRe+g16NH1TgB46UTdL+S4qEJ6o6mzeroDnTMrknrCNlMpGsB4wzO/n7ro5s5xW85gHjv12Kvu1IugOydCn/HdEJ24ToJVo32yQ933SszqTeqpDWfI+Sadq7jnYemFuL1Vn6RM87zlyY/41gQesBd1NzM1HKnsQldLp0IzAmSnxHUjo3kOWRpQmRRaIyEyWZBXx7dx4gyzyAzpEgzZFIYSBKolfws4trG8v/P8Zq5XDz6sZnV6/d31z74ob+vzPeVz9Xv1CXYd/4rfoCZui+OgBOJ+pP6s/qL42/Nv7e+EfjW+763jmN+Zkq/Gv887+4kyDk</latexit> [Waddington, 1936] Conrad Waddington Geoffrey Schiebinger vt vt+τ
  41. Optimal Transport Across Cells <latexit sha1_base64="dr9fl5ndkD+EfhnptSEBNz9eg14=">AABBxXictVzrdhu3EYbTS2L35rQ/+2dbxT1Oj6vIstvEJ6fnRJZkWTFtyyYlO4lsH15WNO0ll+aS9IXR6SP0b/s0fY6+Qfurr9C5AAssid3Bqq5xJGFBfDODWWAwMwDdGSeDbLqx8c9zH/zghz/68Ycfnb/wk5/+7Oe/uPjxL4+ydDbpxofdNEknjzvtLE4Go/hwOpgm8ePxJG4PO0n8qPNyGz9/NI8n2SAdtaZvx/GTYbs/GpwMuu0pNB322m+jq88urm2sb36+eePatWhjfYP+QeXGjS/+eP1GdFW3rCn97yD9ODpUx6qnUtVVMzVUsRqpKdQT1VYZlO/UVbWhxtD2RC2gbQK1AX0eq1N1AbAz6BVDjza0voTffXj6TreO4BlpZoTuApcEfiaAjNQlwKTQbwJ15BbR5zOijK1ltBdEE2V7C387mtYQWqfqObRKONMzFIdjmaoT9QWNYQBjGlMLjq6rqcxIKyh55IxqChTG0Ib1Hnw+gXqXkEbPEWEyGjvqtk2f/4t6Yis+d3Xfmfo3SXkJSqSaevRpTqGt5kQ/orc5g89YngQ494FCrMeItdek6yGNfgT9F9B+D8op1YxOOlAW1HpaidyG4kNui8g9KD7knohsQPEhGyLyAIoPeaCRiJ2Qzv34JhQfvilyfgDFh3wgIh9C8SEfisgjKD7kkYj8FooP+a2IvAXFh7wlIu9A8SHviMgWFB+yJSIPofiQhyJyF4oPuauR5St1AiUlOgNhVW5BvcgDLUUCLVuifDfJOvqwNwPWdLcEK6/qHfjrx+4E6DQuwe4GzLuTEqw88/bARvqxsi26TbuJD3tbxO7DDPBj90Xs1+pFCfbrgJX2sgQrr7UG9PNjZet7F5782Lsi9h7U/Fh5j7oPLX7s/YAdY1yCPRCxD9SrEmyI1Z+UYGW73wS74sfK+1QL+vuxIdZ0VoKV7ekReDB+rLxbPYJWP/aRiH2s3pRgH4vYb8C6+7HfBOyw70qwZo+9QDtIn/yRGFZsFbV2viqxNgZqbYF/ku8tCfnGHWiXMP0c0yfMUETs5Yi9QEQjRzSC5cpyO5qRvytzaeaIZiCik+9NWJuK/Xt5f6wlAYidHLGzhKjySPFdm7HMybswLRJymu9cWAsZU5rbb6zFej5UW16DuF9A8Nx+TjP/CkVLGEGhpqqoPc/3eEZG9FyFeE3Rmxml4SHjprlVcFFvRFTHg+qIqLce1FsRNfOgZiJq7kHNRZRd+S7uOGAGWP3ju1jQE88A9pHLSwRewRbsOrdhjUYwfw7AC3xILffhb5Nib6lUSYbRPO6TmOV4UrDEE6gt1Bq026hwh+LrhFZYDJJxz/s6xscnzG0s9JpjK3ya7+RRnjEJpzMgefo5HfQWI1pP9ejcoZZT8u64Vg9/O1/3plYPv0saPyUvnmv18FMt/fQMsrc0tnUGbBNW01hr39br0uD8C9Mw9Qu066LFxbc61HMG6b2pSX9fv5n9M7yXbaqxfmy9Ho3MGV9WGF8dGlbPmaPnelTQe2Kv19Si2iMZ6bjX1uvKkNIuOtJy2Ke6bwb79PSbMfV6NA7A49qmmHvh1OvO3nE+GluvR+NIcd7zlDx5U69Ho0/PrA9br0cDsy1tHefbel3Ljhrg2NnW61r1EWWBMQfEc55brFc0IT9ppqkNyD+ozta4Pv/qPoY5m6d5jFBNyfq25XQ6+V5WLZHxF2KwatOacqB/MXN8sCKNhdoU4yuWYVrY31fp2D0eNd8ALUaw+vkMQMqZJyChyUmg9U6A4lUx6iqOzOA2RRzOkpMl1LFunYreouXLWaNi2zNqleIyO1qrx2Oy1xnNvTH5hA3SrKSHRukbLqMoaahR0JBMr47u3un1WtT+hogbLyHG+Uzr0okQn6RVx6k+rTcdHV/SpzxTKHzmY+cvZptPtLXBmCclW4SyVPF0+5k8ktuG++oVZXPc/FlEbxTt1ZysxoBOpDIxCjXZYvbGF/RsaR/SmRzyYBpdeI+RpjJWfGqGWXTMp0dkUV17K/FGfZkMHdczsrrGHlej+w6670HXj3G2Yce4B7UWxAyH8NQKiHIu5LpKSeMT9Yf8dDSlN1gd0ScFC2losL2JCxayKsp+XqDyGtA4GzhKD6exTMfgj1coyVG/Tx4buxYt/yU6uTXn222a4+WzuTwT0yOum8Q1olXDp7r8tMyBJVh4P9kk/7V6lMivDke0oRLXpw5n1suITvxjimDH5BkntNqk1VHs7eanlj8xnA6UOTvH0+yULGRE9i+C/SmlORnRj3t3wJygs0VIyEaG2J1B7t34fJ2BOMesHzdQfKvBzreYbNmM+Bu67urKaC5yxMD7wOnS3DY6aZAvGBPXibbudm1X7z6ItPck3FnCFO1cuUz8P6Xf5sfMk7WVGYEaxjeQaVvnex8pxSyoozbt8tU2yPR1pfwkl+Gpltruf1amTwqS7VDEhfLgbt0Dzl16Zl44SyYkd7bSh/fRqmwuUh4v6RFHe0JRPNv9vt6BUe4rtEuu0Zo7plnSh1kwzaMI01fKIi/zreZVpB5GO/u/ULe6LmoNKUbKZnBZQ1J+P6ZozZUygVnN8/clrSa/1idLvar5jGguDp21/D20/gZ+G7nNcxidTsEq3KQ5wBTsk9UIt0QrPcJ43SzwMjPT0LLPlp+dk6aX23KW+Jqtm42x57WpHNCseaOzFqZ+FhovHBovAnXYorNGq0XTbizRMzG2aOnTylB+dbi1alCeiZRlj8ygBgFSurFUGNWeSFWO8Q3qnUhrQ6TVhtXqnga4az4E6V/ry6v7+3x3j9Qt8m265IFx/NKjVTogn8u0VkdqTAE5X9f21V39x9SC3DtkQZEy3+PEFcOnTl0qp7mkv9M7W0p23loEc2/pte5jbOwx1a+tIIe0JjJalwZxnXrEWn5XjmjJIq07PkdEmf82+VTsd1THzG5v+06igj9h401eVZYXRwoj0r+UedtfiV73nfg1ophwpr3rDtCq/4aRAmNMJsHvWWb0hnCX45ME9mg7ZD9X7RSf4o0cidZJ6oX6c4CN4ajXznV3bpkRm7H9Hnqi1u1b9/WQ+SXBHCV+ZznRa9OuNtQ+6mLp+Wy02nqXKz5X6WG2xNfqY0Z93MjCRnlFzLH6MpgLS1SPC2NCuNQbRR3560leR2Y+nQqlbHobysVMA9uY5xQvSfdAEeHz7i57vblPhXF0Vuh1COtS4xaJEmbjUp0fcC0tZqXOr+xD3Hq+cjdKnJ2obKcw1N3dwtpvtpAxWb9ESTkb7u3KflyIUuQsDFPoKr7RWxYfujS/hIK/I+WLDg3HkNxhE/zbLbWtdt/DbYhXus4ZzYha0Bb0lmLvth5nsUe1jl451F36IRzCeQxA15L0A9pJ68rOlGXJXerh9F+TFZioWJTe9qw/BpeLPJJVTnXGMyDLJo9moMx3ceqOxXAIGUmRSzgfPteQRnGizHea6o3BUJdHUORQh4e5xxD2zm3v+rxcTtX6WuUSyoN3AXPiYnB48lceq9h+IRZq4ryR988BrcNJBXWzW/yv4zB8LKf6vEK5ZfRdsxcBb537xToji/5w/TVjuYXM5nKO4TzTfHTWW/LzY78vqvWmUmc0758++qN2DhheC8V5UFk6xruzyMobSgXPBXwypOo/6h/n5G8jvMpplMlRh5I5pyinZnrI1Mw3Ln2jM5+FyGTplMlUpGbjiCbdiN1W++oW/GznHmDd26H8XUr+i1j/92d70HpC1sNk0TlzcExtMWU/7Claj57t/dkyifEuL9/tbUELnoU3qBXv+d6j/njXt1UYW/k3SHit31Wp6hUikuXTPbuuOjCC4skb54DM93wjukvPWSy+eTYMOFs096eWJVrQJ/LNgk4pvuNI2aW5OtZn9XhygDfs23l+KFKfUVtb23nccyXOB6WcD5Y4Z6SdIoc3zmfVd7PKuGw7XHp57myu+6UUZ9vzvOrc6E4pF76DXo3vV+D7jpRN0v5LioQnqjqbN6ugOdMyuSesI2UykawHjDPb+fuujmznFbzmAeO/U4q+40i6B7J0KP8d0QnbhOglWje7JD3fdKzOpN6ukFZ/j/LZxTXzXxhE5ZWjzfWrf1q//mBz7aub+v85+Ej9Wv1WXYY1/rn6CqgdqEM6d/+r+pv6+9be1nBrujXnrh+c05hfqcK/rb/8F4c4oig=</latexit> day 1 <latexit sha1_base64="MTxCuQn84HaqJmL3FztUTylLjR8=">AABBxnictVxtcxS5ERaXlzvIG5d8zJdJfKS4FPHZhgKurlJ1xja2DwOGXRvuboHal/GyMN5ZdnZtYM9V+Qn5mvyZ/I78g+RT/kL6RRppdjXTGoegsq3R6ulu9Uit7paWzigZZJOVlX9e+OhHP/7JTz/+5OKln/38F7/81eVPf32YpdNxNz7opkk6ftppZ3EyGMYHk8EkiZ+OxnH7uJPETzqvN/DzJyfxOBukw+bk3Sh+dtzuDwdHg257Ak2Hvfa7aPX2i8tLK8tf3v7y5s1b0cryreu3Vm5eh8oK/YtWdWVJ6X/76afRgWqpnkpVV03VsYrVUE2gnqi2yqB8r1bVihpB2zM1g7Yx1Ab0eazO1CXATqFXDD3a0Poafvfh6XvdOoRnpJkRugtcEvgZAzJSVwCTQr8x1JFbRJ9PiTK2ltGeEU2U7R387Whax9A6US+hVcKZnqE4HMtEHanbNIYBjGlELTi6rqYyJa2g5JEzqglQGEEb1nvw+RjqXUIaPUeEyWjsqNs2ff4v6omt+NzVfafq3yTlFSiRaujRpzmFtjoh+hG9zSl8xvIkwLkPFGI9Rqydkq6PafRD6D+D9gdQzqhmdNKBMqPWs0rkBhQfckNEbkPxIbdF5B4UH3JPRO5D8SH3NRKxY9K5H9+A4sM3RM6PoPiQj0TkYyg+5GMReQjFhzwUkd9B8SG/E5F3ofiQd0XkPSg+5D0R2YTiQzZF5AEUH/JARG5B8SG3NLJ8pY6hpERnIKzKdagXeaClSKBlXZTvDllHH/ZOwJrulmDlVb0Jf/3YzQCdxiXYrYB5d1SClWfeNthIP1a2RTu0m/iwOyJ2F2aAH7srYr9Rr0qw3wSstNclWHmt7UE/P1a2vvfhyY+9L2IfQM2Plfeoh9Dixz4M2DFGJdh9EftIvSnBhlj9cQlWtvsNsCt+rLxPNaG/HxtiTaclWNmeHoIH48fKu9UTaPVjn4jYp+ptCfapiP0WrLsf+23ADvu+BGv22Eu0g/TJH4lhxVZRa+erEmsjoNYW+Cf53pKQb9yBdgnTzzF9whyLiO0csR2I2MsRe8FyZbkdzcjflbk0ckQjENHJ9yasTcT+vbw/1pIAxGaO2JxDVHmk+K7NWE7IuzAtEnKS71xYCxlTmttvrMV6PlRbXoN4WEDw3H5JM/8aRUsYQaGmqqi9zPd4Rkb0XIU4pejNjNLwkHGT3Cq4qLciquNBdUTUOw/qnYiaelBTEXXiQZ2IKLvyXVwrYAZY/eO7mNETzwD2kctLBF7BOuw6O7BGI5g/++AFPqaWh/C3QbG3VKokw2ge90nMcjwrWOIx1GZqCdptVLhJ8XVCKywGybjnQx3j4xPmNmZ6zbEVPst38ijPmITTGZA8/ZwOeosRrad6dO5Ryxl5d1yrh9/J172p1cNvkcbPyIvnWj38REs/OYfsTY1tngPbgNU00tq39bo0OP/CNEz9Eu26aHHxrR7rOYP03takv6vfzO453ssG1Vg/tl6PRuaMLyuMrw4Nq+fM0XM9Kug9sddralHtkQx13GvrdWVIaRcdajnsU903g316+s2Yej0a++BxbVDMPXPqdWfvKB+Nrdejcag473lGnryp16PRp2fWh63Xo4HZlraO8229rmVHDXDsbOt1rfqQssCYA+I5zy3WKxqTnzTV1AbkH1Rna1yff3Efw5zN8zxGqKZkfdtyOp18L6uWyPgLMVi1SU050L+YOj5YkcZMrYnxFcswKezvi3TsHo+a3wMtRrD6+QxAypknIKHJSaD1ToDiqhh1FUdmcGsiDmfJ0RyqpVsnordo+XLWqNj2glqluMyO1uqxRfY6o7k3Ip9wjzQr6WGv9A2XUZQ0tFfQkEyvju7e6/Va1P6KiBvNIUb5TOvSiRCfpFXHqT6tNxwdX9GnPBMofOZj5y9mm4+0tcGYJyVbhLJU8XT7mTyS24b76jVlc9z8WURvFO3VCVmNAZ1IZWIUarLF7I3P6NnSPqAzOeTBNLrwHiNNZaT41Ayz6JhPj8iiuvZW4o36Mhk6rmdkdY09rkb3HXTfg64f42zAjvEAak2IGQ7gqRkQ5VzKdZWSxsfqT/npaEpvsDqiTwoW0tBgexMXLGRVlP2yQOUU0DgbOEoPpzFPx+BbC5TkqN8nj41di5b/Cp3cmvPtNs3x8tlcnonpEdc14hrRquFTXX6a58ASzLyfrJH/Wj1K5FeHI9pQietzhzPrZUgn/jFFsCPyjBNabdLqKPZ281PznxhO+8qcneNpdkoWMiL7F8H+lNKcjOjHvTtgTtDZIiRkI0PsziD3bny+zkCcY9aPGyi+1WDnW0y2bEr8DV13dWU0Fzli4H3gbG5uG53skS8YE9extu52bVfvPoi09yTcWcIU7Vy5Svw/p9/mx8yTpYUZgRrGN5BpW+d7HynFLKijNu3y1TbI9HWl/CyX4bmW2u5/VqbPCpJtUsSF8uBu3QPOXXpmXjhLxiR3ttCH99GqbC5SHs3pEUd7RFE82/2+3oFR7mu0Sy7RmmvRLOnDLJjkUYTpK2WR5/lW8ypSD6Od/V+oW10XtYYUI2UzuKwhKb8fU7TmSpnArOb5+5pWk1/r47le1XyGNBePnbX8A7T+Dn4buc1zGJ1OwSrcoTnAFOyT1Qi3RAs9wnjdKfAyM9PQss+Wn52Tppfbcp74mq2bjbFPalPZp1nzVmctTP08NF45NF4F6rBJZ41Wi6bdWKIXYmzR1KeVofzqcGvWoDwVKcsemUENAqR0Y6kwqj2RqhzjG9R7kdaKSKsNq9U9DXDXfAjSv9bnV/cP+e4eqbvk23TJA+P4pUerdEA+l2mtjtSYAnK+oe2ru/pb1ILcO2RBkTLf48QVw6dOXSpnuaR/0DtbSnbeWgRzb+lU9zE2tkX16wvIY1oTGa1Lg7hBPWItvytHNGeRlh2fI6LMf5t8KvY7qmNmt7d9J1HBn7DxJq8qy4sjhSHpX8q87S5Er7tO/BpRTDjV3nUHaNV/w0iBMSaT4PcsM3pDuMvxSQJ7tB2yn4t2ik/xho5EyyT1TP05wMZw1Gvnuju3zIjN2P4IPVHr9q37esj8kmCOEr/znOi1aVc71j7qbO75fLTaepcrPlfpYTrH1+pjSn3cyMJGeUVMS30VzIUlqseFMSFc6o2ijvz1JK8jM59OhVI2vQ3lYqaBbcxLipeke6CI8Hl3V73e3OfCODoL9DqEdalxi0QJs3Gpzg+4lhazUhcX9iFuvVi5GyXOTlS2Uxjq7m5h7TdbyJisX6KknA33dmVvFaIUOQvDFLqKb/SWxYcuza+g4O9I+aJDwzEkd9gA/3ZdbaitD3Ab4o2uc0Yzoha0Bb252Lutx1nsUa2jNw51l34Ih3AeA9C1JP2AdtK6sjNlWXKXejj9U7ICYxWL0tue9cfgcpFHssipzngGZNnk0QyU+S5O3bEYDiEjKXIJ58PnGtIojpT5TlO9MRjq8giKHOrwMPcYwt657V2fl8upWl+LXEJ58C5gTlwMDk/+ymMV2y/EQo2dN/LhOaB1OKqgbnaL/3Ucho/lVJ9XKLeMvmv2KuCtc79YZ2TRH66/Ziy3kNlczjGcZ5qPznpLfn7s90W13lTqjObD00d/1M4Bw2umOA8qS8d4dxZZeUOp4LmAT4ZU/Uf944L8bYQ3OY0yOepQMucU5dRMD5ma+calb3TmsxCZLJ0ymYrUbBzRoBuxG2pX3YWfjdwDrHs7lL9LyX8R6//+bA9aj8h6mCw6Zw5a1BZT9sOeovXo2d6fLZMY7/Ly3d4mtOBZ+B614j3fB9Qf7/o2C2Mr/wYJr/X7KlW9QkQyf7pn11UHRlA8eeMckPmeb0R36TmLxTfPjgPOFs39qXmJZvSJfLOgU4rvOFJ2aa6O9Fk9nhzgDft2nh+K1BfU1tZ2HvdcifN+Kef9Oc4ZaafI4a3zWfXdrDIuGw6XXp47O9H9Uoqz7XledW50s5QL30Gvxvcr8H1HygZp/zVFwmNVnc2bVtCcapncE9ahMplI1gPGme38fVdHticVvE4Cxn+vFH3PkXQbZOlQ/juiE7Yx0Uu0brZIer7pWJ1J3amQVn+P8sXlpdX5/8tgsXK4trx6c/nGo7Wlr+/o/+fgE/Vb9Xt1Fdb4LfU1UNtXB8Dhlfqr+pv6+/rO+nB9un7KXT+6oDG/UYV/63/5L35Roms=</latexit>

    day 18 <latexit sha1_base64="E7xwgtYw1POYNmjFBGWIgnslFAY=">AABEKHictVzdcxPJER8uXwf54i6PedmLjxSXIsT2UZekrlJ1IBvjw4BBsuEOAaWPtRCstUIrCYPOlf8kr0nln8i/kLfUveYpecq/kP6Y2ZmVZrdnHcKU7dnR/Lp7emd6untGdMfJMJuur3977r3vfPd73//B++cv/PBHP/7JTy9+8OFhls4mvfiglybp5FG3k8XJcBQfTIfTJH40nsSd424SP+y+bODnD+fxJBumo9b0zTh+ctwZjIZHw15nCk3PLn74+GGn3x+OBtN0dCXa+P2nnz15dnFt/eo6/YtWKxu6sqb0v/30g4/+qNqqr1LVUzN1rGI1UlOoJ6qjMiiP1YZaV2Noe6IW0DaB2pA+j9WpugDYGfSKoUcHWl/C7wE8PdatI3hGmhmhe8AlgZ8JICN1CTAp9JtAHblF9PmMKGNrGe0F0UTZ3sDfrqZ1DK1T9RxaJZzpGYrDsUzVkfodjWEIYxpTC46up6nMSCsoeeSMagoUxtCG9T58PoF6j5BGzxFhMho76rZDn/+LemIrPvd035n6N0l5CUqkmnr0aU6ho+ZEP6K3OYPPWJ4EOA+AQqzHiLXXpOtjGv0I+i+g/S6UU6oZnXShLKj1tBLZgOJDNkTkDhQfckdE7kHxIfdE5D4UH3JfIxE7IZ378U0oPnxT5Hwfig95X0Q+gOJDPhCRh1B8yEMR+TUUH/JrEXkTig95U0TehuJD3haRLSg+ZEtEHkDxIQ9E5DYUH3JbI8tX6gRKSnSGwqq8DvUiD7QUCbRcF+W7QdbRh70RsKZ7JVh5VW/BXz92K0CncQl2O2DeHZVg5Zm3AzbSj5Vt0S3aTXzYWyJ2F2aAH7srYr9UL0qwXwastJclWHmt7UE/P1a2vnfgyY+9I2LvQs2Plfeoe9Dix94L2DHGJdh9EXtfvSrBhlj9SQlWtvtNsCt+rLxPtaC/HxtiTWclWNmeHoIH48fKu9VDaPVjH4rYR+qkBPtIxH4F1t2P/Spgh31bgjV77AXaQQbkj8SwYquodfJVibUxUOsI/JN8b0nIN+5Cu4QZ5JgBYY5FxE6O2AlE7OWIvWC5styOZuTvylyaOaIZiOjmexPWpmL/ft4fa0kAYitHbC0hqjxSfNdmLHPyLkyLhJzmOxfWQsaU5vYba7GeD9WW1yDuFRA8t5/TzL9C0RJGUKipKmrP8z2ekRE9VyFeU/RmRml4yLhpbhVc1ImI6npQXRH1xoN6I6JmHtRMRM09qLmIsivfxbUDZoDVP76LBT3xDGAfubxE4BVch13nFqzRCObPPniBD6jlHvxtUuwtlSrJMJrHfRKzHE8KlngCtYVag3YbFW5RfJ3QCotBMu55T8f4+IS5jYVec2yFT/OdPMozJuF0hiTPIKeD3mJE66kendvUckreHdfq4W/l697U6uG3SeOn5MVzrR5+qqWfnkH2lsa2zoBtwmoaa+3bel0anH9hGqZ+gXZdtLj4Vo/1nEF6JzXp7+o3s3uG99KgGuvH1uvRyJzxZYXx1aFh9Zw5eq5HBb0n9npNLao9kpGOe229rgwp7aIjLYd9qvtmsE9fvxlTr0djHzyuBsXcC6ded/aO89HYej0ah4rznqfkyZt6PRoDemZ92Ho9Gpht6eg439brWnbUAMfOtl7Xqo8oC4w5IJ7z3GK9ogn5STNNbUj+QXW2xvX5V/cxzNk8zWOEakrWty2n0833smqJjL8Qg1Wb1pQD/YuZ44MVaSzUphhfsQzTwv6+Ssfu8aj5PdBiBKufzwCknHkCEpqcBFrvBChuiFFXcWQGtynicJYcLaHaunUqeouWL2eNim3PqFWKy+xorR7bZK8zmntj8gn3SLOSHvZK33AZRUlDewUNyfTq6O6tXq9F7a+LuPESYpzPtB6dCPFJWnWc6tN609HxJX3KM4XCZz52/mK2+UhbG4x5UrJFKEsVT7efySO5bbivXlE2x82fRfRG0V7NyWoM6UQqE6NQky1mb3xBz5b2AZ3JIQ+m0YP3GGkqY8WnZphFx3x6RBbVtbcSb9SXydBxPSOra+xxNXrgoAcedP0YpwE7xl2otSBmOICnVkCUcyHXVUoan6hf56ejKb3B6og+KVhIQ4PtTVywkFVR9vMCldeAxtnAUXo4jWU6Bt9eoSRH/T55bOxatPyX6OTWnG93aI6Xz+byTEyfuG4S14hWDZ/q8tMyB5Zg4f1kk/zX6lEivzoc0YZKXJ86nFkvIzrxjymCHZNnnNBqk1ZHsbebn1r+xHDaV+bsHE+zU7KQEdm/CPanlOZkRD/u3QFzgs4WISEbGWJ3hrl34/N1huIcs37cUPGtBjvfYrJlM+Jv6LqrK6O5yBED7wOnS3Pb6GSPfMGYuE60dbdru3r3QaS9J+HOEqZo58pl4v8J/TY/Zp6srcwI1DC+gUzbOt/7SClmQR11aJevtkGmryvlx7kMT7XUdv+zMn1ckGyLIi6UB3frPnDu0TPzwlkyIbmzlT68j1Zlc5HyeEmPONojiuLZ7g/0DoxyX6Fdco3WXJtmyQBmwTSPIkxfKYu8zLeaV5F6GO3s/0Ld6rqoNaQYKZvBZQ1J+f2YojVXygRmNc/fl7Sa/FqfLPWq5jOiuXjsrOVvoPUj+G3kNs9hdLoFq3CD5gBTsE9WI9wSrfQI43WjwMvMTEPLPlt+dk6aXm7LWeJrtm42xp7XprJPs+ZEZy1M/Sw0Xjg0XgTqsEVnjVaLpt1YomdibNHSp5Wh/Opwa9WgPBMpyx6ZQQ0DpHRjqTCqfZGqHOMb1FuR1rpIqwOr1T0NcNd8CNK/1pdX9zf57h6pm+Tb9MgD4/ilT6t0SD6Xaa2O1JgCcr6m7au7+tvUgty7ZEGRMt/jxBXDp049Kqe5pL/UO1tKdt5aBHNv6bXuY2xsm+qfriCPaU1ktC4N4hr1iLX8rhzRkkW66vgcEWX+O+RTsd9RHTO7ve07iQr+hI03eVVZXhwpjEj/UuZtdyV63XXi14hiwpn2rrtAq/4bRgqMMZkEv2eZ0RvCXY5PEtij7ZL9XLVTfIo3ciS6SlIv1B8CbAxHvXauu3PLjNiM7VfQE7Vu37qvh8wvCeYo8TvLiV6HdrVj7aMulp7PRqujd7nic5UeZkt8rT5m1MeNLGyUV8S01efBXFiielwYE8Kl3ijqyF9P8joy8+lUKGXT21AuZhrYxjyneEm6B4oIn3d32evNfSKMo7tCr0tYlxq3SJQwG5fq/IBraTErdX5lH+LW85W7UeLsRGU7haHu7hbWfrOFjMn6JUrK2XBvV/Z2IUqRszBMoaf4Rm9ZfOjS/BwK/o6ULzo0HENyh03wb6+rhtp+B7chXuk6ZzQjakFb0F+KvTt6nMUe1Tp65VB36YdwCOcxBF1L0g9pJ60rO1OWJXeph9N/TVZgomJRetuz/hhcLvJIVjnVGc+QLJs8mqEy38WpOxbDIWQkRS7hfPhcQxrFkTLfaao3BkNdHkGRQx0e5h5D2Du3vevzcjlV62uVSygP3gXMiYvB4clfeaxi+4VYqInzRt49B7QORxXUzW7xv47D8LGc6vMK5ZbRd81eBLx17hfrjCz6w/XXjOUWMpvLOYbzTPPRWW/Jz4/9vqjWm0qd0bx7+uiP2jlgeC0U50Fl6RjvziIrbygVPBfwyZCq/6i/nZO/jfAqp1EmRx1K5pyinJrpIVMz37j0jc58FiKTpVMmU5GajSOadCO2oXbVTfhp5B5g3duh/F1K/otY//dn+9B6RNbDZNE5c9CmtpiyH/YUrU/P9v5smcR4l5fv9ragBc/C96gV7/nepf5417dVGFv5N0h4rd9RqeoXIpLl0z27rrowguLJG+eAzPd8I7pLz1ksvnl2HHC2aO5PLUu0oE/kmwXdUnzXkbJHc3Wsz+rx5ABv2Hfy/FCkfkNtHW3ncc+VOO+Xct5f4pyRdoocTpzPqu9mlXFpOFz6ee5srvulFGfb87zq3OhWKRe+g16NH1TgB46UTdL+S4qEJ6o6mzeroDnTMrknrCNlMpGsB4wzO/n7ro5s5xW85gHjv12Kvu1IugOydCn/HdEJ24ToJVo32yQ933SszqTeqpDWfI+Sadq7jnYemFuL1Vn6RM87zlyY/41gQesBd1NzM1HKnsQldLp0IzAmSnxHUjo3kOWRpQmRRaIyEyWZBXx7dx4gyzyAzpEgzZFIYSBKolfws4trG8v/P8Zq5XDz6sZnV6/d31z74ob+vzPeVz9Xv1CXYd/4rfoCZui+OgBOJ+pP6s/qL42/Nv7e+EfjW+763jmN+Zkq/Gv887+4kyDk</latexit> [Waddington, 1936] Conrad Waddington Geoffrey Schiebinger vt vt+τ Gluing Optimal Transport: vt = ∇φt
  42. Gradient flows for genomics Better modeling the dynamics: use gradient

    flows <latexit sha1_base64="LIz5cv8SkqGoJa7sBtLUbjFelcY=">AABEz3ictVzdlhO5ERabv83kD5LL3PRmlhw2hyUDIT/n7M3CeBhm8YLBnoFdDHO67bYxtN3GbXsAr3Nym4fIbfIYeYhc5Q2Sq7xCqkpSS22ru9QTQp+ZUcv6qkolqVRVkommySib7+3988IH3/r2d777vQ+/v/ODH/7oxz+5eOmnJ1m6mPXi416apLMnUZjFyWgSH89H8yR+Mp3F4ThK4sfRq338/PEynmWjdNKZv53Gz8bhcDIajHrhHKpOL17qEo1VlCzidTdMTvdOL+7uXdujf8F24boq7Ar1r5Ve+ugfoiv6IhU9sRBjEYuJmEM5EaHI4Hkqros9MYW6Z2IFdTMojejzWKzFDmAX0CqGFiHUvoLfQ3h7qmon8I40M0L3gEsCPzNABuIyYFJoN4Mycgvo8wVRxtoy2iuiibK9hb+RojWG2rl4AbUcTrf0xWFf5mIg/kB9GEGfplSDvespKgvSCkoeWL2aA4Up1GG5D5/PoNwjpNZzQJiM+o66Denzf1FLrMX3nmq7EP8mKS/DE4i26n2aUwjFkugHNJoL+EzKkwDnIVCIVR+xdEa6HlPvJ9B+BfX34VlTSeskgmdFtetK5D48LuQ+izyEx4U8ZJFNeFzIJotsweNCthQSsTPSuRvfhseFb7OcH8LjQj5kkY/gcSEfscgTeFzIExb5NTwu5Ncs8g48LuQdFnkPHhfyHovswONCdljkMTwu5DGLPIDHhTxQyPKVOoMnJTojZlXegnKRB1qKBGpusfLdJuvowt72WNO9Eiy/qhvw141teOg0LsEeeMy7QQmWn3mHYCPdWN4W3aXdxIW9y2KPYAa4sUcs9gvxsgT7hcdKe1WC5ddaE9q5sbz1/RLe3NgvWex9KLmx/B71AGrc2AceO8a0BNtisQ/F6xKsj9WflWB5u98Gu+LG8vtUB9q7sT7WdFGC5e3pCXgwbiy/Wz2GWjf2MYt9It6UYJ+w2K/AuruxX3nssO9KsHqP3aEdZEj+SAwrtopamK9KLE2BWsjwT/K9JSHfOIJ6DjPMMUPCjFnEYY449EQ0c0TTW64st6MZ+bs8l3aOaHsionxvwtKcbd/P22Mp8UA0ckRjA1HlkeJY674sybvQNRxynu9cWPLpU5rbbyzFaj5UW16NeFBAyLn9gmb+VYqWMIJCTVVRe5Hv8RIZ0HsV4oyiN91LzYPHzXOrYKPesKjIgYpY1FsH6i2LWjhQCxa1dKCWLMqsfBvX9ZgBRv84Fit6kzNA+sjlTwBewS3Yde7CGg1g/rTAC3xENQ/gb5tib+6pkgyjedwnMcvxrGCJZ1BaiV2oN1Fhg+LrhFZYDJLJlg9UjI9vmNtYqTUnrfA638mDPGPiT2dE8gxzOugtBrSe6tG5RzVr8u5kqR7+br7udake/oA0viYvXpbq4edK+vk5ZO8obOcc2DaspqnSvinXpSHzL5KGLu/QrosWF0d1rOYM0ntTk/6RGpmjc4zLPpWkfky5Ho3M6l9W6F8dGkbPmaXnelTQe5Jery4FtXsyUXGvKdeVIaVddKLkMG91Rwbb9NXI6HI9Gi3wuPYp5l5Z5bqzd5r3xpTr0TgRMu+5Jk9el+vRGNK71Icp16OB2ZZQxfmmXNeyowZk7GzKda36hLLAmAOSc17WGK9oRn7SQlEbkX9Qna2xff7tfQxzNs/zGKGakvFty+lE+V5WLZH2F2KwavOacqB/sbB8sCKNlbjBxldShnlhf9+mY/Z41HwTtBjA6pdnAFzOPAEJdU4CrXcCFK+zUVexZxp3g8XhLBlsoLqqds56i4avzBoV606plovLTG+NHrtkrzOae1PyCZukWU4PzdIRLqPIaahZ0BBPr47u3qn1WtT+HoubbiCm+Uzr0YmQPEmrjlNdWm9bOr6sTnnm8MgzHzN/Mds8UNYGY56UbBHKUsXTbqfzSHYd7qtXhclxy88CGlG0V0uyGiM6kcrYKFRni6U3vqJ3Q/uYzuSQh6TRg3EMFJWpkKdmmEXHfHpAFtW2txxv1JfO0MlyRlZX2+Nq9NBCDx3o+jHOPuwY96HUgZjhGN46HlHOTq6rlDQ+E5/mp6MpjWB1RJ8ULKSmIe1NXLCQVVH2iwKVM0DjbJBRuj+NTToa392ixEf9LnlM7Fq0/Jfp5Fafb4c0x8tnc3kmpk9cbxDXgFaNPNWVb5scpAQr5yc3yH+t7iXyq8MRbSjH9bnFWeplQif+MUWwU/KME1pt3OootrbzU5ufaE4toc/O8TQ7JQsZkP0LYH9KaU4G9GPfHdAn6NIiJGQjfezOKPduXL7OiJ1jxo8bCXmrwcy3mGzZgvhruvbqymguyohB7gPrjbmtddIkXzAmrjNl3c3art59EGnuSdizRFI0c+UK8f+EfusfPU92t2YEahhHIFO2zjUeKcUsqKOQdvlqG6Tb2lJ+nMvwXElt9j8j08cFyRoUcaE8uFv3gXOP3iUvnCUzkjvbaiP30apsLlKebugRezugKF7a/aHagVHuq7RL7tKa69IsGcIsmOdRhG7LZZE3+VbzKlL3o539X6gbXRe1hhQDYTK4UkNcfj+maM2WMoFZLefvK1pNbq3PNlpV85nQXBxba/kbqP0Ifmu59bsfnahgFW7THJAUzJvRiKwJtlr48bpd4KVnpqZl3g0/Myd1K7vmPPG1tG4mxl7WptKiWfNGZS10+Tw0Xlo0XnrqsENnjUaLul5bolM2tuio00pffnW4dWpQXrCUeY9Mo0YeUtqxlB/VPkuVj/E16h1La4+lFcJqtU8D7DXvg3Sv9c3V/U2+uwfiDvk2PfLAZPzSp1U6Ip9L11ZHapICcr6p7Ku9+rtUg9wjsqBIWd7jxBUjT5169KxzSX+pdraU7LyxCPre0plqo21sl8q/2UKOaU1ktC414ia1iJX8thzBhkW6ZvkcAWX+Q/KppN9RHTPbrc2YBAV/wsSbclUZXjJSmJD+uczb0Vb0emTFrwHFhAvlXUdAq2yEd0TZrVXtPaIWUxWPV0mEHCWPtdAZaTki+MlrofPqVXh7HtvzRvdGy/0raIkaNSPqasHLm3hz5Pid57QupB1rrPzP1cb7+WiFagcrvlfpYbHB1+hjQW3sqMFEcEVMV3zmzUVKVI+LxPhwqdeLOvLXk7yOzPLkyZeybq0pF7MI0n68oFiIu+OJCJfndsXpqX3C9CPaohcR1qYmazhKmGlLVexvW1HMOAUb0Y9dz+03ibXXlO0Fhoe9IxgbLePrmDzsRHB5Gdna7kO3EInwmRZJoSfkrd2yGNCm+Rk8+DsQrghQc/TJD7bBh70l9sXBe7jx8FqVZdYyoBq0Cf2N+DpU/Sy2qNbRa4u6Td+Hgz+PEeiak35Eu19d2SVlXnKbuj/9M7IGMxGz0puW9ftgc+F7ss2pTn9GZOH43oyE/r5N3b5oDj49KXLx5yPPLrheDIT+3lK9PmjqfA+KHOrw0HcV/MbctK7Py+ZUra9tLr485D6gT1U0Dk/3yuMR087HQs2sEXn/HNA6DCqo693if+2H5mM41eflyy2j75O99Bh12S5WWVf0i+uvGcPNZzaXc/Tnmea9M16Tm5/0/4JaI5VavXn/9NEvNXNA81oJmevkpZN4exYZeX2pYO7fJUMq/iP+foH/xsHrnEaZHHUo6bOIcmq6BU9Nf6vS1Tv9mY9Mhk6ZTEVqJp5o063XfXEk7sDPfu4B1r0BKr8vKf+WZxv6UDsg66Ez5TKX0FUZhCyPqpBTn97NHdkyifG+rry/24EaPO9uUi3e5b1P7fE+b6fQt/Jvici1/qVIRb8QmWye4Jl1FUEPiqdrMs+jv8sb0H15mamSt8vGHueH8o6UnWNBXSOiT3HhpqQrQujZUkU5clKO6L5RXEI7KvStRzN8qk7x8UwB796H+ZlkIH5NdaHaHXCn5qRqOaR6SpmBiPS/BxHab8VV+HtVld2StrYkzWgMihK9sT6rvuW1ds4L803Fy5R101m4pWqXUlRvTgars6yNUi7yNns1fliBH1pStmm0XlHcPRPVmd9FBc2Fksk+q50IndOUesBoNsznR3X8vKzgtfTo/71S9D1L0kOQJaJMekBndTOilyjdHJD08s5kdU72boW0+huZkqa5NWnmgb7/WJ3vT9S8K1/98o4jl6uJS+jYa13etuRugoyclPj1OfW46RB69Jbvq09POSoLVpKFx7eMlx6yLD3oDBhpBiyFISuJsg+nF3evb/4/HtuFkxvXrv/u2s2HN3c/v63+j48Pxc/FL8QV2Pt+Lz6H+d8Sx8DpTPxF/FX8rfGwcdb4Y+NPsukHFxTmZ6Lwr/Hn/wKZnz38</latexit> ↵0 αt+τ := arg min α 1 2τ W2 (αt , α)2 + f(α) Charlotte Bunne
  43. Gradient flows for genomics Better modeling the dynamics: use gradient

    flows <latexit sha1_base64="LIz5cv8SkqGoJa7sBtLUbjFelcY=">AABEz3ictVzdlhO5ERabv83kD5LL3PRmlhw2hyUDIT/n7M3CeBhm8YLBnoFdDHO67bYxtN3GbXsAr3Nym4fIbfIYeYhc5Q2Sq7xCqkpSS22ru9QTQp+ZUcv6qkolqVRVkommySib7+3988IH3/r2d777vQ+/v/ODH/7oxz+5eOmnJ1m6mPXi416apLMnUZjFyWgSH89H8yR+Mp3F4ThK4sfRq338/PEynmWjdNKZv53Gz8bhcDIajHrhHKpOL17qEo1VlCzidTdMTvdOL+7uXdujf8F24boq7Ar1r5Ve+ugfoiv6IhU9sRBjEYuJmEM5EaHI4Hkqros9MYW6Z2IFdTMojejzWKzFDmAX0CqGFiHUvoLfQ3h7qmon8I40M0L3gEsCPzNABuIyYFJoN4Mycgvo8wVRxtoy2iuiibK9hb+RojWG2rl4AbUcTrf0xWFf5mIg/kB9GEGfplSDvespKgvSCkoeWL2aA4Up1GG5D5/PoNwjpNZzQJiM+o66Denzf1FLrMX3nmq7EP8mKS/DE4i26n2aUwjFkugHNJoL+EzKkwDnIVCIVR+xdEa6HlPvJ9B+BfX34VlTSeskgmdFtetK5D48LuQ+izyEx4U8ZJFNeFzIJotsweNCthQSsTPSuRvfhseFb7OcH8LjQj5kkY/gcSEfscgTeFzIExb5NTwu5Ncs8g48LuQdFnkPHhfyHovswONCdljkMTwu5DGLPIDHhTxQyPKVOoMnJTojZlXegnKRB1qKBGpusfLdJuvowt72WNO9Eiy/qhvw141teOg0LsEeeMy7QQmWn3mHYCPdWN4W3aXdxIW9y2KPYAa4sUcs9gvxsgT7hcdKe1WC5ddaE9q5sbz1/RLe3NgvWex9KLmx/B71AGrc2AceO8a0BNtisQ/F6xKsj9WflWB5u98Gu+LG8vtUB9q7sT7WdFGC5e3pCXgwbiy/Wz2GWjf2MYt9It6UYJ+w2K/AuruxX3nssO9KsHqP3aEdZEj+SAwrtopamK9KLE2BWsjwT/K9JSHfOIJ6DjPMMUPCjFnEYY449EQ0c0TTW64st6MZ+bs8l3aOaHsionxvwtKcbd/P22Mp8UA0ckRjA1HlkeJY674sybvQNRxynu9cWPLpU5rbbyzFaj5UW16NeFBAyLn9gmb+VYqWMIJCTVVRe5Hv8RIZ0HsV4oyiN91LzYPHzXOrYKPesKjIgYpY1FsH6i2LWjhQCxa1dKCWLMqsfBvX9ZgBRv84Fit6kzNA+sjlTwBewS3Yde7CGg1g/rTAC3xENQ/gb5tib+6pkgyjedwnMcvxrGCJZ1BaiV2oN1Fhg+LrhFZYDJLJlg9UjI9vmNtYqTUnrfA638mDPGPiT2dE8gxzOugtBrSe6tG5RzVr8u5kqR7+br7udake/oA0viYvXpbq4edK+vk5ZO8obOcc2DaspqnSvinXpSHzL5KGLu/QrosWF0d1rOYM0ntTk/6RGpmjc4zLPpWkfky5Ho3M6l9W6F8dGkbPmaXnelTQe5Jery4FtXsyUXGvKdeVIaVddKLkMG91Rwbb9NXI6HI9Gi3wuPYp5l5Z5bqzd5r3xpTr0TgRMu+5Jk9el+vRGNK71Icp16OB2ZZQxfmmXNeyowZk7GzKda36hLLAmAOSc17WGK9oRn7SQlEbkX9Qna2xff7tfQxzNs/zGKGakvFty+lE+V5WLZH2F2KwavOacqB/sbB8sCKNlbjBxldShnlhf9+mY/Z41HwTtBjA6pdnAFzOPAEJdU4CrXcCFK+zUVexZxp3g8XhLBlsoLqqds56i4avzBoV606plovLTG+NHrtkrzOae1PyCZukWU4PzdIRLqPIaahZ0BBPr47u3qn1WtT+HoubbiCm+Uzr0YmQPEmrjlNdWm9bOr6sTnnm8MgzHzN/Mds8UNYGY56UbBHKUsXTbqfzSHYd7qtXhclxy88CGlG0V0uyGiM6kcrYKFRni6U3vqJ3Q/uYzuSQh6TRg3EMFJWpkKdmmEXHfHpAFtW2txxv1JfO0MlyRlZX2+Nq9NBCDx3o+jHOPuwY96HUgZjhGN46HlHOTq6rlDQ+E5/mp6MpjWB1RJ8ULKSmIe1NXLCQVVH2iwKVM0DjbJBRuj+NTToa392ixEf9LnlM7Fq0/Jfp5Fafb4c0x8tnc3kmpk9cbxDXgFaNPNWVb5scpAQr5yc3yH+t7iXyq8MRbSjH9bnFWeplQif+MUWwU/KME1pt3OootrbzU5ufaE4toc/O8TQ7JQsZkP0LYH9KaU4G9GPfHdAn6NIiJGQjfezOKPduXL7OiJ1jxo8bCXmrwcy3mGzZgvhruvbqymguyohB7gPrjbmtddIkXzAmrjNl3c3art59EGnuSdizRFI0c+UK8f+EfusfPU92t2YEahhHIFO2zjUeKcUsqKOQdvlqG6Tb2lJ+nMvwXElt9j8j08cFyRoUcaE8uFv3gXOP3iUvnCUzkjvbaiP30apsLlKebugRezugKF7a/aHagVHuq7RL7tKa69IsGcIsmOdRhG7LZZE3+VbzKlL3o539X6gbXRe1hhQDYTK4UkNcfj+maM2WMoFZLefvK1pNbq3PNlpV85nQXBxba/kbqP0Ifmu59bsfnahgFW7THJAUzJvRiKwJtlr48bpd4KVnpqZl3g0/Myd1K7vmPPG1tG4mxl7WptKiWfNGZS10+Tw0Xlo0XnrqsENnjUaLul5bolM2tuio00pffnW4dWpQXrCUeY9Mo0YeUtqxlB/VPkuVj/E16h1La4+lFcJqtU8D7DXvg3Sv9c3V/U2+uwfiDvk2PfLAZPzSp1U6Ip9L11ZHapICcr6p7Ku9+rtUg9wjsqBIWd7jxBUjT5169KxzSX+pdraU7LyxCPre0plqo21sl8q/2UKOaU1ktC414ia1iJX8thzBhkW6ZvkcAWX+Q/KppN9RHTPbrc2YBAV/wsSbclUZXjJSmJD+uczb0Vb0emTFrwHFhAvlXUdAq2yEd0TZrVXtPaIWUxWPV0mEHCWPtdAZaTki+MlrofPqVXh7HtvzRvdGy/0raIkaNSPqasHLm3hz5Pid57QupB1rrPzP1cb7+WiFagcrvlfpYbHB1+hjQW3sqMFEcEVMV3zmzUVKVI+LxPhwqdeLOvLXk7yOzPLkyZeybq0pF7MI0n68oFiIu+OJCJfndsXpqX3C9CPaohcR1qYmazhKmGlLVexvW1HMOAUb0Y9dz+03ibXXlO0Fhoe9IxgbLePrmDzsRHB5Gdna7kO3EInwmRZJoSfkrd2yGNCm+Rk8+DsQrghQc/TJD7bBh70l9sXBe7jx8FqVZdYyoBq0Cf2N+DpU/Sy2qNbRa4u6Td+Hgz+PEeiak35Eu19d2SVlXnKbuj/9M7IGMxGz0puW9ftgc+F7ss2pTn9GZOH43oyE/r5N3b5oDj49KXLx5yPPLrheDIT+3lK9PmjqfA+KHOrw0HcV/MbctK7Py+ZUra9tLr485D6gT1U0Dk/3yuMR087HQs2sEXn/HNA6DCqo693if+2H5mM41eflyy2j75O99Bh12S5WWVf0i+uvGcPNZzaXc/Tnmea9M16Tm5/0/4JaI5VavXn/9NEvNXNA81oJmevkpZN4exYZeX2pYO7fJUMq/iP+foH/xsHrnEaZHHUo6bOIcmq6BU9Nf6vS1Tv9mY9Mhk6ZTEVqJp5o063XfXEk7sDPfu4B1r0BKr8vKf+WZxv6UDsg66Ez5TKX0FUZhCyPqpBTn97NHdkyifG+rry/24EaPO9uUi3e5b1P7fE+b6fQt/Jvici1/qVIRb8QmWye4Jl1FUEPiqdrMs+jv8sb0H15mamSt8vGHueH8o6UnWNBXSOiT3HhpqQrQujZUkU5clKO6L5RXEI7KvStRzN8qk7x8UwB796H+ZlkIH5NdaHaHXCn5qRqOaR6SpmBiPS/BxHab8VV+HtVld2StrYkzWgMihK9sT6rvuW1ds4L803Fy5R101m4pWqXUlRvTgars6yNUi7yNns1fliBH1pStmm0XlHcPRPVmd9FBc2Fksk+q50IndOUesBoNsznR3X8vKzgtfTo/71S9D1L0kOQJaJMekBndTOilyjdHJD08s5kdU72boW0+huZkqa5NWnmgb7/WJ3vT9S8K1/98o4jl6uJS+jYa13etuRugoyclPj1OfW46RB69Jbvq09POSoLVpKFx7eMlx6yLD3oDBhpBiyFISuJsg+nF3evb/4/HtuFkxvXrv/u2s2HN3c/v63+j48Pxc/FL8QV2Pt+Lz6H+d8Sx8DpTPxF/FX8rfGwcdb4Y+NPsukHFxTmZ6Lwr/Hn/wKZnz38</latexit> ↵0 Geert-Jan Huizing Laura Cantini αt+τ := arg min α 1 2τ W2 (αt , α)2 + f(α) <latexit sha1_base64="Tis7/dOjTO3ezjstyD8AzcqN46U=">AABE+3ictVxZcxu5EYY318a5vMlTKi+z0Trl3VIcSXGOqq1UrSzJstayLZuU7F3TdnHIEU17xKF5+eCy8mNSeUmlkqc853fkB6QqecpfSB/AAENipjGKo7FEDIivu9EDNLobGMfDtD+ebGz848J7X/v6N775rfe/ffE73/3e939w6YMfnoyz6aiTHHeyNBs9jNvjJO0PkuNJf5ImD4ejpH0Wp8mD+MUOfv9glozG/WzQnLwZJo/P2r1B/7TfaU+g6umlH7eIxqNRL34831y/eg3+LaLt5vbO00trG1c36CdaLWzqwprSP0fZBx/+U7VUV2Wqo6bqTCVqoCZQTlVbjeF6pDbVhhpC3WM1h7oRlPr0faIW6iJgp9AqgRZtqH0Bf3tw90jXDuAeaY4J3QEuKfyOABmpy4DJoN0Iysgtou+nRBlry2jPiSbK9gY+Y03rDGon6hnUSjjTMhSHfZmoU/Vb6kMf+jSkGuxdR1OZklZQ8sjp1QQoDKEOy134fgTlDiGNniPCjKnvqNs2ff8vaom1eN/Rbafq3yTlZbgi1dC9z3IKbTUj+hE9zSl8x/KkwLkHFBLdRyy9Il2fUe8H0H4O9XfgWlDJ6CSGa061i0rkDlw+5I6I3IfLh9wXkYdw+ZCHIvIILh/ySCMROyKd+/ENuHz4hsj5Hlw+5D0ReR8uH/K+iDyBy4c8EZFfwuVDfikib8DlQ94Qkbfg8iFvicgmXD5kU0Qew+VDHovIPbh8yD2NLJ+pI7gyotMXZuU2lIs80FKkULMtynedrKMPez1gTndKsPKs3oVPP3Y3QKdJCXYvYNydlmDlkbcPNtKPlW3RTVpNfNibIvYARoAfeyBiP1fPS7CfB8y0FyVYea4dQjs/Vra+t+HOj70tYu9AyY+V16i7UOPH3g1YMYYl2CMRe0+9LMGGWP1RCVa2+w2wK36svE41ob0fG2JNpyVY2Z6egAfjx8qr1QOo9WMfiNiH6nUJ9qGI/QKsux/7RcAK+7YEa9bYi7SC9MgfSWDGVlFr57MSS0Og1hb4p/nakpJvHEO9hOnlmB5hzkTEfo7YD0Qc5ojDYLnGuR0dk78rc2nkiEYgIs7XJixNxPbdvD2W0gDEbo7YXUJUeaT4rE1fZuRdmBoJOclXLiyF9CnL7TeWEj0eqi2vQdwtIHhsP6ORv07REkZQqKkqas/yNZ6REd1XIV5R9GZ6aXjIuEluFVzUaxEVe1CxiHrjQb0RUVMPaiqiZh7UTETZme/iWgEjwOofn8Wc7ngEsI9cfkXgFWzDqnMT5mgE4+cIvMD7VHMXPhsUe0tXlWQYzeM6iVmOxwVLPILSXK1BvY0Kdym+TmmGJSAZt7yrY3y8w9zGXM85tsKLfCWP8oxJOJ0+ydPL6aC3GNF8qkfnFtUsyLvjUj38zXzem1I9/B5pfEFePJfq4Sda+sk5ZG9qbPMc2AbMpqHWvi3XpcH5F6Zhyhdp1UWLi0/1TI8ZpPe6Jv0D/WQOzvFcdqjE+rHlejTGTv/Ghf7VoWH1PHb0XI8Kek/s9ZpSVLsnAx332nJdGTJaRQdaDntX98lgm65+MqZcj8YReFw7FHPPnXLd0TvMe2PL9WicKM57LsiTN+V6NHp0z/qw5Xo0MNvS1nG+Lde17KgBjp1tua5VH1AWGHNAPOa5xnpFI/KTpppan/yD6myN6/OvrmOYs3mSxwjVlKxvW04nzteyaomMv5CAVZvUlAP9i6njgxVpzNWWGF+xDJPC+r5Kx67xqPlD0GIEs5/3AKSceQoSmpwEWu8UKG6KUVexZwa3JeJwlJwuoVq6diJ6i5YvZ42KdU+pVorLbG+tHltkr8c09obkEx6SZiU9HJY+4TKKkoYOCxqS6dXR3Vs9X4va3xBxwyXEMB9pHdoR4p206jjVp/WGo+PLepdnAhfv+djxi9nmU21tMObJyBahLFU83XYmj+TW4bq6rmyOm7+L6ImivZqR1ejTjtRYjEJNtpi98TndW9rHtCeHPJhGB55jpKkMFe+aYRYd8+kRWVTX3kq8UV8mQ8flMVldY4+r0T0H3fOg68c4O7Bi3IFSE2KGY7hrBkQ5F3NdZaTxkfp5vjua0ROsjujTgoU0NNjeJAULWRVlPytQeQVoHA0cpYfTWKZj8K0VSnLU75PHxq5Fy3+Zdm7N/nabxnj5aC7PxHSJ6xZxjWjW8K4u3y1zYAnm3m+2yH+t7iXyq8MRbajE9YnDmfUyoB3/hCLYIXnGKc02aXYUW7v5qeVvDKcjZfbOcTc7IwsZkf2LYH3KaExG9OueHTA76GwRUrKRIXann3s3Pl+nL44x68f1FZ9qsOMtIVs2Jf6Grju7xjQWOWLgdWCxNLaNTg7JF0yI60hbdzu3q1cfRNpzEu4oYYp2rFwh/h/TX/NrxsnayohADeMTGGtb53seGcUsqKM2rfLVNsi0daX8KJfhiZbarn9Wpo8Kku1SxIXy4GrdBc4dumdeOEpGJPd4pQ2vo1XZXKQ8XNIj9vaUoni2+z29AqPc67RKrtGca9Eo6cEomORRhGkrZZGX+VbzKlIPoz3+v1C3ui5qDSlGymZwWUNSfj+haM2VMoVRzeP3Bc0mv9ZHS62q+QxoLJ45c/krqP0Q/hq5zX0YnbhgFa7TGGAK9s5qhGuilRZhvK4XeJmRaWjZe8vPjknTyq05T3zN1s3G2LPaVI5o1LzWWQtTPg+N5w6N54E6bNJeo9WiqTeW6KkYWzT1bmUovzrcmjUoT0XKskdmUP0AKd1YKoxqV6Qqx/gG9VaktSHSasNsdXcD3DkfgvTP9eXZ/VW+ukfqBvk2HfLAOH7p0iztk89laqsjNaaAnK9p++rO/hbVIPeYLChS5nOcOGN416lD1yKX9Gd6ZcvIzluLYM4tvdJtjI1tUfmXK8gzmhNjmpcGcY1aJFp+V45oySJddXyOiDL/bfKp2O+ojpnd1vaZRAV/wsabPKssL44UBqR/KfN2sBK9Hjjxa0Qx4VR71zHQqv+EkQJjTCbB71mO6QnhKsc7CezRxmQ/V+0U7+INHImuktRz9bsAG8NRrx3r7tgyPTZ9+wRaotbtU/e1kPmlwRwlfufZ0WvTqnamfdT50v35aLX1Kle8r9LDdImv1ceU2riRhY3yipiW+jSYC0tUjwtjQrjU60Ud+etJXkdm3p0KpWxaG8rFTAPbmGcUL0nnQBHh8+6ueL25j4V+xCv0YsK61LhGooTZuEznB1xLi1mpaClCcuulNSl11qOy9cLycFcNa8fZUiZkBVMl5W64tduHViFakbMxTKGj+GRvWZzo0vwULvwbKV+UaDiG5BAb4Oduqx219w5ORbzUZc5sRlSDNqG7FIO3dT+LLap19NKh7tIP4RDOow+6lqTv04paV3amLEvuUg+n/4qswUglovS2Zf0+uFzknqxyqtOfPlk4uTd9Zd7JqdsXwyGkJ0Uu4Xx4f0Pqxaky7zbV64OhLvegyKEOD3OeIeyZ29b1ebmcqvW1yiWUB68DZufF4HAHsDxmse1CLNTIeSLvngNah9MK6ma1+F/7YfhYTvV5hXIb0ztnzwOeOrdLdGYW/eL6c8ZyCxnN5RzDeWZ576zX5OfH/l9U60llTm/ePX30S+0YMLzmivOhsnSMd0eRlTeUCu4P+GTI1H/U3y/IbyW8zGmUyVGHktmvKKdmWsjUzJuXvt6Z70JksnTKZCpSs/FEg07G7qgDdQN+d3IPsO4pUX6nkj8R63+Ptgu1p2Q9TDadMwgtqksoC2J307p0b8/RlkmMZ3r5jG8TanBP/JBq8bzvHWqPZ36bhb6Vv0nCc/22ylS3EJks7/LZeRVDD4o7cJwLMu/7RnSmnrNZfALtLGCPkc9RcaRk3n6eE6JLceGypHNCmNFSRTn2Uo7pTFJSQjsu9K1DI3yod/px3wHP57fz7FKkfkF1bb064EotSXXkkeoRZQZi0v8GRGi/Uuvwua7LfkmPViQd0zMoSvTa+a76JNjCOy7s24yXKQ9mMnUz3S6jqN7uHlZnYndLufCJ92p8rwLfc6Rs0NN6QXH3SFXnDqcVNKdaJnc/d6BM3pP1gNFsOx8f1fHzrILXLKD/t0rRtxxJ90GWmLLtEe3njYheqnWzR9LzucrqvO3NCmnNW5tM056stOPAnJGs3hNI9bgrn/18DlLK1SQldNy5zicypdMifS8leX4OA05DtAN6K/c1pKcSlakoyTTgTeRZgCyzADqngjSnIoWeKIm2D08vrW0u/18fq4WTraubv7567d7W2mfX9f8D8r76ifqpugJr32/UZzD+j9QxcPq9+qP6i/rr7mL3D7t/2v0zN33vgsb8SBV+dv/2X8iWSHA=</latexit> ATAC <latexit sha1_base64="yLexRhVyH/8+kX4r+aALcN6qwFs=">AABE+nictVxZcxu5EYY318a5vMlLqvIyG61T3i1FkRTnqNpK1dqiLGst27JJyd41bReHHNG0Rxyalw9a+TGpvKRSyVPe8zvyA1KVPOUvpA9ggCEx0xhlo7FEDIivu9EDNLobGMejdDCZbm7+48J7X/v6N775rfe/ffE73/3e939w6YMfHk+y2bibHHWzNBs/jDuTJB0Mk6PpYJomD0fjpHMap8mD+MUOfv9gnowng2zYmr4ZJY9PO/3h4GTQ7Uyh6umlH7eJxqNxP3682Li6Dv+2zqL7d649vbS2ubFJP9FqYUsX1pT+Ocw++PCfqq16KlNdNVOnKlFDNYVyqjpqAtcjtaU21QjqHqsF1I2hNKDvE3WmLgJ2Bq0SaNGB2hfwtw93j3TtEO6R5oTQXeCSwu8YkJG6DJgM2o2hjNwi+n5GlLG2jPaCaKJsb+Az1rROoXaqnkGthDMtQ3HYl6k6Ub+lPgygTyOqwd51NZUZaQUlj5xeTYHCCOqw3IPvx1DuEtLoOSLMhPqOuu3Q9/+illiL913ddqb+TVJehitSTd37LKfQUXOiH9HTnMF3LE8KnPtAIdF9xNIr0vUp9X4I7RdQfweuMyoZncRwLaj2rBK5A5cPuSMi9+DyIfdE5AFcPuSBiDyEy4c81EjEjknnfnwTLh++KXK+B5cPeU9E3ofLh7wvIo/h8iGPReSXcPmQX4rIG3D5kDdE5C24fMhbIrIFlw/ZEpFHcPmQRyJyFy4fclcjy2fqGK6M6AyEWXkNykUeaClSqLkmynedrKMPez1gTndLsPKsbsCnH9sI0GlSgt0NGHcnJVh55O2BjfRjZVt0k1YTH/amiN2HEeDH7ovYz9XzEuznATPtRQlWnmsH0M6Pla3vbbjzY2+L2DtQ8mPlNeou1PixdwNWjFEJ9lDE3lMvS7AhVn9cgpXtfhPsih8rr1MtaO/HhljTWQlWtqfH4MH4sfJq9QBq/dgHIvahel2CfShivwDr7sd+EbDCvi3BmjX2Iq0gffJHEpixVdQ6+azE0giodQT+ab62pOQbx1AvYfo5pk+YUxGxlyP2AhEHOeIgWK5Jbkcn5O/KXJo5ohmIiPO1CUtTsX0vb4+lNADRyBGNJUSVR4rP2vRlTt6FqZGQ03zlwlJIn7LcfmMp0eOh2vIaxN0Cgsf2Mxr56xQtYQSFmqqi9ixf4xkZ0X0V4hVFb6aXhoeMm+ZWwUW9FlGxBxWLqDce1BsRNfOgZiJq7kHNRZSd+S6uHTACrP7xWSzojkcA+8jlVwRewTVYdW7CHI1g/ByCF3ifau7CZ5Nib+mqkgyjeVwnMcvxuGCJx1BaqDWot1Fhg+LrlGZYApJxy7s6xsc7zG0s9JxjK3yWr+RRnjEJpzMgefo5HfQWI5pP9ejcopoz8u64VA9/M5/3plQPv0saPyMvnkv18FMt/fQcsrc0tnUObBNm00hr35br0uD8C9Mw5Yu06qLFxad6qscM0ntdk/6+fjL753guO1Ri/dhyPRoTp3+TQv/q0LB6njh6rkcFvSf2ek0pqt2ToY57bbmuDBmtokMth72r+2SwTU8/GVOuR+MQPK4dirkXTrnu6B3lvbHlejSOFec9z8iTN+V6NPp0z/qw5Xo0MNvS0XG+Lde17KgBjp1tua5VH1IWGHNAPOa5xnpFY/KTZpragPyD6myN6/OvrmOYs3mSxwjVlKxvW04nzteyaomMv5CAVZvWlAP9i5njgxVpLNS2GF+xDNPC+r5Kx67xqPkD0GIEs5/3AKSceQoSmpwEWu8UKG6JUVexZwa3LeJwlJwsodq6dip6i5YvZ42KdU+pVorLbG+tHttkryc09kbkEx6QZiU9HJQ+4TKKkoYOChqS6dXR3Vs9X4va3xRxoyXEKB9pXdoR4p206jjVp/Wmo+PLepdnChfv+djxi9nmE21tMObJyBahLFU83XYmj+TW4bq6rmyOm7+L6ImivZqT1RjQjtREjEJNtpi98QXdW9pHtCeHPJhGF55jpKmMFO+aYRYd8+kRWVTX3kq8UV8mQ8flCVldY4+r0X0H3feg68c4O7Bi3IFSC2KGI7hrBUQ5F3NdZaTxsfp5vjua0ROsjujTgoU0NNjeJAULWRVlPytQeQVoHA0cpYfTWKZj8O0VSnLU75PHxq5Fy3+Zdm7N/naHxnj5aC7PxPSI6zZxjWjW8K4u3y1zYAkW3m+2yX+t7iXyq8MRbajE9YnDmfUypB3/hCLYEXnGKc02aXYUW7v5qeVvDKdDZfbOcTc7IwsZkf2LYH3KaExG9OueHTA76GwRUrKRIXZnkHs3Pl9nII4x68cNFJ9qsOMtIVs2I/6Grju7JjQWOWLgdeBsaWwbnRyQL5gQ17G27nZuV68+iLTnJNxRwhTtWLlC/D+mv+bXjJO1lRGBGsYnMNG2zvc8MopZUEcdWuWrbZBp60r5US7DEy21Xf+sTB8VJGtQxIXy4GrdA85dumdeOErGJPdkpQ2vo1XZXKQ8WtIj9vaEoni2+329AqPc67RKrtGca9Mo6cMomOZRhGkrZZGX+VbzKlIPoz35v1C3ui5qDSlGymZwWUNSfj+haM2VMoVRzeP3Bc0mv9bHS62q+QxpLJ46c/kd1H4If43c5j6MTlywCtdpDDAFe2c1wjXRSoswXtcLvMzINLTsveVnx6Rp5dacJ75m62Zj7HltKoc0al7rrIUpn4fGc4fG80Adtmiv0WrR1BtL9FSMLVp6tzKUXx1urRqUZyJl2SMzqEGAlG4sFUa1J1KVY3yDeivS2hRpdWC2ursB7pwPQfrn+vLsfpev7pG6Qb5Nlzwwjl96NEsH5HOZ2upIjSkg56vavrqzv001yD0mC4qU+RwnzhjederSdZZL+jO9smVk561FMOeWXuk2xsa2qfzLFeQpzYkJzUuDuEotEi2/K0e0ZJE2HJ8josx/h3wq9juqY2a3tX0mUcGfsPEmzyrLiyOFIelfyrztr0Sv+078GlFMONPedQy06j9hpMAYk0nwe5YTekK4yvFOAnu0MdnPVTvFu3hDR6INknqhfhdgYzjqtWPdHVumx6Zvn0BL1Lp96r4WMr80mKPE7zw7eh1a1U61j7pYuj8frY5e5Yr3VXqYLfG1+phRGzeysFFeEdNWnwZzYYnqcWFMCJd6vagjfz3J68jMu1OhlE1rQ7mYaWAb84ziJekcKCJ83t0Vrzf3sdCPeIVeTFiXGtdIlDAbl+n8gGtpMSsVLUVIbr20JqXOelS2Xlge7qph7ThbyoSsYKqk3A23dvvQLkQrcjaGKXQVn+wtixNdmp/ChX8j5YsSDceQHGIT/NxrakftfgWnIl7qMmc2I6pBm9BbisE7up/FFtU6eulQd+mHcAjnMQBdS9IPaEWtKztTliV3qYfTf0XWYKwSUXrbsn4fXC5yT1Y51enPgCyc3JuBMu/k1O2L4RDSkyKXcD68vyH14kSZd5vq9cFQl3tQ5FCHhznPEPbMbev6vFxO1fpa5RLKg9cBs/NicLgDWB6z2HYhFmrsPJGvngNah5MK6ma1+F/7YfhYTvV5hXKb0DtnzwOeOrdLdGYW/eL6c8ZyCxnN5RzDeWZ576zX5OfH/l9U60llTm++evrol9oxYHgtFOdDZekY744iK28oFdwf8MmQqf+ov1+Q30p4mdMok6MOJbNfUU7NtJCpmTcvfb0z34XIZOmUyVSkZuOJJp2M3VH76gb87uQeYN1TovxOJX8i1v8ebQ9qT8h6mGw6ZxDaVJdQFsTupvXo3p6jLZMYz/TyGd8W1OCe+AHV4nnfO9Qez/y2Cn0rf5OE5/ptlaleITJZ3uWz8yqGHhR34DgXZN73jehMPWez+ATaacAeI5+j4kjJvP28IESP4sJlSReEMKOlinLspRzTmaSkhHZc6FuXRvhI7/TjvgOez+/k2aVI/YLqOnp1wJVakurQI9UjygzEpP9NiNB+pdbhc12X/ZIerkg6oWdQlOi18131SbAz77iwbzNepjyYydTNdbuMonq7e1idiW2UcuET79X4fgW+70jZpKf1guLusarOHc4qaM60TO5+7lCZvCfrAaPZTj4+quPneQWveUD/b5WibzmS7oEsMWXbI9rPGxO9VOtml6Tnc5XVedubFdKatzaZpj1ZaceBOSNZvSeQ6nFXPvv5HKSUq0lK6LhznU9kSqdFBl5K8vwcBZyG6AT0Vu5rSE8lKjNRklnAm8jzAFnmAXROBGlORAp9URJtH55eWtta/r8+VgvH2xtbv964em977bPr+v8BeV/9RP1UXYG17zfqMxj/h+oIOP1e/VH9Rf218a7xh8afGn/mpu9d0JgfqcJP42//BVywSC4=</latexit> RNA <latexit sha1_base64="zPn9haeMC3Ejo2cst7+vCdU4JsI=">AABE/XictVxZcxu5EYY318a5vMnjvsxG65Q3pSiS4hxVW6laW5RlrWVbNinZu6bt4pAjmvaIQ/PywVWl8mNSeUmlkqc85nfkB6QqecpfSB/AAENipjGKo7FEDIivu9EDNLobGMejdDCZbm7+48J7X/v6N775rfe/ffE73/3e939w6YMfHk+y2bibHHWzNBs/jDuTJB0Mk6PpYJomD0fjpHMap8mD+MUOfv9gnowng2zYmr4ZJY9PO/3h4GTQ7Uyh6umlD9tE49G4Hz9ebFxdp39nUXPU6SZPL61tbmzST7Ra2NKFNaV/DrMPPvqnaqueylRXzdSpStRQTaGcqo6awPVIbalNNYK6x2oBdWMoDej7RJ2pi4CdQasEWnSg9gX87cPdI107hHukOSF0F7ik8DsGZKQuAyaDdmMoI7eIvp8RZawto70gmijbG/iMNa1TqJ2qZ1Ar4UzLUBz2ZapO1G+oDwPo04hqsHddTWVGWkHJI6dXU6Awgjos9+D7MZS7hDR6jggzob6jbjv0/b+oJdbifVe3nal/k5SX4YpUU/c+yyl01JzoR/Q0Z/Ady5MC5z5QSHQfsfSKdH1KvR9C+wXU34HrjEpGJzFcC6o9q0TuwOVD7ojIPbh8yD0ReQCXD3kgIg/h8iEPNRKxY9K5H9+Ey4dvipzvweVD3hOR9+HyIe+LyGO4fMhjEfklXD7klyLyBlw+5A0ReQsuH/KWiGzB5UO2ROQRXD7kkYjchcuH3NXI8pk6hisjOgNhVl6DcpEHWooUaq6J8l0n6+jDXg+Y090SrDyrG/DpxzYCdJqUYHcDxt1JCVYeeXtgI/1Y2RbdpNXEh70pYvdhBPix+yL2c/W8BPt5wEx7UYKV59oBtPNjZet7G+782Nsi9g6U/Fh5jboLNX7s3YAVY1SCPRSx99TLEmyI1R+XYGW73wS74sfK61QL2vuxIdZ0VoKV7ekxeDB+rLxaPYBaP/aBiH2oXpdgH4rYL8C6+7FfBKywb0uwZo29SCtIn/yRBGZsFbVOPiuxNAJqHYF/mq8tKfnGMdRLmH6O6RPmVETs5Yi9QMRBjjgIlmuS29EJ+bsyl2aOaAYi4nxtwtJUbN/L22MpDUA0ckRjCVHlkeKzNn2Zk3dhaiTkNF+5sBTSpyy331hK9HiotrwGcbeA4LH9jEb+OkVLGEGhpqqoPcvXeEZGdF+FeEXRm+ml4SHjprlVcFGvRVTsQcUi6o0H9UZEzTyomYiae1BzEWVnvotrB4wAq398Fgu64xHAPnL5FYFXcA1WnZswRyMYP4fgBd6nmrvw2aTYW7qqJMNoHtdJzHI8LljiMZQWag3qbVTYoPg6pRmWgGTc8q6O8fEOcxsLPefYCp/lK3mUZ0zC6QxInn5OB73FiOZTPTq3qOaMvDsu1cPfzOe9KdXD75LGz8iL51I9/FRLPz2H7C2NbZ0D24TZNNLat+W6NDj/wjRM+SKtumhx8ame6jGD9F7XpL+vn8z+OZ7LDpVYP7Zcj8bE6d+k0L86NKyeJ46e61FB74m9XlOKavdkqONeW64rQ0ar6FDLYe/qPhls09NPxpTr0TgEj2uHYu6FU647ekd5b2y5Ho1jxXnPM/LkTbkejT7dsz5suR4NzLZ0dJxvy3UtO2qAY2dbrmvVh5QFxhwQj3musV7RmPykmaY2IP+gOlvj+vyr6xjmbJ7kMUI1JevbltOJ87WsWiLjLyRg1aY15UD/Yub4YEUaC7Utxlcsw7Swvq/SsWs8av4AtBjB7Oc9AClnnoKEJieB1jsFilti1FXsmcFtizgcJSdLqLaunYreouXLWaNi3VOqleIy21urxzbZ6wmNvRH5hAekWUkPB6VPuIyipKGDgoZkenV091bP16L2N0XcaAkxykdal3aEeCetOk71ab3p6Piy3uWZwsV7Pnb8Yrb5RFsbjHkyskUoSxVPt53JI7l1uK6uK5vj5u8ieqJor+ZkNQa0IzURo1CTLWZvfEH3lvYR7ckhD6bRhecYaSojxbtmmEXHfHpEFtW1txJv1JfJ0HF5QlbX2ONqdN9B9z3o+jHODqwYd6DUgpjhCO5aAVHOxVxXGWl8rH6W745m9ASrI/q0YCENDbY3ScFCVkXZzwpUXgEaRwNH6eE0lukYfHuFkhz1++SxsWvR8l+mnVuzv92hMV4+msszMT3iuk1cI5o1vKvLd8scWIKF95tt8l+re4n86nBEGypxfeJwZr0Macc/oQh2RJ5xSrNNmh3F1m5+avkbw+lQmb1z3M3OyEJGZP8iWJ8yGpMR/bpnB8wOOluElGxkiN0Z5N6Nz9cZiGPM+nEDxaca7HhLyJbNiL+h686uCY1Fjhh4HThbGttGJwfkCybEdaytu53b1asPIu05CXeUMEU7Vq4Q/0/or/k142RtZUSghvEJTLSt8z2PjGIW1FGHVvlqG2TaulJ+nMvwREtt1z8r08cFyRoUcaE8uFr3gHOX7pkXjpIxyT1ZacPraFU2FymPlvSIvT2hKJ7tfl+vwCj3Oq2SazTn2jRK+jAKpnkUYdpKWeRlvtW8itTDaE/+L9StrotaQ4qRshlc1pCU308oWnOlTGFU8/h9QbPJr/XxUqtqPkMai6fOXP4Kaj+Cv0Zucx9GJy5Yhes0BpiCvbMa4ZpopUUYr+sFXmZkGlr23vKzY9K0cmvOE1+zdbMx9rw2lUMaNa911sKUz0PjuUPjeaAOW7TXaLVo6o0leirGFi29WxnKrw63Vg3KM5Gy7JEZ1CBASjeWCqPaE6nKMb5BvRVpbYq0OjBb3d0Ad86HIP1zfXl2f5Wv7pG6Qb5Nlzwwjl96NEsH5HOZ2upIjSkg56vavrqzv001yD0mC4qU+RwnzhjederSdZZL+hO9smVk561FMOeWXuk2xsa2qfyLFeQpzYkJzUuDuEotEi2/K0e0ZJE2HJ8josx/h3wq9juqY2a3tX0mUcGfsPEmzyrLiyOFIelfyrztr0Sv+078GlFMONPedQy06j9hpMAYk0nwe5YTekK4yvFOAnu0MdnPVTvFu3hDR6INknqhfhtgYzjqtWPdHVumx6ZvP4WWqHX71H0tZH5pMEeJ33l29Dq0qp1qH3WxdH8+Wh29yhXvq/QwW+Jr9TGjNm5kYaO8IqatPg3mwhLV48KYEC71elFH/nqS15GZd6dCKZvWhnIx08A25hnFS9I5UET4vLsrXm/uE6Ef8Qq9mLAuNa6RKGE2LtP5AdfSYlYqWoqQ3HppTUqd9ahsvbA83FXD2nG2lAlZwVRJuRtu7fahXYhW5GwMU+gqPtlbFie6ND+FC/9GyhclGo4hOcQm+LnX1I7afQenIl7qMmc2I6pBm9BbisE7up/FFtU6eulQd+mHcAjnMQBdS9IPaEWtKztTliV3qYfTf0XWYKwSUXrbsn4fXC5yT1Y51enPgCyc3JuBMu/k1O2L4RDSkyKXcD68vyH14kSZd5vq9cFQl3tQ5FCHhznPEPbMbev6vFxO1fpa5RLKg9cBs/NicLgDWB6z2HYhFmrsPJF3zwGtw0kFdbNa/K/9MHwsp/q8QrlN6J2z5wFPndslOjOLfnH9OWO5hYzmco7hPLO8d9Zr8vNj/y+q9aQypzfvnj76pXYMGF4LxflQWTrGu6PIyhtKBfcHfDJk6j/q7xfktxJe5jTK5KhDyexXlFMzLWRq5s1LX+/MdyEyWTplMhWp2XiiSSdjd9S+ugG/O7kHWPeUKL9TyZ+I9b9H24PaE7IeJpvOGYQ21SWUBbG7aT26t+doyyTGM718xrcFNbgnfkC1eN73DrXHM7+tQt/K3yThuX5bZapXiEyWd/nsvIqhB8UdOM4Fmfd9IzpTz9ksPoF2GrDHyOeoOFIybz8vCNGjuHBZ0gUhzGipohx7Kcd0JikpoR0X+talET7SO/2474Dn8zt5dilSP6e6jl4dcKWWpDr0SPWIMgMx6X8TIrRfqnX4XNdlv6SHK5JO6BkUJXrtfFd9EuzMOy7s24yXKQ9mMnVz3S6jqN7uHlZnYhulXPjEezW+X4HvO1I26Wm9oLh7rKpzh7MKmjMtk7ufO1Qm78l6wGi2k4+P6vh5XsFrHtD/W6XoW46keyBLTNn2iPbzxkQv1brZJen5XGV13vZmhbTmrU2maU9W2nFgzkhW7wmketyVz34+BynlapISOu5c5xOZ0mmRgZeSPD9HAachOgG9lfsa0lOJykyUZBbwJvI8QJZ5AJ0TQZoTkUJflETbh6eX1raW/6+P1cLx9sbWrzau3tte++y6/n9A3lcfqh+rK7D2/Vp9BuP/UB0Bp9+rP6q/qL82ftf4Q+NPjT9z0/cuaMyPVOGn8bf/AjyJSYg=</latexit> Space <latexit sha1_base64="+EZbGBOzeNlqviQLBRprUfDP878=">AABE6HictVxbcxPJFW42tw25scljXmZjSLEpLzEOuVRtpWrBMsaLAYNkwy4GSiONhWCsERpJXLT+D6m8pFLJU/5Ifkd+QKqSp/yFnEv3dI/UM6fHIUzZ7unp75zTZ7pPn3O6h3icDvPpxsY/zn3wjW9+69vf+fC757/3/R/88EcXPvrxYZ7NJr3koJel2eRR3M2TdDhKDqbDaZo8Gk+S7kmcJg/jl1v4/OE8meTDbNSZvh0nT066g9HweNjrTqHq0VaWT6OLvYvPLqxtXNmgf9Fq4aourCn9bz/76ON/qiPVV5nqqZk6UYkaqSmUU9VVOVyP1VW1ocZQ90QtoG4CpSE9T9SpOg/YGbRKoEUXal/C7wHcPda1I7hHmjmhe8AlhZ8JICN1CTAZtJtAGblF9HxGlLG2ivaCaKJsb+FvrGmdQO1UPYdaCWdahuKwL1N1rH5HfRhCn8ZUg73raSoz0gpKHjm9mgKFMdRhuQ/PJ1DuEdLoOSJMTn1H3Xbp+b+oJdbifU+3nal/k5SX4IpUW/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpNuj6h3o+g/QLq78J1SiWjkxiuBdWe1iK34PIht0TkDlw+5I6I3IPLh9wTkftw+ZD7GonYCencj2/D5cO3Rc734fIh74vIB3D5kA9E5CFcPuShiPwKLh/yKxF5Ey4f8qaIvA2XD3lbRHbg8iE7IvIALh/yQERuw+VDbmtk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VLfjrx7YCdJpUYLcDxt1xBVYeeTtgI/1Y2RbdotXEh70lYndhBPixuyL2C/WiAvtFwEx7WYGV59oetPNjZet7B+782Dsi9i6U/Fh5jboHNX7svYAVY1yB3Rex99WrCmyI1Z9UYGW73wa74sfK61QH2vuxIdZ0VoGV7ekheDB+rLxaPYRaP/ahiH2k3lRgH4nYL8G6+7FfBqyw7yqwZo09TyvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmRETsFIidQMRegdgLlisv7GhO/q7MpV0g2oGIuFibsDQV2/eL9lhKAxCtAtFaQtR5pPiuTV/m5F2YGgk5LVYuLIX0KSvsN5YSPR7qLa9B3CsheGw/p5G/TtESRlCoqTpqz4s1npER3dchXlP0ZnppeMi4aWEVXNQbERV7ULGIeutBvRVRMw9qJqLmHtRcRNmZ7+KOAkaA1T++iwXd8QhgH7n6isAruA6rzi2YoxGMn33wAh9QzT3426bYW7rqJMNoHtdJzHI8KVniCZQWag3qbVTYovg6pRmWgGTc8p6O8fEOcxsLPefYCp8WK3lUZEzC6QxJnkFBB73FiOZTMzq3qeaUvDsuNcPfKua9KTXDb5PGT8mL51Iz/FRLPz2D7B2N7ZwB24bZNNbat+WmNDj/wjRM+Tytumhx8a2e6DGD9N40pL+r38zuGd7LFpVYP7bcjEbu9C8v9a8JDavn3NFzMyroPbHXa0pR456MdNxry01lyGgVHWk57F3TN4Nt+vrNmHIzGvvgcW1RzL1wyk1H77jojS03o3GoOO95Sp68KTejMaB71octN6OB2ZaujvNtuallRw1w7GzLTa36iLLAmAPiMc811iuakJ8009SG5B/UZ2tcn391HcOczdMiRqinZH3bajpxsZbVS2T8hQSs2rShHOhfzBwfrExjoTbF+IplmJbW91U6do1Hze+BFiOY/bwHIOXMU5DQ5CTQeqdA8aoYdZV7ZnCbIg5HyfES6kjXTkVv0fLlrFG57hnVSnGZ7a3V4xHZ65zG3ph8wj3SrKSHvco3XEVR0tBeSUMyvSa6e6fna1n7GyJuvIQYFyOtRztCvJNWH6f6tN52dHxJ7/JM4eI9Hzt+Mdt8rK0NxjwZ2SKUpY6n287kkdw6XFfXlc1x87OI3ijaqzlZjSHtSOViFGqyxeyNL+je0j6gPTnkwTR68B4jTWWseNcMs+iYT4/Iorr2VuKN+jIZOi7nZHWNPa5HDxz0wINuHuNswYpxF0odiBkO4K4TEOWcL3SVkcYn6tNidzSjN1gf0aclC2losL1JShayLsp+XqLyGtA4GjhKD6exTMfgj1YoyVG/Tx4bu5Yt/yXauTX7210a49WjuToT0yeum8Q1olnDu7p8t8yBJVh4n2yS/1rfS+TXhCPaUInrU4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08Mp31l9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLo0to1O9sgXTIjrRFt3O7frVx9E2nMS7ihhinasXCb+n9Bv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Ul4sZHiqpbbrn5XpYkmyFkVcKA+u1n3g3KN75oWjZEJy5ytteB2ty+Yi5fGSHrG3xxTFs90f6BUY5V6nVXKN5twRjZIBjIJpEUWYtlIWeZlvPa8y9TDa+f+FutV1WWtIMVI2g8sakvL7CUVrrpQpjGoevy9pNvm1PllqVc9nRGPxxJnLX0Ptx/DbyG3uw+jEJatwg8YAU7B3ViNcE620CON1o8TLjExDy95bfnZMmlZuzVnia7ZuNsaeN6ayT6Pmjc5amPJZaLxwaLwI1GGH9hqtFk29sUTPxNiio3crQ/k14dZpQHkmUpY9MoMaBkjpxlJhVPsiVTnGN6h3Iq0NkVYXZqu7G+DO+RCkf64vz+6vi9U9UjfJt+mRB8bxS59m6ZB8LlNbH6kxBeR8TdtXd/YfUQ1yj8mCImU+x4kzhnedenSdFpL+XK9sGdl5axHMuaXXuo2xsUdU/tUK8oTmRE7z0iCuUYtEy+/KES1ZpCuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3nZXotddJ36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siR6ApJvVC/D7AxHPXase6OLdNj07dfQEvUun3rvhYyvzSYo8TvLDt6XVrVTrSPuli6Pxutrl7lyvd1epgt8bX6mFEbN7KwUV4Zc6Q+C+bCEjXjwpgQLs160UT+ZpI3kZl3p0Ipm9aGcjnTwDbmOcVL0jlQRPi8u8teb+4ToR/xCr2YsC41rpEoYTYu0/kB19JiVipaipDcemlNSp31qGq9sDzcVcPacbaUCVnBVEm5G27t9uGoFK3I2Rim0FN8srcqTnRpfgYX/o6UL0o0HENyiG3wc6+rLbX9Hk5FvNJlzmxGVIM2ob8Ug3d1P8st6nX0yqHu0g/hEM5jCLqWpB/SitpUdqYsS+5SD6f/mqzBRCWi9LZl8z64XOSerHJq0p8hWTi5N0Nlvslp2hfDIaQnZS7hfHh/Q+rFsTLfNjXrg6Eu96DMoQkPc54h7J3b1s15uZzq9bXKJZQHrwNm58XgcAewOmax7UIs1MR5I++fA1qH4xrqZrX4X/th+FhOzXmFcsvpm7MXAW+d2yU6M4t+cfM5Y7mFjOZqjuE8s6J31mvy82P/L2r0pjKnN++fPvqldgwYXgvF+VBZOsa7o8jKG0oF9wd8MmTqP+rv5+SvEl4VNKrkaELJ7FdUUzMtZGrmy0tf78yzEJksnSqZytRsPNGmk7FbalfdhJ+twgNsekqUv6nkv4j1f0fbh9pjsh4mm84ZhCOqSygLYnfT+nRvz9FWSYxnevmMbwdqcE98j2rxvO9dao9nfjulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au0kYI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+SXVdvTrgSi1Jte+R6jFlBmLS/wZEaL9W6/B3XZf9ku6vSJrTOyhL9MZ5Vn8S7NQ7LuzXjJcoD2YydXPdLqOo3u4e1mdiW5Vc+MR7PX5Qgx84Urbpbb2kuHui6nOHsxqaMy2Tu587UibvyXrAaLZbjI/6+Hlew2se0P/blejbjqQ7IEtM2faI9vMmRC/Vutkm6flcZX3e9laNtOarTaZpT1bacWDOSNbvCaR63FXPfj4HKeVqkgo67lznE5nSaZGhl5I8P8cBpyG6Ab2V+xrSU4nKTJRkFvAl8jxAlnkAnWNBmmORwkCURNuHZxfWri7/Xx+rhcPNK1d/c+Xa/c21z2/o/wfkQ/VT9TN1Gda+36rPYfzvqwPyGf6o/qL+2nrR+kPrT60/c9MPzmnMT1TpX+tv/wUAFUIN</latexit> Cost c <latexit sha1_base64="8m5e3cx4W7SX6zn7FV/D8eXsYVg=">AABFM3ictVzdc9u4EUeuX1f3K9c+9oWpk06u43NtN/2YuenMJZbj+OIkTiQ7uYuSjChRshJaVEhJTqLTn9XpY/+OTqcvnX4+dPovdHcBEKAEckE3NWMLhPDbXSyBxe4CTDiOh9lka+uPlz742te/8c1vffjtte9893vf/8Hlj354kiXTtBsdd5M4SZ+EnSyKh6PoeDKcxNGTcRp1zsI4ehy+2sXvH8+iNBsmo9bk7Th6dtYZjIb9YbczgaoXlx/O20TkaToIn803b2zAv+1F8Oj+zUWw1r7SvnK1HUf9STocnE46aZqcX8XKtQrUi8vrW5tb9BOsFrZVYV2on6Pkoyt/E23RE4noiqk4E5EYiQmUY9ERGVxPxbbYEmOoeybmUJdCaUjfR2Ih1gA7hVYRtOhA7Sv4O4C7p6p2BPdIMyN0F7jE8JsCMhDXAJNAuxTKyC2g76dEGWvLaM+JJsr2Fj5DResMaifiFGo5nG7pi8O+TERf/Ib6MIQ+jakGe9dVVKakFZQ8sHo1AQpjqMNyD75PodwlpNZzQJiM+o667dD3/6SWWIv3XdV2Kv5FUl6DKxBN1fskp9ARM6If0NOcwndSnhg4D4BCpPqIpXPS9Rn1fgTt51B/H64FlbROQrjmVLuoRO7C5ULussh9uFzIfRZ5CJcLecgij+ByIY8UErEp6dyNb8LlwjdZzg/hciEfsshHcLmQj1jkCVwu5AmL/BIuF/JLFnkbLhfyNou8C5cLeZdFtuByIVss8hguF/KYRe7B5ULuKWT5TE3hSojOkJmVN6Fc5IGWIoaam6x8t8g6urC3POZ0twTLz+oGfLqxDQ+dRiXYPY9x1y/B8iNvH2ykG8vboju0mriwd1jsAYwAN/aAxX4uXpZgP/eYaa9KsPxcO4R2bixvfe/BnRt7j8Xeh5Iby69RD6DGjX3gsWKMS7BHLPaheF2C9bH6aQmWt/tNsCtuLL9OtaC9G+tjTaclWN6enoAH48byq9VjqHVjH7PYJ+JNCfYJi/0CrLsb+4XHCvuuBKvX2DVaQQbkj0QwY6uodfJZiaUxUOsw/ON8bYnJNw6hnsMMcsyAMGcsYj9H7HsiDnPEobdcWW5HM/J3eS7NHNH0RIT52oSlCdu+l7fHUuyBaOSIxhKiyiPFZ637MiPvQtdwyEm+cmHJp09Jbr+xFKnxUG15NeJBASHH9imN/A2KljCCQk1VUTvN13iJDOi+CnFO0ZvupebB4ya5VbBRb1hU6ECFLOqtA/WWRU0dqCmLmjlQMxZlZr6Na3uMAKN/fBZzupMjQPrI5VcAXsFNWHXuwBwNYPwcgRf4iGoewGeTYm/uqpIMo3lcJzHL8axgiVMozcU61JuosEHxdUwzLALJZMsHKsbHO8xtzNWck1Z4ka/kQZ4x8aczJHkGOR30FgOaT/Xo3KWaBXl3slQPfyef97pUD79HGl+QFy9L9fATJf3kArK3FLZ1AWwTZtNYad+U69KQ+RdJQ5fXaNVFi4tP9UyNGaT3pib9A/VkDi7wXHapJPVjyvVoZFb/skL/6tAwes4sPdejgt6T9Hp1Kajdk5GKe025rgwJraIjJYe5q/tksE1PPRldrkfjCDyuXYq551a57ugd570x5Xo0ToTMey7Ik9flejQGdC/1Ycr1aGC2paPifFOua9lRAzJ2NuW6Vn1EWWDMAckxL2uMV5SSnzRV1IbkH1Rna2yff3Udw5zN8zxGqKZkfNtyOmG+llVLpP2FCKzapKYc6F9MLR+sSGMudtj4SsowKazvq3TMGo+aPwQtBjD75R4AlzOPQUKdk0DrHQPFbTbqKvZM43ZYHI6S/hKqrWonrLdo+MqsUbHuBdVycZnprdFjm+x1RmNvTD7hIWmW08Nh6RMuo8hp6LCgIZ5eHd29U/O1qP0tFjdeQozzkdalHSG5k1Ydp7q03rR0fE3t8kzgkns+ZvxitrmvrA3GPAnZIpSliqfdTueR7DpcVzeEyXHL7wJ6omivZmQ1hrQjlbFRqM4WS298TveG9jHtySEPSaMLzzFQVMZC7pphFh3z6QFZVNvecrxRXzpDJ8sZWV1tj6vRAws9cKDrxzi7sGLch1ILYoZjuGt5RDlrua4S0ngqPsl3RxN6gtURfVywkJqGtDdRwUJWRdmnBSrngMbRIKN0fxrLdDS+vUKJj/pd8pjYtWj5r9HOrd7f7tAYLx/N5ZmYHnHdIa4BzRq5qyvvljlICebOb3bIf63uJfKrwxFtKMf1ucVZ6mVEO/4RRbBj8oxjmm3c7Ci2tvNTy99oTkdC753jbnZCFjIg+xfA+pTQmAzo1z47oHfQpUWIyUb62J1h7t24fJ0hO8aMHzcU8lSDGW8R2bIp8dd07dmV0ViUEYNcBxZLY1vr5JB8wYi4psq6m7ldvfog0pyTsEeJpGjGynXi/zH91b96nKyvjAjUMD6BTNk61/NIKGZBHXVola+2QbqtLeXVXIbnSmqz/hmZrhYka1DEhfLgat0Dzl26l7xwlKQkd7bSRq6jVdlcpDxe0iP2tk9RvLT7A7UCo9wbtEqu05xr0ygZwCiY5FGEbstlkZf5VvMqUvejnf1fqBtdF7WGFANhMrhSQ1x+P6JozZYyhlEtx+8rmk1uradLrar5jGgsnllz+SuovQJ/tdz63o9OWLAKt2gMSArmzmhE1gQrLfx43Srw0iNT0zL3hp8Zk7qVXXOR+FpaNxNjz2pTOaJR80ZlLXT5IjReWjReeuqwRXuNRou6XluiF2xs0VK7lb786nBr1aA8ZSnzHplGDT2ktGMpP6o9liof42vUO5bWFkurA7PV3g2w57wP0j3Xl2f3V/nqHojb5Nt0yQOT8UuPZumQfC5dWx2pSQrI+Yayr/bsb1MNcg/JgiJleY4TZ4zcderStcgl/ala2RKy88Yi6HNL56qNtrFtKv9iBXlGcyKjeakRN6hFpOS35QiWLNKm5XMElPnvkE8l/Y7qmNlubZ5JUPAnTLwpZ5XhJSOFEemfy7wdrESvB1b8GlBMOFXedQi06j9hpCAxOpPg9iwzekK4ysmdBOnRhmQ/V+2U3MUbWRJtktRz8VsPGyOjXjPW7bGle6z79jNoiVo3T93VgucXe3Pk+F1kR69Dq9qZ8lHnS/cXo9VRq1zxvkoP0yW+Rh9TamNHFibKK2La4lNvLlKielwkxodLvV7Ukb+e5HVklrtTvpR1a025mGmQNuaU4iXuHCgiXN7ddac39zHTj3CFXkhYm5qs4ShhNi5R+QHb0mJWKliKkOx6bk2KrfWobL0wPOxVw9hxaSkjsoKx4HI3srXdh3YhWuGzMZJCV8iTvWVxok3zU7jwbyBcUaLm6JNDbIKfe1Psir33cCritSrLzGZANWgTeksxeEf1s9iiWkevLeo2fR8O/jyGoGtO+iGtqHVll5R5yW3q/vTPyRqkImKlNy3r98HmwvdklVOd/gzJwvG9GQr9Tk7dvmgOPj0pcvHnI/c3uF70hX63qV4fNHW+B0UOdXjo8wx+z9y0rs/L5lStr1UuvjzkOqB3XjQOdwDLYxbTzsdCpdYTef8c0Dr0K6jr1eJ/7YfmYzjV5+XLLaN3zl56PHXZLlKZWfSL688Zw81nNJdz9OeZ5L0zXpObn/T/glpPKrF68/7po19qxoDmNRcyH8pLJ/H2KDLy+lLB/QGXDIn4j/jDJf6thNc5jTI56lDS+xXl1HQLnpp+89LVO/2dj0yGTplMRWomnmjSydhdcSBuw+9u7gHWPSUq36mUn4h1v0fbg9o+WQ+dTZcZhDbVRZQFMbtpPbo352jLJMYzvfKMbwtqcE/8kGrxvO99ao9nfluFvpW/SSLn+j2RiF4hMlne5TPzKoQeFHfgZC5Iv+8b0Jl6mc2SJ9DOPPYY5TkqGSnpt5/nhOhRXLgs6ZwQerRUUQ6dlEM6kxSV0A4LfevSCB+rnX7cd8Dz+Z08uxSIn1NdR60OuFJzUh05pHpKmYGQ9L8FEdovxQZ8bqiyW9KjFUkzegZFid5Y31WfBFs4x4V5m/Ea5cF0pm6m2iUU1Zvdw+pMbKOUizzxXo0fVOAHlpRNelqvKO5ORXXucFpBc6pksvdzR0LnPaUeMJrt5OOjOn6eVfCaefT/bin6riXpPsgSUrY9oP28lOjFSjd7JL08V1mdt71TIa1+a1PSNCcrzTjQZySr9wRiNe7KZ788B8nlaqISOvZclycyudMiQyclfn6OPU5DdDx6y/fVp6cclSkrydTjTeSZhywzDzp9Rpo+S2HASqLsw4vL69vL/9fHauFkZ3P7V5s3Hu6sf3ZL/T8gH4ofi5+I67D2/Vp8BuP/SBwDp9+LP4u/i380ftf4U+Mvjb/Kph9cUpgficJP49//BdBdXOw=</latexit> RNA$RNA <latexit sha1_base64="vyS0pY8dnG7eij7tBr2nJIGP9Xs=">AABFNXictVzdc9u4EUeuX1f3K9c+9oWpk06u43NtN/2YuenMOZaT+OIkTiQ7uYuSDClRshJaVKgPJ9Hp7+r0qX9HHzp9aTt3T/cvdLELEKAEckE3NWMLhPDbXSyBxe4CTDRKBuPJ1tbfL33wne9+7/s/+PCHaz/68U9++rPLH/38ZJxOs0583EmTNHsSheM4GQzj48lgksRPRlkcnkVJ/Dh6tSe/fzyLs/EgHbYmb0fxs7OwPxz0Bp1wAlUvLjfnbSTyNOtHz+abNzbw3yJojsJOvAjW2leutpO4N8kG/dNJmGXp+dX2lfaVtQJsW6N2W7t7i+DF5fWtzS38CVYL26qwLtTPUfrRlX+LtuiKVHTEVJyJWAzFBMqJCMUYrqdiW2yJEdQ9E3Ooy6A0wO9jsRBrgJ1CqxhahFD7Cv724e6pqh3CvaQ5RnQHuCTwmwEyENcAk0K7DMqSW4DfT5GyrC2jPUeaUra38BkpWmdQOxGnUMvhdEtfnOzLRPTEn7APA+jTCGtk7zqKyhS1IiUPrF5NgMII6mS5C99nUO4gUus5QMwY+y51G+L3X2NLWSvvO6rtVHyDUl6DKxBN1fs0pxCKGdIP8GlO4TuSJwHOfaAQqz7K0jnq+gx7P4T2c6i/D9cCS1onEVxzrF1UIvfgciH3WORtuFzI2yzyEC4X8pBFHsHlQh4ppMRmqHM3vgmXC99kOT+Ey4V8yCIfweVCPmKRJ3C5kCcs8ku4XMgvWeQtuFzIWyzyLlwu5F0W2YLLhWyxyGO4XMhjFrkPlwu5r5DlMzWDK0U6A2ZW7kK5yENaigRqdln5bqJ1dGFveszpTgmWn9UN+HRjGx46jUuw+x7jrleC5UfebbCRbixvi+7gauLC3mGxBzAC3NgDFvu5eFmC/dxjpr0qwfJz7RDaubG89b0Hd27sPRZ7H0puLL9GPYAaN/aBx4oxKsEesdiH4nUJ1sfqZyVY3u43wa64sfw61YL2bqyPNZ2WYHl7egIejBvLr1aPodaNfcxin4g3JdgnLPYLsO5u7BceK+y7EqxeY9dwBemjPxLDjK2iFuazUpZGQC1k+Cf52pKgbxxBPYfp55g+Ys5YxO0ccdsTcZgjDr3lGud2dIz+Ls+lmSOanogoX5tkacK27+btZSnxQDRyRGMJUeWRymet+zJD70LXcMhJvnLJkk+f0tx+y1KsxkO15dWIBwUEje1THPkbGC3JCEpqqoraab7GEzLA+yrEOUZvupeaB4+b5FbBRr1hUZEDFbGotw7UWxY1daCmLGrmQM1YlJn5Nq7tMQKM/uWzmOMdjQDykcuvALyCXVh17sAcDWD8HIEX+AhrHsBnE2Nv7qqSTEbzcp2UWY5nBUucQWku1qHeRIUNjK8TnGExSEYtH6gYX97J3MZczTmywot8JQ/yjIk/nQHK08/pSG8xwPlUj85drFmgd0elevg7+bzXpXr4fdT4Ar14KtXDT5T0kwvI3lLY1gWwTZhNI6V9U65Lg/IvREOX13DVlRZXPtUzNWYkvTc16R+oJ3NwgeeyhyXSjynXozG2+jcu9K8ODaPnsaXnelSk90Rery4FtXsyVHGvKdeVIcVVdKjkMHd1n4xs01VPRpfr0TgCj2sPY+65Va47ekd5b0y5Ho0TQXnPBXryulyPRh/vSR+mXI+GzLaEKs435bqWXWqAYmdTrmvVh5gFljkgGvNUY7yiDP2kqaI2QP+gOltj+/yr65jM2TzPY4RqSsa3LacT5WtZtUTaX4jBqk1qyiH9i6nlgxVpzMUOG1+RDJPC+r5Kx6zxUvOHoMUAZj/tAXA58wQk1DkJab0ToLjNRl3FnmncDouTo6S3hGqr2gnrLRq+lDUq1r3AWi4uM701emyjvR7j2BuhT3iImuX0cFj6hMsocho6LGiIp1dHd+/UfC1qf4vFjZYQo3ykdXBHiHbSquNUl9ablo6vqV2eCVy052PGr8w295S1kTFPirZIylLF026n80h2nVxXN4TJcdN3AT5Raa9maDUGuCM1ZqNQnS0mb3yO94b2Me7JSR5EowPPMVBURoJ2zWQWXebTA7Sotr3leEt96QwdlcdodbU9rkb3LXTfga4f4+zBinEfSi2IGY7hruUR5azlukpR45n4JN8dTfEJVkf0ScFCahpkb+KChayKsk8LVM4BLUcDRen+NJbpaHx7hRIf9bvkMbFr0fJfw51bvb8d4hgvH83lmZguct1BrgHOGtrVpbtlDiTB3PnNDvqv1b2U/OpwlDaU4/rc4kx6GeKOf4wR7Ag94wRnGzc7iq3t/NTyN5rTkdB753I3O0ULGaD9C2B9SnFMBvhrnx3QO+hkERK0kT52Z5B7Ny5fZ8COMePHDQSdajDjLUZbNkX+mq49u8Y4FilioHVgsTS2tU4O0ReMkWumrLuZ29Wrj0SacxL2KCGKZqxcR/4f41/9q8fJ+sqIkBqWT2CsbJ3reaQYs0gdhbjKV9sg3daW8mouw3MltVn/jExXC5I1MOKS8sjVugucO3hPvOQoyVDu8UobWkersrmS8mhJj7K3PYziye731Qos5d7AVXId51wbR0kfRsEkjyJ0Wy6LvMy3mleRuh/t8f+FutF1UWuSYiBMBpc0xOX3Y4zWbCkTGNU0fl/hbHJrPVtqVc1niGPxzJrLX0HtFfir5db3fnSiglW4iWOAKJg7oxGqCVZa+PG6WeClR6amZe4NPzMmdSu75iLxNVk3E2PPalM5wlHzRmUtdPkiNF5aNF566rCFe41Gi7peW6IXbGzRUruVvvzqcGvVoDxlKfMemUYNPKS0Yyk/ql2WKh/ja9Q7ltYWSyuE2WrvBthz3gfpnuvLs/urfHUPxC30bTrogVH80sVZOkCfS9dWR2pEQXK+oeyrPfvbWCO5R2hBJWU6xylnDO06dfBa5JL+Wq1sKdp5YxH0uaVz1Ubb2DaWf7eCPMM5McZ5qRE3sEWs5LflCJYs0qblcwSY+Q/RpyK/ozpmtlubZxIU/AkTb9KsMrwoUhii/rnM28FK9Hpgxa8BxoRT5V1HQKv+E5YUCKMzCW7PcoxPSK5ytJNAHm2E9nPVTtEu3tCSaBOlnos/e9gYinrNWLfHlu6x7ttvoKXUunnqrhY8v8SbI8fvIjt6Ia5qZ8pHnS/dX4xWqFa54n2VHqZLfI0+ptjGjixMlFfEtMWn3lxIonpcCOPDpV4v6shfT/I6MtPulC9l3VpTLmYayMacYrzEnQOVCJd3d93pzX3M9CNaoRch1qZGNRwlmY1LVX7AtrQyKxUsRUh2PbcmJdZ6VLZeGB72qmHsOFnKGK1gIrjcDbW2+9AuRCt8NoYodASd7C2LE22an8Il/wbCFSVqjj45xCb4ubtiT+y/h1MRr1WZMpsB1kib0F2KwUPVz2KLah29tqjb9H04+PMYgK456Qe4otaVnSjzktvU/emfozXIRMxKb1rW74PNhe/JKqc6/RmgheN7MxD6nZy6fdEcfHpS5OLPh/Y3uF70hH63qV4fNHW+B0UOdXjo8wx+z9y0rs/L5lStr1UuvjxoHdA7LxondwDLYxbTzsdCZdYTef8cpHXoVVDXq8X/2g/Nx3Cqz8uX2xjfOXvp8dSpXawys9Ivrj9nDDef0VzO0Z9nmvfOeE1ufuT/BbWeVGr15v3Tl36pGQOa11xQPpSXjvD2KDLy+lKR+wMuGVLxrfjbJf6thNc5jTI56lDS+xXl1HQLnpp+89LVO/2dj0yGTplMRWomnmjiydg9cSBuwe9e7gHWPSVK71TSp8S636PtQm0PrYfOplMGoY11MWZBzG5aF+/NOdoyieWZXjrj24IauSd+iLXyvO99bC/P/LYKfSt/k4Tm+j2Rim4hMlne5TPzKoIeFHfgKBek3/cN8Ew9ZbPoBNqZxx4jnaOiSEm//TxHRBfjwmVJ54jQo6WKcuSkHOGZpLiEdlToWwdH+Ejt9Mt9B3k+P8yzS4H4LdaFanWQKzUn1ZFDqqeYGYhQ/1sQof1ebMDnhiq7JT1akXSMz6Ao0Rvru+qTYAvnuDBvM17DPJjO1M1UuxSjerN7WJ2JbZRyoRPv1fh+Bb5vSdnEp/UK4+5MVOcOpxU0p0omez93KHTek/Qgo9kwHx/V8fOsgtfMo/93S9F3LUlvgywRZtsD3M/LkF6idLOP0tO5yuq87Z0KafVbm0TTnKw040CfkazeE0jUuCuf/XQOksvVxCV07LlOJzK50yIDJyV+fo48TkOEHr3l++rTU47KlJVk6vEm8sxDlpkHnR4jTY+l0GclUfbhxeX17eX/62O1cLKzuf2HzRsPd9Y/u6n+H5APxS/Fr8R1WPv+KD6D8X8kjoHTX8U/xdfim8ZfGv9o/KvxH2r6wSWF+YUo/DS+/S8F8F33</latexit> Space$ATAC <latexit sha1_base64="tAOLrNN55bQUCxbY7zOCf5+FHIQ=">AABE7XictVxbcxPJFW42tw25scljXmZjSLEpLzEOuVRtpWrBMsaLAYFkwy4GSpeREIw1QiOJi9Y/I5WXVCp5ys/I78gPSFXylL+Qc+me7pF65vQ4hCnbPT39nXP6TPfpc0730J0ko2y2tfWPcx9845vf+vZ3Pvzu+e99/wc//NGFj358lKXzaS8+7KVJOn3U7WRxMhrHh7PRLIkfTaZx56SbxA+7L3fw+cNFPM1G6bg9ezuJn5x0huPRYNTrzKDqSTOdxePZqJNEFwcXn13Y2LqyRf+i9cJVXdhQ+l8z/ejjf6pj1Vep6qm5OlGxGqsZlBPVURlcj9VVtaUmUPdELaFuCqURPY/VqToP2Dm0iqFFB2pfwu8h3D3WtWO4R5oZoXvAJYGfKSAjdQkwKbSbQhm5RfR8TpSxtoz2kmiibG/hb1fTOoHamXoOtRLOtAzFYV9maqB+R30YQZ8mVIO962kqc9IKSh45vZoBhQnUYbkPz6dQ7hHS6DkiTEZ9R9126Pm/qCXW4n1Pt52rf5OUl+CKVEv3Ps0pdNSC6Ef0NufwjOVJgPMQKMS6j1h6Tbo+od6Pof0S6u/CdUolo5MuXEuqPa1E7sDlQ+6IyD24fMg9EXkAlw95ICKbcPmQTY1E7JR07se34PLhWyLn+3D5kPdF5AO4fMgHIvIILh/ySER+BZcP+ZWIvAmXD3lTRN6Gy4e8LSLbcPmQbRF5CJcPeSgid+HyIXc1snymTuFKic5ImJXXoVzkgZYigZrronw3yDr6sDcC5nSvBCvP6gb89WMbATqNS7C7AeNuUIKVR94e2Eg/VrZFt2g18WFvidh9GAF+7L6I/UK9KMF+ETDTXpZg5bl2AO38WNn63oE7P/aOiL0LJT9WXqPuQY0fey9gxZiUYJsi9r56VYINsfrTEqxs91tgV/xYeZ1qQ3s/NsSazkuwsj09Ag/Gj5VXq4dQ68c+FLGP1JsS7CMR+yVYdz/2y4AV9l0J1qyx52kFGZI/EsOMraLWyWclliZArSPwT/K1JSHfuAv1EmaYY4aEORERezliLxBxkCMOguXKcjuakb8rc2nliFYgopuvTViaie37eXssJQGIRo5orCCqPFJ816YvC/IuTI2EnOUrF5ZC+pTm9htLsR4P1ZbXIO4VEDy2n9PI36RoCSMo1FQVtef5Gs/IiO6rEK8pejO9NDxk3Cy3Ci7qjYjqelBdEfXWg3orouYe1FxELTyohYiyM9/FHQeMAKt/fBdLuuMRwD5y+RWBV3AdVp1bMEcjGD9N8AIfUM09+Nui2Fu6qiTDaB7XScxyPClY4imUlmoD6m1U2KD4OqEZFoNk3PKejvHxDnMbSz3n2Aqf5it5lGdMwumMSJ5hTge9xYjmUz06t6nmlLw7LtXD38rnvSnVw++Sxk/Ji+dSPfxMSz87g+xtjW2fAduC2TTR2rflujQ4/8I0TPk8rbpocfGtnugxg/Te1KS/r9/M/hneyw6VWD+2XI9G5vQvK/SvDg2r58zRcz0q6D2x12tKUe2ejHXca8t1ZUhpFR1rOexd3TeDbfr6zZhyPRpN8Lh2KOZeOuW6o3eS98aW69E4Upz3PCVP3pTr0RjSPevDluvRwGxLR8f5tlzXsqMGOHa25bpWfUxZYMwB8ZjnGusVTclPmmtqI/IPqrM1rs+/vo5hzuZpHiNUU7K+bTmdbr6WVUtk/IUYrNqsphzoX8wdH6xIY6m2xfiKZZgV1vd1OnaNR80fgBYjmP28ByDlzBOQ0OQk0HonQPGqGHUVe2Zw2yIOR8lgBXWsa2eit2j5ctaoWPeMaqW4zPbW6vGY7HVGY29CPuEBaVbSw0HpGy6jKGnooKAhmV4d3b3T87Wo/S0RN1lBTPKR1qMdId5Jq45TfVpvOTq+pHd5ZnDxno8dv5htHmhrgzFPSrYIZani6bYzeSS3DtfVTWVz3PwsojeK9mpBVmNEO1KZGIWabDF740u6t7QPaU8OeTCNHrzHSFOZKN41wyw65tMjsqiuvZV4o75Mho7LGVldY4+r0UMHPfSg68c4O7Bi3IVSG2KGQ7hrB0Q553NdpaTxqfo03x1N6Q1WR/RJwUIaGmxv4oKFrIqynxeovAY0jgaO0sNprNIx+OM1SnLU75PHxq5Fy3+Jdm7N/naHxnj5aC7PxPSJ6zZxjWjW8K4u361yYAmW3ifb5L9W9xL51eGINlTi+tThzHoZ045/TBHshDzjhGabNDuKrd381OoTw6mpzN457manZCEjsn8RrE8pjcmIftyzA2YHnS1CQjYyxO6Mcu/G5+uMxDFm/biR4lMNdrzFZMvmxN/QdWdXRmORIwZeB05XxrbRyQH5gjFxnWrrbud29eqDSHtOwh0lTNGOlcvE/xP6bX7MONlYGxGoYXwDmbZ1vveRUsyCOurQKl9tg0xbV8qLuQxPtdR2/bMyXSxI1qCIC+XB1boPnHt0z7xwlExJ7mytDa+jVdlcpDxZ0SP2dkBRPNv9oV6BUe5NWiU3aM4d0ygZwiiY5VGEaStlkVf5VvMqUg+jnf1fqFtdF7WGFCNlM7isISm/H1O05kqZwKjm8fuSZpNf69OVVtV8xjQWT5y5/DXUfgy/jdzmPoxOt2AVbtAYYAr2zmqEa6K1FmG8bhR4mZFpaNl7y8+OSdPKrTlLfM3WzcbYi9pUmjRq3uishSmfhcYLh8aLQB22aa/RatHUG0v0TIwt2nq3MpRfHW7tGpTnImXZIzOoUYCUbiwVRrUvUpVjfIN6J9LaEml1YLa6uwHunA9B+uf66uz+Ol/dI3WTfJseeWAcv/Rplo7I5zK11ZEaU0DO17R9dWf/MdUg9y5ZUKTM5zhxxvCuU4+u01zSn+uVLSU7by2CObf0WrcxNvaYyr9aQ57QnMhoXhrENWoRa/ldOaIVi3TF8Tkiyvx3yKdiv6M6ZnZb23cSFfwJG2/yrLK8OFIYk/6lzNv+WvS678SvEcWEc+1dd4FW/TeMFBhjMgl+zzKjN4SrHO8ksEfbJfu5bqd4F2/sSHSFpF6q3wfYGI567Vh3x5bpsenbL6Alat2+dV8LmV8SzFHid5YdvQ6taifaR12u3J+NVkevcsX7Kj3MV/hafcypjRtZ2CiviDlWnwVzYYnqcWFMCJd6vagjfz3J68jMu1OhlE1rQ7mYaWAb85ziJekcKCJ83t1lrzf3idCP7hq9LmFdalwjUcJsXKrzA66lxaxUtBIhufXSmpQ461HZemF5uKuGteNsKWOygomScjfc2u3DcSFakbMxTKGn+GRvWZzo0vwMLvwdKV+UaDiG5BBb4OdeVztq9z2cinily5zZjKgGbUJ/JQbv6H4WW1Tr6JVD3aUfwiGcxwh0LUk/ohW1ruxMWZbcpR5O/zVZg6mKRelty/p9cLnIPVnnVKc/I7Jwcm9GynyTU7cvhkNIT4pcwvnw/obUi4Ey3zbV64OhLvegyKEOD3OeIeyd29b1ebmcqvW1ziWUB68DZufF4HAHsDxmse1CLNTUeSPvnwNah0EFdbNa/K/9MHwsp/q8Qrll9M3Zi4C3zu1inZlFv7j+nLHcQkZzOcdwnmneO+s1+fmx/xfVelOp05v3Tx/9UjsGDK+l4nyoLB3j3VFk5Q2lgvsDPhlS9R/193PyVwmvchplctShZPYryqmZFjI18+Wlr3fmWYhMlk6ZTEVqNp5o0cnYHbWvbsLPTu4B1j0lyt9U8l/E+r+j7UPtgKyHyaZzBuGY6mLKgtjdtD7d23O0ZRLjmV4+49uGGtwTP6BaPO97l9rjmd92oW/lX5LwXL+jUtUvRCaru3x2XnWhB8UdOM4Fme99IzpTz9ksPoF2ErDHyOeoOFIyXz8vCdGnuHBV0iUhzGipotz1Uu7SmaS4hHa30LcejfCJ3unHfQc8n9/Js0uR+iXVdfTqgCu1JFXTI9Vjygx0Sf9bEKH9Wm3C301d9kvaXJM0o3dQlOiN86z6JNipd1zYrxkvUR7MZOoWul1KUb3dPazOxDZKufCJ92r8sAI/dKRs0dt6SXH3VFXnDucVNOdaJnc/d6xM3pP1gNFsJx8f1fHzooLXIqD/t0vRtx1J90CWLmXbI9rPmxK9ROtml6Tnc5XVedtbFdKarzaZpj1ZaceBOSNZvSeQ6HFXPvv5HKSUq4lL6LhznU9kSqdFRl5K8vycBJyG6AT0Vu5rSE8lKnNRknnAl8iLAFkWAXQGgjQDkcJQlETbh2cXNq6u/l8f64Wj7StXf3Pl2v3tjc9v6P8H5EP1U/UzdRnWvt+qz2H8N9Uh+SF/VH9Rf22kjT80/tT4Mzf94JzG/EQV/jX+9l8TxkRZ</latexit> Potential f Key issues: learning the potential f(α) Integrate several omics time t + τ time t Charlotte Bunne
  44. Hugo Lavenant Sampling: diffusion transports are not optimal Costly to

    find … Straight flow easier to discretize! Conclusion
  45. Hugo Lavenant Sampling: diffusion transports are not optimal Costly to

    find … Straight flow easier to discretize! Optimizing: going deeper with ResNet Still a Wasserstein flow! Global convergence open … Raphaël Barboni Conclusion
  46. Hugo Lavenant Sampling: diffusion transports are not optimal Costly to

    find … Straight flow easier to discretize! Optimizing: going deeper with ResNet Still a Wasserstein flow! Global convergence open … Raphaël Barboni Transformers: understanding in-context learning Transformers are universal! Nothing else is known … Takashi Furuya Conclusion