Optimal and Diffusion Transports in Machine Learning
Slides for a general introduction to the use of Optimal Transport methods in learning, with an emphasis on diffusion models, flow matching, training 2 layers neural networks and deep transformers.
e⟨Qxi ,Kxℓ ⟩ Vxj Transformers and attention mechanism … + <latexit sha1_base64="aTL0Qvb1dLhAur6wfZM9PGylzLY=">AAA9iHictVttcxu3EYbTt1h9c9qPnelcq7iTdFyNpHqadjKaifViSbFiySYlOwltDV9O1NknHs0jJdkM/0e/tn+kv6P/oP3Uv9DdBXDAkbhbQHV1IwkH4nl2sQcsdoFjZ5gm+Xh19Z+3Pvje93/wwx99eHvpxz/56c9+fuejX5zk2WTUjY+7WZqNnnfaeZwmg/h4nIzT+PlwFLcvOmn8rPN6Cz9/dhmP8iQbNMdvh/GLi3Z/kJwl3fYYql62iGE6inuz69O10zvLqyur9BMtFtZUYVmon6Pso1+vi5boiUx0xURciFgMxBjKqWiLHK5vxZpYFUOoeyGmUDeCUkKfx2ImlgA7gVYxtGhD7Wv424e7b1XtAO6RMyd0F6Sk8DsCZCTuAiaDdiMoo7SIPp8QM9ZWcU+JE3V7C/87iusCasfiHGo5nG7pi8O+jMWZ+DP1IYE+DakGe9dVLBOyCmoeWb0aA8MQ6rDcg89HUO4SUts5IkxOfUfbtunzf1FLrMX7rmo7Ef8mLe/CFYmG6n1WMLTFJfFH9DQn8JnUJwXJfWCIVR+xdEW2vqDeD6D9FOofwzWjkrZJB64p1c5qkVtwuZBbLHIXLhdyl0UewOVCHrDII7hcyCOFROyIbO7GN+By4Rus5CdwuZBPWORTuFzIpyzyBC4X8oRFfgOXC/kNi3wIlwv5kEU+gsuFfMQim3C5kE0WeQyXC3nMInfgciF3FLJ6po7gyognYWblAyiXZaCnSKHmAavfJnlHF3bTY053K7D8rN6G/27stodN4wrsjse4O6vA8iNvF3ykG8v7oj1aTVzYPRa7DyPAjd1nsV+KVxXYLz1m2usKLD/XDqCdG8t736/gzo39isU+hpIby69Rh1Djxh56rBjDCuwRi30i3lRgfbz+qALL+/0G+BU3ll+nmtDejfXxppMKLO9PTyCCcWP51eoZ1Lqxz1jsc3FdgX3OYr8G7+7Gfu2xwr6rwOo1dolWkD7FIzHM2Dq2djErsTQEtjYjPy3WlpRi4w7Uc5h+gekT5oJF7BaIXU/EQYE48NYrL/xoTvEuL6VRIBqeiE6xNmFpzLbvFe2xlHogtgvE9hyiLiLFZ637cknRha7hkONi5cKST5+ywn9jKVbjod7zasRhCSHH9jmN/HuULWEGhZaqYzsv1niJjOi+DnFF2ZvupZbB48aFV7BR1yyq40B1WNRbB+oti5o4UBMWdelAXbIoM/NtXMtjBBj747OY0p0cATJGrr4iiAoewKqzB3M0gvFzBFHgU6o5hP8Nyr25q04zzOZxncRdjhclTzyC0lQsQ73JCrcpv05phsWgmWx5qHJ8vMO9jamac9ILz4qVPCp2TPx5EtKnX/BgtBjRfArjeUQ1M4ruZCkMv1fMe10Kw++QxWcUxctSGH6stB/fQPemwjZvgG3AbBoq65tyKIfcf5EcurxEqy56XHyqF2rMIN91IP++ejL7N3guW1SS9jHlMI7c6l9e6l8Ih7Fzbtk5jAWjJxn16lIU3JOByntNOVSHjFbRgdLD3IU+GWzTU09Gl8M4jiDi2qKce2qVQ0fvsOiNKYdxnAi57zmjSF6Xwzj6dC/tYcphHLjb0lZ5vimHena0gMydTTnUqw9oFxj3gOSYlzUmKhpRnDRRbAnFB/W7NXbMv7iO4Z7NyyJHqGcysW01T6dYy+o10vFCDF5tHKgHxhcTKwYrc0zFOptfSR3GpfV9kces8Wj5A7BiBLNfngFwe+YpaKj3JNB7p8C4xmZd5Z5p3DqLw1FyNodqqdoxGy0auXLXqFx3SrVcXmZ6a+zYIn+d09gbUkx4QJbl7HBQ+YSrGDkLHZQsxPOF2O6dmq9l66+yuOEcYliMtC6dCMmTtPo81WX1hmXju+qUZwyXPPMx4xd3m8+Ut8GcJyNfhLrUybTb6X0kuw7X1XvC7HHLzyJ6ouivLslrJHQilbNZqN4tltH4lO4N9zGdyaEMydGF5xgplqGQp2a4i4776RF5VNvfcrLRXnqHTpZz8rraH9ej+xa670CH5zhbsGI8hlITcoZjuGt6ZDlLha0ysvhI/KE4Hc3oCdZn9GnJQ2oO6W/ikoesy7LPSyxXgMbRILN0f455Ho1vLTDxWb9LH5O7lj3/XTq51efbbRrj1aO5eiemR1LXSWpEs0ae6sq7eQlSg6nzk3WKX+t7ifJCJKIP5aS+tCRLuwzoxD+mDHZIkXFKs42bHeXW9v7U/Cda0pHQZ+d4mp2Rh4zI/0WwPmU0JiP6td8d0Cfo0iOk5CN9/E5SRDeuWCdhx5iJ4xIh32ow4y0mXzYh+ZrXnl05jUWZMch1YDY3trVNDigWjEnqSHl3M7frVx9Emvck7FEiGc1Y+YTkf0p/9a8eJ8sLIwItjE8gV77O9TwyylnQRm1a5et9kG5ra/lxocNLpbVZ/4xOH5c026aMC/XB1boHkrt0L2XhKBmR3vlCG7mO1u3mIvNwzo7Y2zPK4qXf76sVGPW+R6vkMs25Fo2SPoyCcZFF6LbcLvK83HpZZXY/7vz/wm5sXbYaMkbC7OBKC3H7+zFla7aWKYxqOX5f02xyW30016pezoDG4oU1l7+D2t/AX623vvfj6ZS8wiaNAclg7oxFZE200MJP1mZJlh6ZmsvcG3lmTOpWds1N8mvp3UyOfRnMckSj5lrtWujyTTheWRyvPG3YpLNGY0Vdrz3RKZtbNNVppa+8EGnNAOYJy8xHZBqVeGhp51J+rD2Wlc/xNeody7XKcrVhttqnAfac90G65/r87P6uWN0j8ZBimy5FYDJ/6dEsTSjm0rX1mZpkQMn3lX+1Z3+LalB6hzwoMsv3OHHGyFOnLl2zQtPfqZUtIz9vPIJ+b+lKtdE+tkXlPy4gL2hO5DQvNeI+tYiV/rYe0ZxHWrFijoh2/tsUU8m4oz5ntlubZxKV4gmTb8pZZWTJTGFA9ud23vYXstd9K3+NKCecqOi6A1zhTxgZJEbvJLgjy5yeEK5y8iRBRrQd8p+Lfkqe4g0sjVZI66nY8PAxMus1Y90eW7rHum+/h5ZodfPUXS14eam3RE7eTU702rSqXagYdTp3fzOutlrlyvd1dpjMyTX2mFAbO7MwWV4Z0xKfe0uRGoVJkRgfKWG9CNE/TPMQneXplC+zbq2ZyzsN0secU77EvQeKCFd094kzmvuU6Udnga9DWJtN1nBMuBuXqf0B29PirtTthXVI1t6uXY1SayWqWik0u71aGP8tPWRM3i8V3J6NbG3r3iplKfwujGToCvlGb1V+aHN+Dhf+jYQrO9QSffYOGxDfPhBbYuc9vA3xRpXljmZENegLenO5d1v1s9yi3kZvLHab30eCv4wEbM1pn9BKGqq7ZOY1t9n9+a/IC4xEzGpvWob3wZbC92RRUkh/EvJsfG8Sob+LE9oXLcGnJ2Up/nLkuQbXizOhv9MU1gfNzvegLCFEhn6Pwe+Zm9bhsmxJ9fZalOIrQ64C+sRF4/DkrzpXMe18PNTIeiLvXwJ6h7Madr1a/K/90HKMpHBZvtJy+q7ZK4+nLtvFakcW4+HwOWOk+Yzmaon+MrOidyZacsuTcV8U9KQyqzfvnx/jUTMGtKypkPugvHYSb48io68vC54LuHTIxH/EP27x30Z4U3BU6RHCpM8pqtl0C55Nf+PS1Tv9mY9OhqdKpzKbySMa9EbsltgXD+F3q4gAQ98Old+llP8R6/7+bA9qz8h76F10uXPQorqYdj/MKVqP7tUe4+md5bX5byEvFk7WV9b+tHL/yf3lLzbVN5Q/FL8Sv4W8ZE18Jr4Qe9DfYzpX+Kv4m/j7xtLG6sZnG3+RTT+4pTC/FKWfjc3/Ajzs2dE=</latexit> x1 <latexit sha1_base64="7Z/IumRXp79HdyogVfnC2DA+LeM=">AAA9iHictVttcxu3EYbTt1h9c9qPnelcq7iTdFyNpHqadjKaifViSbFiySYlOwltDV9O1NknHs0jJdkM/0e/tn+kv6P/oP3Uv9DdBXDAkbhbQHV1IwkH4nl2sQcsdoFjZ5gm+Xh19Z+3Pvje93/wwx99eHvpxz/56c9+fuejX5zk2WTUjY+7WZqNnnfaeZwmg/h4nIzT+PlwFLcvOmn8rPN6Cz9/dhmP8iQbNMdvh/GLi3Z/kJwl3fYYql62iGE6inuz69P10zvLqyur9BMtFtZUYVmon6Pso1+vi5boiUx0xURciFgMxBjKqWiLHK5vxZpYFUOoeyGmUDeCUkKfx2ImlgA7gVYxtGhD7Wv424e7b1XtAO6RMyd0F6Sk8DsCZCTuAiaDdiMoo7SIPp8QM9ZWcU+JE3V7C/87iusCasfiHGo5nG7pi8O+jMWZ+DP1IYE+DakGe9dVLBOyCmoeWb0aA8MQ6rDcg89HUO4SUts5IkxOfUfbtunzf1FLrMX7rmo7Ef8mLe/CFYmG6n1WMLTFJfFH9DQn8JnUJwXJfWCIVR+xdEW2vqDeD6D9FOofwzWjkrZJB64p1c5qkVtwuZBbLHIXLhdyl0UewOVCHrDII7hcyCOFROyIbO7GN+By4Rus5CdwuZBPWORTuFzIpyzyBC4X8oRFfgOXC/kNi3wIlwv5kEU+gsuFfMQim3C5kE0WeQyXC3nMInfgciF3FLJ6po7gyognYWblAyiXZaCnSKHmAavfJnlHF3bTY053K7D8rN6G/27stodN4wrsjse4O6vA8iNvF3ykG8v7oj1aTVzYPRa7DyPAjd1nsV+KVxXYLz1m2usKLD/XDqCdG8t736/gzo39isU+hpIby69Rh1Djxh56rBjDCuwRi30i3lRgfbz+qALL+/0G+BU3ll+nmtDejfXxppMKLO9PTyCCcWP51eoZ1Lqxz1jsc3FdgX3OYr8G7+7Gfu2xwr6rwOo1dolWkD7FIzHM2Dq2djErsTQEtjYjPy3WlpRi4w7Uc5h+gekT5oJF7BaIXU/EQYE48NYrL/xoTvEuL6VRIBqeiE6xNmFpzLbvFe2xlHogtgvE9hyiLiLFZ637cknRha7hkONi5cKST5+ywn9jKVbjod7zasRhCSHH9jmN/HuULWEGhZaqYzsv1niJjOi+DnFF2ZvupZbB48aFV7BR1yyq40B1WNRbB+oti5o4UBMWdelAXbIoM/NtXMtjBBj747OY0p0cATJGrr4iiAoewKqzB3M0gvFzBFHgU6o5hP8Nyr25q04zzOZxncRdjhclTzyC0lQsQ73JCrcpv05phsWgmWx5qHJ8vMO9jamac9ILz4qVPCp2TPx5EtKnX/BgtBjRfArjeUQ1M4ruZCkMv1fMe10Kw++QxWcUxctSGH6stB/fQPemwjZvgG3AbBoq65tyKIfcf5EcurxEqy56XHyqF2rMIN91IP++ejL7N3guW1SS9jHlMI7c6l9e6l8Ih7Fzbtk5jAWjJxn16lIU3JOByntNOVSHjFbRgdLD3IU+GWzTU09Gl8M4jiDi2qKce2qVQ0fvsOiNKYdxnAi57zmjSF6Xwzj6dC/tYcphHLjb0lZ5vimHena0gMydTTnUqw9oFxj3gOSYlzUmKhpRnDRRbAnFB/W7NXbMv7iO4Z7NyyJHqGcysW01T6dYy+o10vFCDF5tHKgHxhcTKwYrc0zFOptfSR3GpfV9kces8Wj5A7BiBLNfngFwe+YpaKj3JNB7p8C4xmZd5Z5p3DqLw1FyNodqqdoxGy0auXLXqFx3SrVcXmZ6a+zYIn+d09gbUkx4QJbl7HBQ+YSrGDkLHZQsxPOF2O6dmq9l66+yuOEcYliMtC6dCMmTtPo81WX1hmXju+qUZwyXPPMx4xd3m8+Ut8GcJyNfhLrUybTb6X0kuw7X1XvC7HHLzyJ6ouivLslrJHQilbNZqN4tltH4lO4N9zGdyaEMydGF5xgplqGQp2a4i4776RF5VNvfcrLRXnqHTpZz8rraH9ej+xa670CH5zhbsGI8hlITcoZjuGt6ZDlLha0ysvhI/KE4Hc3oCdZn9GnJQ2oO6W/ikoesy7LPSyxXgMbRILN0f455Ho1vLTDxWb9LH5O7lj3/XTq51efbbRrj1aO5eiemR1LXSWpEs0ae6sq7eQlSg6nzk3WKX+t7ifJCJKIP5aS+tCRLuwzoxD+mDHZIkXFKs42bHeXW9v7U/Cda0pHQZ+d4mp2Rh4zI/0WwPmU0JiP6td8d0Cfo0iOk5CN9/E5SRDeuWCdhx5iJ4xIh32ow4y0mXzYh+ZrXnl05jUWZMch1YDY3trVNDigWjEnqSHl3M7frVx9Emvck7FEiGc1Y+YTkf0p/9a8eJ8sLIwItjE8gV77O9TwyylnQRm1a5et9kG5ra/lxocNLpbVZ/4xOH5c026aMC/XB1boHkrt0L2XhKBmR3vlCG7mO1u3mIvNwzo7Y2zPK4qXf76sVGPW+R6vkMs25Fo2SPoyCcZFF6LbcLvK83HpZZXY/7vz/wm5sXbYaMkbC7OBKC3H7+zFla7aWKYxqOX5f02xyW30016pezoDG4oU1l7+D2t/AX623vvfj6ZS8wiaNAclg7oxFZE200MJP1mZJlh6ZmsvcG3lmTOpWds1N8mvp3UyOfRnMckSj5lrtWujyTTheWRyvPG3YpLNGY0Vdrz3RKZtbNNVppa+8EGnNAOYJy8xHZBqVeGhp51J+rD2Wlc/xNeody7XKcrVhttqnAfac90G65/r87P6uWN0j8ZBimy5FYDJ/6dEsTSjm0rX1mZpkQMn3lX+1Z3+LalB6hzwoMsv3OHHGyFOnLl2zQtPfqZUtIz9vPIJ+b+lKtdE+tkXlPy4gL2hO5DQvNeI+tYiV/rYe0ZxHWrFijoh2/tsUU8m4oz5ntlubZxKV4gmTb8pZZWTJTGFA9ud23vYXstd9K3+NKCecqOi6A1zhTxgZJEbvJLgjy5yeEK5y8iRBRrQd8p+Lfkqe4g0sjVZI66nY8PAxMus1Y90eW7rHum+/h5ZodfPUXS14eam3RE7eTU702rSqXagYdTp3fzOutlrlyvd1dpjMyTX2mFAbO7MwWV4Z0xKfe0uRGoVJkRgfKWG9CNE/TPMQneXplC+zbq2ZyzsN0secU77EvQeKCFd094kzmvuU6Udnga9DWJtN1nBMuBuXqf0B29PirtTthXVI1t6uXY1SayWqWik0u71aGP8tPWRM3i8V3J6NbG3r3iplKfwujGToCvlGb1V+aHN+Dhf+jYQrO9QSffYOGxDfPhBbYuc9vA3xRpXljmZENegLenO5d1v1s9yi3kZvLHab30eCv4wEbM1pn9BKGqq7ZOY1t9n9+a/IC4xEzGpvWob3wZbC92RRUkh/EvJsfG8Sob+LE9oXLcGnJ2Up/nLkuQbXizOhv9MU1gfNzvegLCFEhn6Pwe+Zm9bhsmxJ9fZalOIrQ64C+sRF4/DkrzpXMe18PNTIeiLvXwJ6h7Madr1a/K/90HKMpHBZvtJy+q7ZK4+nLtvFakcW4+HwOWOk+Yzmaon+MrOidyZacsuTcV8U9KQyqzfvnx/jUTMGtKypkPugvHYSb48io68vC54LuHTIxH/EP27x30Z4U3BU6RHCpM8pqtl0C55Nf+PS1Tv9mY9OhqdKpzKbySMa9EbsltgXD+F3q4gAQ98Old+llP8R6/7+bA9qz8h76F10uXPQorqYdj/MKVqP7tUe4+md5bX5byEvFk7WV9b+tHL/yf3lLzbVN5Q/FL8Sv4W8ZE18Jr4Qe9DfYzpX+Kv4m/j7xtLG6sZnG3+RTT+4pTC/FKWfjc3/AnoD2dI=</latexit> x2 <latexit sha1_base64="Fgw+vWgPriclgLxpVoHDEicBDLw=">AAA9h3ictVv9chu3EYfTr9j9cto/O9O5VnYnybiqpHrSzGQ0E1uSJcWKJZuU7CS0Nfw40WcfeTSPlGQzfI7+2z5Jn6Nv0P7VV+juAjjgSNwtoLrCSMKB+O0uFsB+AMfOKE3yydraP6998IMf/ujHP/nw+o2f/uznv/jlzY9+dZJn03E3Pu5maTZ+1mnncZoM4+NJMknjZ6Nx3B500vhp5/UWfv70PB7nSTZsTt6O4ueDdn+YnCXd9gSant9qzS5Pk9b8dJbMb53eXFlbXaOfaLmyriorQv0cZR/9dkO0RE9koiumYiBiMRQTqKeiLXIo34l1sSZG0PZczKBtDLWEPo/FXNwA7BR6xdCjDa2v4W8fnr5TrUN4Rpo5obvAJYXfMSAjcRswGfQbQx25RfT5lChjaxXtGdFE2d7C/46iNYDWiXgJrRxO9/TF4Vgm4kx8TmNIYEwjasHRdRWVKWkFJY+sUU2AwgjasN6Dz8dQ7xJS6zkiTE5jR9226fN/UU9sxeeu6jsV/yYpb0OJREONPisotMU50Y9oNqfwmZQnBc59oBCrMWLtgnQ9oNEPof8M2h9BmVNN66QDZUat81rkFhQXcotF7kJxIXdZ5AEUF/KARR5BcSGPFBKxY9K5G9+A4sI3WM6PobiQj1nkEygu5BMWeQLFhTxhkd9CcSG/ZZEPoLiQD1jkQygu5EMW2YTiQjZZ5DEUF/KYRe5AcSF3FLJ6p46hZEQnYXblPaiXeaClSKHlHivffbKOLux9jz3drcDyu3ob/rux2x46jSuwOx7r7qwCy6+8XbCRbixvi/bIm7iweyx2H1aAG7vPYr8SryqwX3nstNcVWH6vHUA/N5a3vl/Dkxv7NYt9BDU3lvdRh9Dixh56eIxRBfaIxT4WbyqwPlZ/XIHl7X4D7Ioby/upJvR3Y32s6bQCy9vTE4hg3FjeWz2FVjf2KYt9Ji4rsM9Y7Ddg3d3Ybzw87LsKrPaxN8iD9CkeiWHH1lFrF7sSayOg1mb4p4VvSSk27kA7h+kXmD5hBixit0DseiIOCsSBt1x5YUdzind5Lo0C0fBEdArfhLUJ279X9Mda6oHYLhDbC4i6iBTnWo/lnKIL3cIhJ4XnwprPmLLCfmMtVuuh3vJqxGEJIdf2S1r5dyhbwgwKNVVH7WXh4yUyouc6xAVlb3qUmgePmxRWwUZdsqiOA9VhUW8dqLcsaupATVnUuQN1zqLMzrdxLY8VYPSPczGjJ7kCZIxcXSKICu6B19mDPRrB+jmCKPAJtRzC/wbl3lypkwyzefSTeMrxvGSJx1CbiRVoN1nhNuXXKe2wGCSTPQ9Vjo9PeLYxU3tOWuF54cmj4sTEn05C8vQLOhgtRrSfwug8pJY5RXeyFobfK/a9roXhd0jjc4riZS0MP1HST64ge1Nhm1fANmA3jZT2TT2Uhjx/kTR0/QZ5XbS4OKsDtWaQ3mUg/X01M/tXmJctqkn9mHoYjdwaX14aXwgNo+fc0nMYFYyeZNSra1HwSIYq7zX1UBky8qJDJYd5Cp0Z7NNTM6PrYTSOIOLaopx7ZtVDV++oGI2ph9E4EfLcc06RvK6H0ejTs9SHqYfRwNOWtsrzTT3UsqMGZO5s6qFWfUinwHgGJNe8bDFR0ZjipKmillB8UH9aY8f8y34Mz2xeFDlCPSUT21bT6RS+rF4iHS/EYNUmgXJgfDG1YrAyjZnYYPMrKcOk5N+X6Rgfj5o/AC1GsPvlHQB3Zp6ChPpMAq13ChTX2ayrPDKN22BxuErOFlAt1Tpho0XDV54aldtOqZXLy8xojR5bZK9zWnsjigkPSLOcHg4qZ7iKIqehg5KGeHohunun9mtZ+2ssbrSAGBUrrUs3QvImrT5PdWm9Yen4trrlmUCRdz5m/eJp85myNpjzZGSLUJY6nnY/fY5kt6FfvSPMGbf8LKIZRXt1TlYjoRupnM1C9WmxjMZn9GxoH9OdHPKQNLowj5GiMhLy1gxP0fE8PSKLattbjjfqS5/QyXpOVlfb43p030L3HejwHGcLPMYjqDUhZziGp6ZHlnOj0FVGGh+LPxa3oxnNYH1Gn5YspKYh7U1cspB1WfbLEpULQONqkFm6P41FOhrfWqLEZ/0ueUzuWrb8t+nmVt9vt2mNV6/m6pOYHnHdIK4R7Rp5qyufFjlICWbOTzYofq0fJfIL4Yg2lOP6wuIs9TKkG/+YMtgRRcYp7TZud5R72+dTi59oTkdC353jbXZGFjIi+xeBf8poTUb0a787oG/QpUVIyUb62J2kiG5csU7CrjETxyVCvtVg1ltMtmxK/DVde3fltBZlxiD9wHxhbWudHFAsGBPXsbLuZm/Xex9Emvck7FUiKZq18jHx/4T+6l+9TlaWVgRqGGcgV7bONR8Z5SyoozZ5+XobpPvaUt4qZHihpDb+z8h0qyTZNmVcKA966x5w7tKz5IWrZExy50t9pB+tO81FyqMFPeJozyiLl3a/rzwwyn2HvOQK7bkWrZI+rIJJkUXovtwp8iLfel5l6n608/8LdaPrstaQYiTMCa7UEHe+H1O2ZkuZwqqW6/c17Sa31scLver5DGktDqy9/D20/g7+arn1sx+dTskq3Kc1ICmYJ6MR2RIt9fDjdb/ES69MTcs8G35mTepedstV8mtp3UyOfR5M5YhWzaU6tdD1q9B4ZdF45anDJt01Gi3qdm2JTtncoqluK335hXBrBlCespT5iEyjEg8p7VzKj2qPpcrn+Br1jqW1xtJqw261bwPsPe+DdO/1xd39feHdI/GAYpsuRWAyf+nRLk0o5tKt9ZmapICc7yr7au/+FrUg9w5ZUKQs3+PEHSNvnbpU5oWkf1CeLSM7byyCfm/pQvXRNrZF9T8vIQe0J3Lalxpxl3rESn5bjmjBIq1aMUdEJ/9tiqlk3FGfM9u9zZxEpXjC5JtyVxleMlMYkv65k7f9pex138pfI8oJpyq67gCt8BlGChKjTxLckWVOM4ReTt4kyIi2Q/Zz2U7JW7yhJdEqST0Tmx42Rma9Zq3ba0uPWI/tU+iJWjez7urB80u9OXL8rnKj1yavNlAx6mzh+Wq02srLlZ/r9DBd4Gv0MaU+dmZhsrwypiW+8OYiJQrjIjE+XMJGESJ/mOQhMsvbKV/KuremXD5pkDbmJeVL3HugiHBFdx87o7lPmHF0luh1CGtTky0cJTyNy9T5gG1p8VTq+pIfkq3Xa71RanmiKk+hqdvewthvaSFjsn6p4M5sZG9b9lYpS+FPYSSFrpBv9FblhzbNL6Dg30i4skPN0efssAHx7T2xJXbew9sQb1RdnmhG1IK2oLeQe7fVOMs96nX0xqJu0/fh4M8jAV1z0ifkSUNll5R5yW3q/vQvyAqMRcxKb3qGj8Hmwo9kmVPIeBKybPxoEqG/ixM6Fs3BZyRlLv585L0GN4ozob/TFDYGTZ0fQZlDCA/9HoPfnJve4bxsTvX6Wubiy0N6AX3jonF481edq5h+PhZqbM3I++eA1uGshrr2Fv/rODQfwymcly+3nL5r9spj1mW/WJ3IYjwcvmcMN5/VXM3Rn2dWjM5ES25+Mu6LgmYqs0bz/uljPGrWgOY1E/IclJdO4u1VZOT1pYL3Ai4ZMvEf8Y9r/LcR3hQ0quQIoaTvKaqp6R48Nf2NS9fo9Gc+Mhk6VTKVqZk8okFvxG6JffEAfreKCDD07VD5XUr5H7Hu78/2oPWMrIc+RZcnBy1qi+n0w9yi9ehZnTGe3lxZX/wW8nLlZGN1/bPVu483Vr68r76h/KH4jfg95CXr4i/iS7EH4z0mTf1V/E38ffP65p82P9v8XHb94JrC/FqUfjbv/Rd5M9kH</latexit> {xi }i Points cloud Positional encoding Token encoding Tokenize Le groupe thématique SMAI- S I G M A ( S i g n a l - I m a g e - Géométrie-Modélisation- Approximation) est issu de l ’A s s o c i a t i o n F r a n ç a i s e d ’A p p r o x i m a t i o n ( A FA ) , association créée en 1989 et intégrée en tant que groupe au sein de la SMAI en 2000. Le groupe thématique SMAI- S I G M A ( S i g n a l - I m a g e - G é o m é t r i e - M o d é l i s a t i o n - Approximation) est issu de l ’ A s s o c i a t i o n F r a n ç a i s e d ’ A p p ro x i m a t i o n ( A FA ) , association créée en 1989 et intégrée en tant que groupe au sein de la SMAI en 2000. xi xj (Unmasked) Attention layer … next token probabilities Attention Norm MLP Classif N × …
e⟨Qxi ,Kxℓ ⟩ Vxj Transformers and attention mechanism … + <latexit sha1_base64="aTL0Qvb1dLhAur6wfZM9PGylzLY=">AAA9iHictVttcxu3EYbTt1h9c9qPnelcq7iTdFyNpHqadjKaifViSbFiySYlOwltDV9O1NknHs0jJdkM/0e/tn+kv6P/oP3Uv9DdBXDAkbhbQHV1IwkH4nl2sQcsdoFjZ5gm+Xh19Z+3Pvje93/wwx99eHvpxz/56c9+fuejX5zk2WTUjY+7WZqNnnfaeZwmg/h4nIzT+PlwFLcvOmn8rPN6Cz9/dhmP8iQbNMdvh/GLi3Z/kJwl3fYYql62iGE6inuz69O10zvLqyur9BMtFtZUYVmon6Pso1+vi5boiUx0xURciFgMxBjKqWiLHK5vxZpYFUOoeyGmUDeCUkKfx2ImlgA7gVYxtGhD7Wv424e7b1XtAO6RMyd0F6Sk8DsCZCTuAiaDdiMoo7SIPp8QM9ZWcU+JE3V7C/87iusCasfiHGo5nG7pi8O+jMWZ+DP1IYE+DakGe9dVLBOyCmoeWb0aA8MQ6rDcg89HUO4SUts5IkxOfUfbtunzf1FLrMX7rmo7Ef8mLe/CFYmG6n1WMLTFJfFH9DQn8JnUJwXJfWCIVR+xdEW2vqDeD6D9FOofwzWjkrZJB64p1c5qkVtwuZBbLHIXLhdyl0UewOVCHrDII7hcyCOFROyIbO7GN+By4Rus5CdwuZBPWORTuFzIpyzyBC4X8oRFfgOXC/kNi3wIlwv5kEU+gsuFfMQim3C5kE0WeQyXC3nMInfgciF3FLJ6po7gyognYWblAyiXZaCnSKHmAavfJnlHF3bTY053K7D8rN6G/27stodN4wrsjse4O6vA8iNvF3ykG8v7oj1aTVzYPRa7DyPAjd1nsV+KVxXYLz1m2usKLD/XDqCdG8t736/gzo39isU+hpIby69Rh1Djxh56rBjDCuwRi30i3lRgfbz+qALL+/0G+BU3ll+nmtDejfXxppMKLO9PTyCCcWP51eoZ1Lqxz1jsc3FdgX3OYr8G7+7Gfu2xwr6rwOo1dolWkD7FIzHM2Dq2djErsTQEtjYjPy3WlpRi4w7Uc5h+gekT5oJF7BaIXU/EQYE48NYrL/xoTvEuL6VRIBqeiE6xNmFpzLbvFe2xlHogtgvE9hyiLiLFZ637cknRha7hkONi5cKST5+ywn9jKVbjod7zasRhCSHH9jmN/HuULWEGhZaqYzsv1niJjOi+DnFF2ZvupZbB48aFV7BR1yyq40B1WNRbB+oti5o4UBMWdelAXbIoM/NtXMtjBBj747OY0p0cATJGrr4iiAoewKqzB3M0gvFzBFHgU6o5hP8Nyr25q04zzOZxncRdjhclTzyC0lQsQ73JCrcpv05phsWgmWx5qHJ8vMO9jamac9ILz4qVPCp2TPx5EtKnX/BgtBjRfArjeUQ1M4ruZCkMv1fMe10Kw++QxWcUxctSGH6stB/fQPemwjZvgG3AbBoq65tyKIfcf5EcurxEqy56XHyqF2rMIN91IP++ejL7N3guW1SS9jHlMI7c6l9e6l8Ih7Fzbtk5jAWjJxn16lIU3JOByntNOVSHjFbRgdLD3IU+GWzTU09Gl8M4jiDi2qKce2qVQ0fvsOiNKYdxnAi57zmjSF6Xwzj6dC/tYcphHLjb0lZ5vimHena0gMydTTnUqw9oFxj3gOSYlzUmKhpRnDRRbAnFB/W7NXbMv7iO4Z7NyyJHqGcysW01T6dYy+o10vFCDF5tHKgHxhcTKwYrc0zFOptfSR3GpfV9kces8Wj5A7BiBLNfngFwe+YpaKj3JNB7p8C4xmZd5Z5p3DqLw1FyNodqqdoxGy0auXLXqFx3SrVcXmZ6a+zYIn+d09gbUkx4QJbl7HBQ+YSrGDkLHZQsxPOF2O6dmq9l66+yuOEcYliMtC6dCMmTtPo81WX1hmXju+qUZwyXPPMx4xd3m8+Ut8GcJyNfhLrUybTb6X0kuw7X1XvC7HHLzyJ6ouivLslrJHQilbNZqN4tltH4lO4N9zGdyaEMydGF5xgplqGQp2a4i4776RF5VNvfcrLRXnqHTpZz8rraH9ej+xa670CH5zhbsGI8hlITcoZjuGt6ZDlLha0ysvhI/KE4Hc3oCdZn9GnJQ2oO6W/ikoesy7LPSyxXgMbRILN0f455Ho1vLTDxWb9LH5O7lj3/XTq51efbbRrj1aO5eiemR1LXSWpEs0ae6sq7eQlSg6nzk3WKX+t7ifJCJKIP5aS+tCRLuwzoxD+mDHZIkXFKs42bHeXW9v7U/Cda0pHQZ+d4mp2Rh4zI/0WwPmU0JiP6td8d0Cfo0iOk5CN9/E5SRDeuWCdhx5iJ4xIh32ow4y0mXzYh+ZrXnl05jUWZMch1YDY3trVNDigWjEnqSHl3M7frVx9Emvck7FEiGc1Y+YTkf0p/9a8eJ8sLIwItjE8gV77O9TwyylnQRm1a5et9kG5ra/lxocNLpbVZ/4xOH5c026aMC/XB1boHkrt0L2XhKBmR3vlCG7mO1u3mIvNwzo7Y2zPK4qXf76sVGPW+R6vkMs25Fo2SPoyCcZFF6LbcLvK83HpZZXY/7vz/wm5sXbYaMkbC7OBKC3H7+zFla7aWKYxqOX5f02xyW30016pezoDG4oU1l7+D2t/AX623vvfj6ZS8wiaNAclg7oxFZE200MJP1mZJlh6ZmsvcG3lmTOpWds1N8mvp3UyOfRnMckSj5lrtWujyTTheWRyvPG3YpLNGY0Vdrz3RKZtbNNVppa+8EGnNAOYJy8xHZBqVeGhp51J+rD2Wlc/xNeody7XKcrVhttqnAfac90G65/r87P6uWN0j8ZBimy5FYDJ/6dEsTSjm0rX1mZpkQMn3lX+1Z3+LalB6hzwoMsv3OHHGyFOnLl2zQtPfqZUtIz9vPIJ+b+lKtdE+tkXlPy4gL2hO5DQvNeI+tYiV/rYe0ZxHWrFijoh2/tsUU8m4oz5ntlubZxKV4gmTb8pZZWTJTGFA9ud23vYXstd9K3+NKCecqOi6A1zhTxgZJEbvJLgjy5yeEK5y8iRBRrQd8p+Lfkqe4g0sjVZI66nY8PAxMus1Y90eW7rHum+/h5ZodfPUXS14eam3RE7eTU702rSqXagYdTp3fzOutlrlyvd1dpjMyTX2mFAbO7MwWV4Z0xKfe0uRGoVJkRgfKWG9CNE/TPMQneXplC+zbq2ZyzsN0secU77EvQeKCFd094kzmvuU6Udnga9DWJtN1nBMuBuXqf0B29PirtTthXVI1t6uXY1SayWqWik0u71aGP8tPWRM3i8V3J6NbG3r3iplKfwujGToCvlGb1V+aHN+Dhf+jYQrO9QSffYOGxDfPhBbYuc9vA3xRpXljmZENegLenO5d1v1s9yi3kZvLHab30eCv4wEbM1pn9BKGqq7ZOY1t9n9+a/IC4xEzGpvWob3wZbC92RRUkh/EvJsfG8Sob+LE9oXLcGnJ2Up/nLkuQbXizOhv9MU1gfNzvegLCFEhn6Pwe+Zm9bhsmxJ9fZalOIrQ64C+sRF4/DkrzpXMe18PNTIeiLvXwJ6h7Madr1a/K/90HKMpHBZvtJy+q7ZK4+nLtvFakcW4+HwOWOk+Yzmaon+MrOidyZacsuTcV8U9KQyqzfvnx/jUTMGtKypkPugvHYSb48io68vC54LuHTIxH/EP27x30Z4U3BU6RHCpM8pqtl0C55Nf+PS1Tv9mY9OhqdKpzKbySMa9EbsltgXD+F3q4gAQ98Old+llP8R6/7+bA9qz8h76F10uXPQorqYdj/MKVqP7tUe4+md5bX5byEvFk7WV9b+tHL/yf3lLzbVN5Q/FL8Sv4W8ZE18Jr4Qe9DfYzpX+Kv4m/j7xtLG6sZnG3+RTT+4pTC/FKWfjc3/Ajzs2dE=</latexit> x1 <latexit sha1_base64="7Z/IumRXp79HdyogVfnC2DA+LeM=">AAA9iHictVttcxu3EYbTt1h9c9qPnelcq7iTdFyNpHqadjKaifViSbFiySYlOwltDV9O1NknHs0jJdkM/0e/tn+kv6P/oP3Uv9DdBXDAkbhbQHV1IwkH4nl2sQcsdoFjZ5gm+Xh19Z+3Pvje93/wwx99eHvpxz/56c9+fuejX5zk2WTUjY+7WZqNnnfaeZwmg/h4nIzT+PlwFLcvOmn8rPN6Cz9/dhmP8iQbNMdvh/GLi3Z/kJwl3fYYql62iGE6inuz69P10zvLqyur9BMtFtZUYVmon6Pso1+vi5boiUx0xURciFgMxBjKqWiLHK5vxZpYFUOoeyGmUDeCUkKfx2ImlgA7gVYxtGhD7Wv424e7b1XtAO6RMyd0F6Sk8DsCZCTuAiaDdiMoo7SIPp8QM9ZWcU+JE3V7C/87iusCasfiHGo5nG7pi8O+jMWZ+DP1IYE+DakGe9dVLBOyCmoeWb0aA8MQ6rDcg89HUO4SUts5IkxOfUfbtunzf1FLrMX7rmo7Ef8mLe/CFYmG6n1WMLTFJfFH9DQn8JnUJwXJfWCIVR+xdEW2vqDeD6D9FOofwzWjkrZJB64p1c5qkVtwuZBbLHIXLhdyl0UewOVCHrDII7hcyCOFROyIbO7GN+By4Rus5CdwuZBPWORTuFzIpyzyBC4X8oRFfgOXC/kNi3wIlwv5kEU+gsuFfMQim3C5kE0WeQyXC3nMInfgciF3FLJ6po7gyognYWblAyiXZaCnSKHmAavfJnlHF3bTY053K7D8rN6G/27stodN4wrsjse4O6vA8iNvF3ykG8v7oj1aTVzYPRa7DyPAjd1nsV+KVxXYLz1m2usKLD/XDqCdG8t736/gzo39isU+hpIby69Rh1Djxh56rBjDCuwRi30i3lRgfbz+qALL+/0G+BU3ll+nmtDejfXxppMKLO9PTyCCcWP51eoZ1Lqxz1jsc3FdgX3OYr8G7+7Gfu2xwr6rwOo1dolWkD7FIzHM2Dq2djErsTQEtjYjPy3WlpRi4w7Uc5h+gekT5oJF7BaIXU/EQYE48NYrL/xoTvEuL6VRIBqeiE6xNmFpzLbvFe2xlHogtgvE9hyiLiLFZ637cknRha7hkONi5cKST5+ywn9jKVbjod7zasRhCSHH9jmN/HuULWEGhZaqYzsv1niJjOi+DnFF2ZvupZbB48aFV7BR1yyq40B1WNRbB+oti5o4UBMWdelAXbIoM/NtXMtjBBj747OY0p0cATJGrr4iiAoewKqzB3M0gvFzBFHgU6o5hP8Nyr25q04zzOZxncRdjhclTzyC0lQsQ73JCrcpv05phsWgmWx5qHJ8vMO9jamac9ILz4qVPCp2TPx5EtKnX/BgtBjRfArjeUQ1M4ruZCkMv1fMe10Kw++QxWcUxctSGH6stB/fQPemwjZvgG3AbBoq65tyKIfcf5EcurxEqy56XHyqF2rMIN91IP++ejL7N3guW1SS9jHlMI7c6l9e6l8Ih7Fzbtk5jAWjJxn16lIU3JOByntNOVSHjFbRgdLD3IU+GWzTU09Gl8M4jiDi2qKce2qVQ0fvsOiNKYdxnAi57zmjSF6Xwzj6dC/tYcphHLjb0lZ5vimHena0gMydTTnUqw9oFxj3gOSYlzUmKhpRnDRRbAnFB/W7NXbMv7iO4Z7NyyJHqGcysW01T6dYy+o10vFCDF5tHKgHxhcTKwYrc0zFOptfSR3GpfV9kces8Wj5A7BiBLNfngFwe+YpaKj3JNB7p8C4xmZd5Z5p3DqLw1FyNodqqdoxGy0auXLXqFx3SrVcXmZ6a+zYIn+d09gbUkx4QJbl7HBQ+YSrGDkLHZQsxPOF2O6dmq9l66+yuOEcYliMtC6dCMmTtPo81WX1hmXju+qUZwyXPPMx4xd3m8+Ut8GcJyNfhLrUybTb6X0kuw7X1XvC7HHLzyJ6ouivLslrJHQilbNZqN4tltH4lO4N9zGdyaEMydGF5xgplqGQp2a4i4776RF5VNvfcrLRXnqHTpZz8rraH9ej+xa670CH5zhbsGI8hlITcoZjuGt6ZDlLha0ysvhI/KE4Hc3oCdZn9GnJQ2oO6W/ikoesy7LPSyxXgMbRILN0f455Ho1vLTDxWb9LH5O7lj3/XTq51efbbRrj1aO5eiemR1LXSWpEs0ae6sq7eQlSg6nzk3WKX+t7ifJCJKIP5aS+tCRLuwzoxD+mDHZIkXFKs42bHeXW9v7U/Cda0pHQZ+d4mp2Rh4zI/0WwPmU0JiP6td8d0Cfo0iOk5CN9/E5SRDeuWCdhx5iJ4xIh32ow4y0mXzYh+ZrXnl05jUWZMch1YDY3trVNDigWjEnqSHl3M7frVx9Emvck7FEiGc1Y+YTkf0p/9a8eJ8sLIwItjE8gV77O9TwyylnQRm1a5et9kG5ra/lxocNLpbVZ/4xOH5c026aMC/XB1boHkrt0L2XhKBmR3vlCG7mO1u3mIvNwzo7Y2zPK4qXf76sVGPW+R6vkMs25Fo2SPoyCcZFF6LbcLvK83HpZZXY/7vz/wm5sXbYaMkbC7OBKC3H7+zFla7aWKYxqOX5f02xyW30016pezoDG4oU1l7+D2t/AX623vvfj6ZS8wiaNAclg7oxFZE200MJP1mZJlh6ZmsvcG3lmTOpWds1N8mvp3UyOfRnMckSj5lrtWujyTTheWRyvPG3YpLNGY0Vdrz3RKZtbNNVppa+8EGnNAOYJy8xHZBqVeGhp51J+rD2Wlc/xNeody7XKcrVhttqnAfac90G65/r87P6uWN0j8ZBimy5FYDJ/6dEsTSjm0rX1mZpkQMn3lX+1Z3+LalB6hzwoMsv3OHHGyFOnLl2zQtPfqZUtIz9vPIJ+b+lKtdE+tkXlPy4gL2hO5DQvNeI+tYiV/rYe0ZxHWrFijoh2/tsUU8m4oz5ntlubZxKV4gmTb8pZZWTJTGFA9ud23vYXstd9K3+NKCecqOi6A1zhTxgZJEbvJLgjy5yeEK5y8iRBRrQd8p+Lfkqe4g0sjVZI66nY8PAxMus1Y90eW7rHum+/h5ZodfPUXS14eam3RE7eTU702rSqXagYdTp3fzOutlrlyvd1dpjMyTX2mFAbO7MwWV4Z0xKfe0uRGoVJkRgfKWG9CNE/TPMQneXplC+zbq2ZyzsN0secU77EvQeKCFd094kzmvuU6Udnga9DWJtN1nBMuBuXqf0B29PirtTthXVI1t6uXY1SayWqWik0u71aGP8tPWRM3i8V3J6NbG3r3iplKfwujGToCvlGb1V+aHN+Dhf+jYQrO9QSffYOGxDfPhBbYuc9vA3xRpXljmZENegLenO5d1v1s9yi3kZvLHab30eCv4wEbM1pn9BKGqq7ZOY1t9n9+a/IC4xEzGpvWob3wZbC92RRUkh/EvJsfG8Sob+LE9oXLcGnJ2Up/nLkuQbXizOhv9MU1gfNzvegLCFEhn6Pwe+Zm9bhsmxJ9fZalOIrQ64C+sRF4/DkrzpXMe18PNTIeiLvXwJ6h7Madr1a/K/90HKMpHBZvtJy+q7ZK4+nLtvFakcW4+HwOWOk+Yzmaon+MrOidyZacsuTcV8U9KQyqzfvnx/jUTMGtKypkPugvHYSb48io68vC54LuHTIxH/EP27x30Z4U3BU6RHCpM8pqtl0C55Nf+PS1Tv9mY9OhqdKpzKbySMa9EbsltgXD+F3q4gAQ98Old+llP8R6/7+bA9qz8h76F10uXPQorqYdj/MKVqP7tUe4+md5bX5byEvFk7WV9b+tHL/yf3lLzbVN5Q/FL8Sv4W8ZE18Jr4Qe9DfYzpX+Kv4m/j7xtLG6sZnG3+RTT+4pTC/FKWfjc3/AnoD2dI=</latexit> x2 <latexit sha1_base64="Fgw+vWgPriclgLxpVoHDEicBDLw=">AAA9h3ictVv9chu3EYfTr9j9cto/O9O5VnYnybiqpHrSzGQ0E1uSJcWKJZuU7CS0Nfw40WcfeTSPlGQzfI7+2z5Jn6Nv0P7VV+juAjjgSNwtoLrCSMKB+O0uFsB+AMfOKE3yydraP6998IMf/ujHP/nw+o2f/uznv/jlzY9+dZJn03E3Pu5maTZ+1mnncZoM4+NJMknjZ6Nx3B500vhp5/UWfv70PB7nSTZsTt6O4ueDdn+YnCXd9gSant9qzS5Pk9b8dJbMb53eXFlbXaOfaLmyriorQv0cZR/9dkO0RE9koiumYiBiMRQTqKeiLXIo34l1sSZG0PZczKBtDLWEPo/FXNwA7BR6xdCjDa2v4W8fnr5TrUN4Rpo5obvAJYXfMSAjcRswGfQbQx25RfT5lChjaxXtGdFE2d7C/46iNYDWiXgJrRxO9/TF4Vgm4kx8TmNIYEwjasHRdRWVKWkFJY+sUU2AwgjasN6Dz8dQ7xJS6zkiTE5jR9226fN/UU9sxeeu6jsV/yYpb0OJREONPisotMU50Y9oNqfwmZQnBc59oBCrMWLtgnQ9oNEPof8M2h9BmVNN66QDZUat81rkFhQXcotF7kJxIXdZ5AEUF/KARR5BcSGPFBKxY9K5G9+A4sI3WM6PobiQj1nkEygu5BMWeQLFhTxhkd9CcSG/ZZEPoLiQD1jkQygu5EMW2YTiQjZZ5DEUF/KYRe5AcSF3FLJ6p46hZEQnYXblPaiXeaClSKHlHivffbKOLux9jz3drcDyu3ob/rux2x46jSuwOx7r7qwCy6+8XbCRbixvi/bIm7iweyx2H1aAG7vPYr8SryqwX3nstNcVWH6vHUA/N5a3vl/Dkxv7NYt9BDU3lvdRh9Dixh56eIxRBfaIxT4WbyqwPlZ/XIHl7X4D7Ioby/upJvR3Y32s6bQCy9vTE4hg3FjeWz2FVjf2KYt9Ji4rsM9Y7Ddg3d3Ybzw87LsKrPaxN8iD9CkeiWHH1lFrF7sSayOg1mb4p4VvSSk27kA7h+kXmD5hBixit0DseiIOCsSBt1x5YUdzind5Lo0C0fBEdArfhLUJ279X9Mda6oHYLhDbC4i6iBTnWo/lnKIL3cIhJ4XnwprPmLLCfmMtVuuh3vJqxGEJIdf2S1r5dyhbwgwKNVVH7WXh4yUyouc6xAVlb3qUmgePmxRWwUZdsqiOA9VhUW8dqLcsaupATVnUuQN1zqLMzrdxLY8VYPSPczGjJ7kCZIxcXSKICu6B19mDPRrB+jmCKPAJtRzC/wbl3lypkwyzefSTeMrxvGSJx1CbiRVoN1nhNuXXKe2wGCSTPQ9Vjo9PeLYxU3tOWuF54cmj4sTEn05C8vQLOhgtRrSfwug8pJY5RXeyFobfK/a9roXhd0jjc4riZS0MP1HST64ge1Nhm1fANmA3jZT2TT2Uhjx/kTR0/QZ5XbS4OKsDtWaQ3mUg/X01M/tXmJctqkn9mHoYjdwaX14aXwgNo+fc0nMYFYyeZNSra1HwSIYq7zX1UBky8qJDJYd5Cp0Z7NNTM6PrYTSOIOLaopx7ZtVDV++oGI2ph9E4EfLcc06RvK6H0ejTs9SHqYfRwNOWtsrzTT3UsqMGZO5s6qFWfUinwHgGJNe8bDFR0ZjipKmillB8UH9aY8f8y34Mz2xeFDlCPSUT21bT6RS+rF4iHS/EYNUmgXJgfDG1YrAyjZnYYPMrKcOk5N+X6Rgfj5o/AC1GsPvlHQB3Zp6ChPpMAq13ChTX2ayrPDKN22BxuErOFlAt1Tpho0XDV54aldtOqZXLy8xojR5bZK9zWnsjigkPSLOcHg4qZ7iKIqehg5KGeHohunun9mtZ+2ssbrSAGBUrrUs3QvImrT5PdWm9Yen4trrlmUCRdz5m/eJp85myNpjzZGSLUJY6nnY/fY5kt6FfvSPMGbf8LKIZRXt1TlYjoRupnM1C9WmxjMZn9GxoH9OdHPKQNLowj5GiMhLy1gxP0fE8PSKLattbjjfqS5/QyXpOVlfb43p030L3HejwHGcLPMYjqDUhZziGp6ZHlnOj0FVGGh+LPxa3oxnNYH1Gn5YspKYh7U1cspB1WfbLEpULQONqkFm6P41FOhrfWqLEZ/0ueUzuWrb8t+nmVt9vt2mNV6/m6pOYHnHdIK4R7Rp5qyufFjlICWbOTzYofq0fJfIL4Yg2lOP6wuIs9TKkG/+YMtgRRcYp7TZud5R72+dTi59oTkdC353jbXZGFjIi+xeBf8poTUb0a787oG/QpUVIyUb62J2kiG5csU7CrjETxyVCvtVg1ltMtmxK/DVde3fltBZlxiD9wHxhbWudHFAsGBPXsbLuZm/Xex9Emvck7FUiKZq18jHx/4T+6l+9TlaWVgRqGGcgV7bONR8Z5SyoozZ5+XobpPvaUt4qZHihpDb+z8h0qyTZNmVcKA966x5w7tKz5IWrZExy50t9pB+tO81FyqMFPeJozyiLl3a/rzwwyn2HvOQK7bkWrZI+rIJJkUXovtwp8iLfel5l6n608/8LdaPrstaQYiTMCa7UEHe+H1O2ZkuZwqqW6/c17Sa31scLver5DGktDqy9/D20/g7+arn1sx+dTskq3Kc1ICmYJ6MR2RIt9fDjdb/ES69MTcs8G35mTepedstV8mtp3UyOfR5M5YhWzaU6tdD1q9B4ZdF45anDJt01Gi3qdm2JTtncoqluK335hXBrBlCespT5iEyjEg8p7VzKj2qPpcrn+Br1jqW1xtJqw261bwPsPe+DdO/1xd39feHdI/GAYpsuRWAyf+nRLk0o5tKt9ZmapICc7yr7au/+FrUg9w5ZUKQs3+PEHSNvnbpU5oWkf1CeLSM7byyCfm/pQvXRNrZF9T8vIQe0J3Lalxpxl3rESn5bjmjBIq1aMUdEJ/9tiqlk3FGfM9u9zZxEpXjC5JtyVxleMlMYkv65k7f9pex138pfI8oJpyq67gCt8BlGChKjTxLckWVOM4ReTt4kyIi2Q/Zz2U7JW7yhJdEqST0Tmx42Rma9Zq3ba0uPWI/tU+iJWjez7urB80u9OXL8rnKj1yavNlAx6mzh+Wq02srLlZ/r9DBd4Gv0MaU+dmZhsrwypiW+8OYiJQrjIjE+XMJGESJ/mOQhMsvbKV/KuremXD5pkDbmJeVL3HugiHBFdx87o7lPmHF0luh1CGtTky0cJTyNy9T5gG1p8VTq+pIfkq3Xa71RanmiKk+hqdvewthvaSFjsn6p4M5sZG9b9lYpS+FPYSSFrpBv9FblhzbNL6Dg30i4skPN0efssAHx7T2xJXbew9sQb1RdnmhG1IK2oLeQe7fVOMs96nX0xqJu0/fh4M8jAV1z0ifkSUNll5R5yW3q/vQvyAqMRcxKb3qGj8Hmwo9kmVPIeBKybPxoEqG/ixM6Fs3BZyRlLv585L0GN4ozob/TFDYGTZ0fQZlDCA/9HoPfnJve4bxsTvX6Wubiy0N6AX3jonF481edq5h+PhZqbM3I++eA1uGshrr2Fv/rODQfwymcly+3nL5r9spj1mW/WJ3IYjwcvmcMN5/VXM3Rn2dWjM5ES25+Mu6LgmYqs0bz/uljPGrWgOY1E/IclJdO4u1VZOT1pYL3Ai4ZMvEf8Y9r/LcR3hQ0quQIoaTvKaqp6R48Nf2NS9fo9Gc+Mhk6VTKVqZk8okFvxG6JffEAfreKCDD07VD5XUr5H7Hu78/2oPWMrIc+RZcnBy1qi+n0w9yi9ehZnTGe3lxZX/wW8nLlZGN1/bPVu483Vr68r76h/KH4jfg95CXr4i/iS7EH4z0mTf1V/E38ffP65p82P9v8XHb94JrC/FqUfjbv/Rd5M9kH</latexit> {xi }i Points cloud Positional encoding Token encoding Tokenize Le groupe thématique SMAI- S I G M A ( S i g n a l - I m a g e - Géométrie-Modélisation- Approximation) est issu de l ’A s s o c i a t i o n F r a n ç a i s e d ’A p p r o x i m a t i o n ( A FA ) , association créée en 1989 et intégrée en tant que groupe au sein de la SMAI en 2000. Le groupe thématique SMAI- S I G M A ( S i g n a l - I m a g e - G é o m é t r i e - M o d é l i s a t i o n - Approximation) est issu de l ’ A s s o c i a t i o n F r a n ç a i s e d ’ A p p ro x i m a t i o n ( A FA ) , association créée en 1989 et intégrée en tant que groupe au sein de la SMAI en 2000. xi xj (Unmasked) Attention layer Arbitrary number of tokens Arbitrary number of layers Expressivity Understanding … next token probabilities Attention Norm MLP Classif N × …