C O L E N O R M A L E S U P É R I E U R E RESEARCH UNIVERSITY PARIS Joint works with: Francis Bach François-Xavier Vialard Jean Feydy Thibault Séjourné Lénaic Chizat Aude Genevay Marco Cuturi Alain Trouvé Shun'ichi Amari
X to style image color statistics Y Source image after color transfer J. Rabin Wasserstein Regularization ! images, vision, graphics and machine learning, . . . Probability distributions and histograms <latexit sha1_base64="NHBrzuHY/DIiTVSeYz9st2EbBcI=">AAA/v3iczVvpchy3EYady2IuOfmZH5mEViylZBXJuMqpcrlkiaQoWiuREg/J9lrKHsPlWMOd1cwsJWpDv0QeI0+Qyr/kKfIG0SPkX7obwACzi5kGGKfKRJHEYPF1N66+MNufpElRrqz86623v/f9H/zwR+9cWvrxT376s59ffvcXh0U2zQfxwSBLs/xJv1fEaTKOD8qkTOMnkzzunfTT+HH/+Tp+/vg0zoskG++XZ5P4q5PeaJwcJYNeCU3PLn8QdZMy2s2zfq+fpEl5Fg2BaZ70p/h5EfXGw+gYWrJR3jspnl1eXrmxQj/RYmVVVZaF+tnN3v31J6IrhiITAzEVJyIWY1FCPRU9UUD5UqyKFTGBtq/EDNpyqCX0eSzOxRJgp9Arhh49aH0Of0fw9KVqHcMz0iwIPQAuKfzmgIzEFcBk0C+HOnKL6PMpUcbWJtozoomyncH/vqJ1Aq2lOIZWDqd7+uOG0HoEsuHMtI+5hH5/pLEm0HtCLTgLA8VtSrOHI4ys0ZdAYQJtWB/C5znUB4TU6xERpqA5wjXo0ef/pp7Yis8D1Xcq3tBovivz992blysBJRLb4oFYFx1xIDbEptgjedvLEuHWYRwTmOMcJB/BDKG0V0Gaa/B/Dc7UivgIalsgY5/6xDCWSOzC/zOSf0nJGon74pbYF3eJ91Wo34fatYB14nrqvV3QavjvmyVml+W0ImetEpQ0/ilpgFy8au2Le2eoVvOI9kOhTmT7msoZXBePxE7r+iHnMdB/SZrohGYQOc6gfQQy4Q5NgR/qRNzLfxXfiGWofyP+rvZxBHLlamcfEz355E/zT1CQ5vtQzsUlonkAUi9Vo4zgSa5AVu3+njilsxGRJp/CZ/IspbT3xtSrbXQPoJxTTe+aPpQZtZ63ItehuJDrLHILigu5xSI7UFzIDovcheJC7ipkG/YhFBf2Icv1ERQX8hGL3IfiQu6zyEMoLuQhi/wCigv5BYu8A8WFvMMi70FxIe+xyAMoLuQBi9yE4kJuKmTzWUO9lhGdhDlXt6Be54F2KoWWW6x8t0nHurC3PU7loAHLn8sN+O/GbnjMadyA3fTYPUcNWH7/bIGWc2N5bXKXbKQLe5fFbsMOcGO3Wexn4usG7Gce5+V5A5Y/MR2yNy4srz/vw5Mbe5/FPoCaG8tbmR1ocWN3PHT+pAG7y2IfihcNWB+tnzdgeb2/R76YC7vnYTPKBixvNQ7Ad3BjeX16CD6IG8vbnMfQ6sY+ZrFPyGt0YZ+w2M/JO3VhP/ewk68bsNpSSu99RD5gDCe2jVqvOpVYmwC1HsM/rWwL1tBGDVnMqMKMCHPCIrYqxJYnolMhOt5yFZUeLchj5bnsVYg9T0S/sk1YK9n+w6r/kGIzHrFRITbmEG1RAK61HsspeRe6hUOWleXCms+Yskp/Yy1W+6Fd82rETg0h9/Yx7fzrFKtjJDOkuLWZ2nFl4yUyouc2xEuK9fQoNQ8eV1ZawUa9YlF9B6rPos4cqDMWNXWgpizq1IE6ZVHm5Nu4rscOMPOPazGjJx37c7mUeu5iByzuJlg/bNmB/z65lPaoHDMCaCl19Gx0cQ61GUXSJrLboBhZZhpikEz23FE5JnzC3ORMnTqph88rWx4JnfH0p5OQPKOKDvqLEZ2oMDr3qOWc/DtZC8PfrU6+roXhN2nGz8mPl7UwfKmkLy8g+77C7l8AuwfnaaJm39RDacgciqSh65xu3q70JuYrX9HJkW2h/NepJufA1MNoFNYYitoYQmiYuSysuQyjgj6S9G11LQoeyVhFt6YeKkNGtnKs5DBPoSuDfYZqZXQ9jMYu+FXrFFnPrHroDp1UozH1MBqHQubWz8lf1/UwGiN6lvNh6mE0MKfSU9G8qYdqb5wBGSGbuvZZcvJidMY5IevdnkuxPfJFG4MZlaeVB99OyXiezXT6lZ1pl2heu4TIgdZ/anlIdRozscZGP1KGsmZ7F+kY+4sz34FZjODUyrw+l5NOQUKdMYgpS/6UqLVj6iPTuDUWh5rkaA7VVa0l68sZvjKnU297Rq1c1GRGa+axS3q2oL03IY+tQzPLzUOncYWbKHIz1KnNEE8vZO5e0wnO5mZ/hcVN5hCTaqcN6HZI3lK3R5GuWd+z5viKukUpocg7FbN/MRd8RLicIpKMtA3K0sbT7qezPHYb2sPrwmSg5WcRrSjqq1PSGgnd+BSsH6JzudJTntGzoX1A92z1W6tIUZkIeaOKOW7Mdkd0n2nrWo43zpfOn8l6QVrX3KO3344Z9MiBDo0+1sFWPIDaPnjzB/C07xF/mDu3jOY7Fx9U958ZrV97tG3f7HUrGlLbxDX92BYBH9eovAQ07gUZQfvTmKej8d0FSnxE7pLHxJV1vX+F7vT1myM92uHNe7k5SzIkrmvENaIzI+/75dM8BynBzPnJGnmd7aNEfiEcUYNyXJ9anOW8jOldmphiywn5symdNe5s1HvbuaP5TzSnXaHfqsC74oz0Y0TaLwLrlNGejOjXfitHv1sh9UFKGtJH6ySVb+PydBJ2jyV0yuUeke8Lmf0WkyabEn9N1z5dBe1F6edLK3A+t7f1nHTIE4yJa650uznb7bYHkeZNCHuXSIpmr1wl/tfor/7V+2R5YUfgDOMKFErTudYjo0gD56hHNr5dB+m+tpTvVTI8VVIb62dkeq8m2QbFSSgP2uohcB7Qs+SFuyQnuYuFPtKKtmVakfJkbh5xtGhdu0rrj5T9Rbmvk41cpjPXFeYNG+37675chneebzuvOnU/2sX/hbqZ6/qsIcVImOyqnCEu9x5TjGVLmdI7SfLtm1hRWpz1fK5XO58x7cUT6yz/GVp/A3+13PrZj06/phVu0x6QFMyTmRHZEi308ON1u8ZL70xNyzwbfmZP6l52y0WiYqndTGR8Gkxll3bNK5Vr0HWf8e/THZ6ZAd2utcizOQ96X935+VIPo+1PecpS5n0njUo8pLRjHj+qQ5YqH4tr1GuW1gpLC9/GszPq9um0becd8h0G5OHI6GBIpyAhn0a3tsdBkgLy+lDpL/t0dakFz1KfNBRSrr9ViLm7gZDvkEoZf6csR0Z61Jw4/c7OS9VH67Au1f+wgDyhaLags6MRH1KPWMlvyxHNnfgblk2PKOfdI59F2vX2iNTubVYhqtlrE83Js2B4peJ95Y2PaQ1K8aaV2/ZCfLhtRYiRkPd9aeXB4yq/CVpljNvkztCxutt7K2iV0JLkFM9Lr7FPOmoxyyBvscYw+3rf3SCpZ+ITD+0g40pzUuz9hZ9NVVSCY/s99MSZNyvv6sHzS705cvwucp/VI8txovzA2dzzxWj1lCWpP7fNw3SOr5mPqRirmFB77yaSqmO64mNvLlKiMC4S48MlbBQh8odJHiKzvLfxpax7a8r1aF7qmGOKSbj3IBHh8qCuOj2ma8w4+gv0+oS1qckWjhLmuzIVg9vaFjM/lxZskWy91GqRUssaNVkLTd22GEaHSw0Zk/ZLBZcXkb0HQr6P2hRB2bHBx1DwbyRc8ZO2Jj7ZtT3wIvG9er9vRbTf5L9QdZnxi6gFT/JwLjrtqXHWe7Sv8guLuk3fh4M/jwTmmpM+ITsYKrukzEtuU/en/5LOcC5iVnrTM3wMNhd+JIucQsaTkF7iR5MI/T2m0LFoDj4jqXPx5yPz/twojoT+Pl3YGDR1fgR1DiE89P2835qb3uG8bE7t87XIxZeH1OH6RkLj8GasOdow/Xw0VG6tyLfPAbXDUQt1bS3+13FoPoZTOC9fbgV91+lrj1WX/WKVs0RvNvzMGG4+u7mZoz/PrBqd8XXc/KTXFgWtVGaN5tunj96k2QOa10zITCEvncTbu8jI60sFM+cuGTLxHy8ZJL5JBl8qOoPfTEn34Knpb/q5RqU/85HJ0GmSqU4N6clIu0tnOKZsgbnZGdKzyaa5v8Epv9mdqZuT82eXl1fnv5u+WDlcu7G6cmP14dryp7fV99bfEb8SvwV/f1V8JD4Vd8EPPQA+fxF/E/8Q/7x56+bo5vjmRHZ9+y2F+aWo/dw8+y98ezp5</latexit> <latexit sha1_base64="NHBrzuHY/DIiTVSeYz9st2EbBcI=">AAA/v3iczVvpchy3EYady2IuOfmZH5mEViylZBXJuMqpcrlkiaQoWiuREg/J9lrKHsPlWMOd1cwsJWpDv0QeI0+Qyr/kKfIG0SPkX7obwACzi5kGGKfKRJHEYPF1N66+MNufpElRrqz86623v/f9H/zwR+9cWvrxT376s59ffvcXh0U2zQfxwSBLs/xJv1fEaTKOD8qkTOMnkzzunfTT+HH/+Tp+/vg0zoskG++XZ5P4q5PeaJwcJYNeCU3PLn8QdZMy2s2zfq+fpEl5Fg2BaZ70p/h5EfXGw+gYWrJR3jspnl1eXrmxQj/RYmVVVZaF+tnN3v31J6IrhiITAzEVJyIWY1FCPRU9UUD5UqyKFTGBtq/EDNpyqCX0eSzOxRJgp9Arhh49aH0Of0fw9KVqHcMz0iwIPQAuKfzmgIzEFcBk0C+HOnKL6PMpUcbWJtozoomyncH/vqJ1Aq2lOIZWDqd7+uOG0HoEsuHMtI+5hH5/pLEm0HtCLTgLA8VtSrOHI4ys0ZdAYQJtWB/C5znUB4TU6xERpqA5wjXo0ef/pp7Yis8D1Xcq3tBovivz992blysBJRLb4oFYFx1xIDbEptgjedvLEuHWYRwTmOMcJB/BDKG0V0Gaa/B/Dc7UivgIalsgY5/6xDCWSOzC/zOSf0nJGon74pbYF3eJ91Wo34fatYB14nrqvV3QavjvmyVml+W0ImetEpQ0/ilpgFy8au2Le2eoVvOI9kOhTmT7msoZXBePxE7r+iHnMdB/SZrohGYQOc6gfQQy4Q5NgR/qRNzLfxXfiGWofyP+rvZxBHLlamcfEz355E/zT1CQ5vtQzsUlonkAUi9Vo4zgSa5AVu3+njilsxGRJp/CZ/IspbT3xtSrbXQPoJxTTe+aPpQZtZ63ItehuJDrLHILigu5xSI7UFzIDovcheJC7ipkG/YhFBf2Icv1ERQX8hGL3IfiQu6zyEMoLuQhi/wCigv5BYu8A8WFvMMi70FxIe+xyAMoLuQBi9yE4kJuKmTzWUO9lhGdhDlXt6Be54F2KoWWW6x8t0nHurC3PU7loAHLn8sN+O/GbnjMadyA3fTYPUcNWH7/bIGWc2N5bXKXbKQLe5fFbsMOcGO3Wexn4usG7Gce5+V5A5Y/MR2yNy4srz/vw5Mbe5/FPoCaG8tbmR1ocWN3PHT+pAG7y2IfihcNWB+tnzdgeb2/R76YC7vnYTPKBixvNQ7Ad3BjeX16CD6IG8vbnMfQ6sY+ZrFPyGt0YZ+w2M/JO3VhP/ewk68bsNpSSu99RD5gDCe2jVqvOpVYmwC1HsM/rWwL1tBGDVnMqMKMCHPCIrYqxJYnolMhOt5yFZUeLchj5bnsVYg9T0S/sk1YK9n+w6r/kGIzHrFRITbmEG1RAK61HsspeRe6hUOWleXCms+Yskp/Yy1W+6Fd82rETg0h9/Yx7fzrFKtjJDOkuLWZ2nFl4yUyouc2xEuK9fQoNQ8eV1ZawUa9YlF9B6rPos4cqDMWNXWgpizq1IE6ZVHm5Nu4rscOMPOPazGjJx37c7mUeu5iByzuJlg/bNmB/z65lPaoHDMCaCl19Gx0cQ61GUXSJrLboBhZZhpikEz23FE5JnzC3ORMnTqph88rWx4JnfH0p5OQPKOKDvqLEZ2oMDr3qOWc/DtZC8PfrU6+roXhN2nGz8mPl7UwfKmkLy8g+77C7l8AuwfnaaJm39RDacgciqSh65xu3q70JuYrX9HJkW2h/NepJufA1MNoFNYYitoYQmiYuSysuQyjgj6S9G11LQoeyVhFt6YeKkNGtnKs5DBPoSuDfYZqZXQ9jMYu+FXrFFnPrHroDp1UozH1MBqHQubWz8lf1/UwGiN6lvNh6mE0MKfSU9G8qYdqb5wBGSGbuvZZcvJidMY5IevdnkuxPfJFG4MZlaeVB99OyXiezXT6lZ1pl2heu4TIgdZ/anlIdRozscZGP1KGsmZ7F+kY+4sz34FZjODUyrw+l5NOQUKdMYgpS/6UqLVj6iPTuDUWh5rkaA7VVa0l68sZvjKnU297Rq1c1GRGa+axS3q2oL03IY+tQzPLzUOncYWbKHIz1KnNEE8vZO5e0wnO5mZ/hcVN5hCTaqcN6HZI3lK3R5GuWd+z5viKukUpocg7FbN/MRd8RLicIpKMtA3K0sbT7qezPHYb2sPrwmSg5WcRrSjqq1PSGgnd+BSsH6JzudJTntGzoX1A92z1W6tIUZkIeaOKOW7Mdkd0n2nrWo43zpfOn8l6QVrX3KO3344Z9MiBDo0+1sFWPIDaPnjzB/C07xF/mDu3jOY7Fx9U958ZrV97tG3f7HUrGlLbxDX92BYBH9eovAQ07gUZQfvTmKej8d0FSnxE7pLHxJV1vX+F7vT1myM92uHNe7k5SzIkrmvENaIzI+/75dM8BynBzPnJGnmd7aNEfiEcUYNyXJ9anOW8jOldmphiywn5symdNe5s1HvbuaP5TzSnXaHfqsC74oz0Y0TaLwLrlNGejOjXfitHv1sh9UFKGtJH6ySVb+PydBJ2jyV0yuUeke8Lmf0WkyabEn9N1z5dBe1F6edLK3A+t7f1nHTIE4yJa650uznb7bYHkeZNCHuXSIpmr1wl/tfor/7V+2R5YUfgDOMKFErTudYjo0gD56hHNr5dB+m+tpTvVTI8VVIb62dkeq8m2QbFSSgP2uohcB7Qs+SFuyQnuYuFPtKKtmVakfJkbh5xtGhdu0rrj5T9Rbmvk41cpjPXFeYNG+37675chneebzuvOnU/2sX/hbqZ6/qsIcVImOyqnCEu9x5TjGVLmdI7SfLtm1hRWpz1fK5XO58x7cUT6yz/GVp/A3+13PrZj06/phVu0x6QFMyTmRHZEi308ON1u8ZL70xNyzwbfmZP6l52y0WiYqndTGR8Gkxll3bNK5Vr0HWf8e/THZ6ZAd2utcizOQ96X935+VIPo+1PecpS5n0njUo8pLRjHj+qQ5YqH4tr1GuW1gpLC9/GszPq9um0becd8h0G5OHI6GBIpyAhn0a3tsdBkgLy+lDpL/t0dakFz1KfNBRSrr9ViLm7gZDvkEoZf6csR0Z61Jw4/c7OS9VH67Au1f+wgDyhaLags6MRH1KPWMlvyxHNnfgblk2PKOfdI59F2vX2iNTubVYhqtlrE83Js2B4peJ95Y2PaQ1K8aaV2/ZCfLhtRYiRkPd9aeXB4yq/CVpljNvkztCxutt7K2iV0JLkFM9Lr7FPOmoxyyBvscYw+3rf3SCpZ+ITD+0g40pzUuz9hZ9NVVSCY/s99MSZNyvv6sHzS705cvwucp/VI8txovzA2dzzxWj1lCWpP7fNw3SOr5mPqRirmFB77yaSqmO64mNvLlKiMC4S48MlbBQh8odJHiKzvLfxpax7a8r1aF7qmGOKSbj3IBHh8qCuOj2ma8w4+gv0+oS1qckWjhLmuzIVg9vaFjM/lxZskWy91GqRUssaNVkLTd22GEaHSw0Zk/ZLBZcXkb0HQr6P2hRB2bHBx1DwbyRc8ZO2Jj7ZtT3wIvG9er9vRbTf5L9QdZnxi6gFT/JwLjrtqXHWe7Sv8guLuk3fh4M/jwTmmpM+ITsYKrukzEtuU/en/5LOcC5iVnrTM3wMNhd+JIucQsaTkF7iR5MI/T2m0LFoDj4jqXPx5yPz/twojoT+Pl3YGDR1fgR1DiE89P2835qb3uG8bE7t87XIxZeH1OH6RkLj8GasOdow/Xw0VG6tyLfPAbXDUQt1bS3+13FoPoZTOC9fbgV91+lrj1WX/WKVs0RvNvzMGG4+u7mZoz/PrBqd8XXc/KTXFgWtVGaN5tunj96k2QOa10zITCEvncTbu8jI60sFM+cuGTLxHy8ZJL5JBl8qOoPfTEn34Knpb/q5RqU/85HJ0GmSqU4N6clIu0tnOKZsgbnZGdKzyaa5v8Epv9mdqZuT82eXl1fnv5u+WDlcu7G6cmP14dryp7fV99bfEb8SvwV/f1V8JD4Vd8EPPQA+fxF/E/8Q/7x56+bo5vjmRHZ9+y2F+aWo/dw8+y98ezp5</latexit> <latexit sha1_base64="NHBrzuHY/DIiTVSeYz9st2EbBcI=">AAA/v3iczVvpchy3EYady2IuOfmZH5mEViylZBXJuMqpcrlkiaQoWiuREg/J9lrKHsPlWMOd1cwsJWpDv0QeI0+Qyr/kKfIG0SPkX7obwACzi5kGGKfKRJHEYPF1N66+MNufpElRrqz86623v/f9H/zwR+9cWvrxT376s59ffvcXh0U2zQfxwSBLs/xJv1fEaTKOD8qkTOMnkzzunfTT+HH/+Tp+/vg0zoskG++XZ5P4q5PeaJwcJYNeCU3PLn8QdZMy2s2zfq+fpEl5Fg2BaZ70p/h5EfXGw+gYWrJR3jspnl1eXrmxQj/RYmVVVZaF+tnN3v31J6IrhiITAzEVJyIWY1FCPRU9UUD5UqyKFTGBtq/EDNpyqCX0eSzOxRJgp9Arhh49aH0Of0fw9KVqHcMz0iwIPQAuKfzmgIzEFcBk0C+HOnKL6PMpUcbWJtozoomyncH/vqJ1Aq2lOIZWDqd7+uOG0HoEsuHMtI+5hH5/pLEm0HtCLTgLA8VtSrOHI4ys0ZdAYQJtWB/C5znUB4TU6xERpqA5wjXo0ef/pp7Yis8D1Xcq3tBovivz992blysBJRLb4oFYFx1xIDbEptgjedvLEuHWYRwTmOMcJB/BDKG0V0Gaa/B/Dc7UivgIalsgY5/6xDCWSOzC/zOSf0nJGon74pbYF3eJ91Wo34fatYB14nrqvV3QavjvmyVml+W0ImetEpQ0/ilpgFy8au2Le2eoVvOI9kOhTmT7msoZXBePxE7r+iHnMdB/SZrohGYQOc6gfQQy4Q5NgR/qRNzLfxXfiGWofyP+rvZxBHLlamcfEz355E/zT1CQ5vtQzsUlonkAUi9Vo4zgSa5AVu3+njilsxGRJp/CZ/IspbT3xtSrbXQPoJxTTe+aPpQZtZ63ItehuJDrLHILigu5xSI7UFzIDovcheJC7ipkG/YhFBf2Icv1ERQX8hGL3IfiQu6zyEMoLuQhi/wCigv5BYu8A8WFvMMi70FxIe+xyAMoLuQBi9yE4kJuKmTzWUO9lhGdhDlXt6Be54F2KoWWW6x8t0nHurC3PU7loAHLn8sN+O/GbnjMadyA3fTYPUcNWH7/bIGWc2N5bXKXbKQLe5fFbsMOcGO3Wexn4usG7Gce5+V5A5Y/MR2yNy4srz/vw5Mbe5/FPoCaG8tbmR1ocWN3PHT+pAG7y2IfihcNWB+tnzdgeb2/R76YC7vnYTPKBixvNQ7Ad3BjeX16CD6IG8vbnMfQ6sY+ZrFPyGt0YZ+w2M/JO3VhP/ewk68bsNpSSu99RD5gDCe2jVqvOpVYmwC1HsM/rWwL1tBGDVnMqMKMCHPCIrYqxJYnolMhOt5yFZUeLchj5bnsVYg9T0S/sk1YK9n+w6r/kGIzHrFRITbmEG1RAK61HsspeRe6hUOWleXCms+Yskp/Yy1W+6Fd82rETg0h9/Yx7fzrFKtjJDOkuLWZ2nFl4yUyouc2xEuK9fQoNQ8eV1ZawUa9YlF9B6rPos4cqDMWNXWgpizq1IE6ZVHm5Nu4rscOMPOPazGjJx37c7mUeu5iByzuJlg/bNmB/z65lPaoHDMCaCl19Gx0cQ61GUXSJrLboBhZZhpikEz23FE5JnzC3ORMnTqph88rWx4JnfH0p5OQPKOKDvqLEZ2oMDr3qOWc/DtZC8PfrU6+roXhN2nGz8mPl7UwfKmkLy8g+77C7l8AuwfnaaJm39RDacgciqSh65xu3q70JuYrX9HJkW2h/NepJufA1MNoFNYYitoYQmiYuSysuQyjgj6S9G11LQoeyVhFt6YeKkNGtnKs5DBPoSuDfYZqZXQ9jMYu+FXrFFnPrHroDp1UozH1MBqHQubWz8lf1/UwGiN6lvNh6mE0MKfSU9G8qYdqb5wBGSGbuvZZcvJidMY5IevdnkuxPfJFG4MZlaeVB99OyXiezXT6lZ1pl2heu4TIgdZ/anlIdRozscZGP1KGsmZ7F+kY+4sz34FZjODUyrw+l5NOQUKdMYgpS/6UqLVj6iPTuDUWh5rkaA7VVa0l68sZvjKnU297Rq1c1GRGa+axS3q2oL03IY+tQzPLzUOncYWbKHIz1KnNEE8vZO5e0wnO5mZ/hcVN5hCTaqcN6HZI3lK3R5GuWd+z5viKukUpocg7FbN/MRd8RLicIpKMtA3K0sbT7qezPHYb2sPrwmSg5WcRrSjqq1PSGgnd+BSsH6JzudJTntGzoX1A92z1W6tIUZkIeaOKOW7Mdkd0n2nrWo43zpfOn8l6QVrX3KO3344Z9MiBDo0+1sFWPIDaPnjzB/C07xF/mDu3jOY7Fx9U958ZrV97tG3f7HUrGlLbxDX92BYBH9eovAQ07gUZQfvTmKej8d0FSnxE7pLHxJV1vX+F7vT1myM92uHNe7k5SzIkrmvENaIzI+/75dM8BynBzPnJGnmd7aNEfiEcUYNyXJ9anOW8jOldmphiywn5symdNe5s1HvbuaP5TzSnXaHfqsC74oz0Y0TaLwLrlNGejOjXfitHv1sh9UFKGtJH6ySVb+PydBJ2jyV0yuUeke8Lmf0WkyabEn9N1z5dBe1F6edLK3A+t7f1nHTIE4yJa650uznb7bYHkeZNCHuXSIpmr1wl/tfor/7V+2R5YUfgDOMKFErTudYjo0gD56hHNr5dB+m+tpTvVTI8VVIb62dkeq8m2QbFSSgP2uohcB7Qs+SFuyQnuYuFPtKKtmVakfJkbh5xtGhdu0rrj5T9Rbmvk41cpjPXFeYNG+37675chneebzuvOnU/2sX/hbqZ6/qsIcVImOyqnCEu9x5TjGVLmdI7SfLtm1hRWpz1fK5XO58x7cUT6yz/GVp/A3+13PrZj06/phVu0x6QFMyTmRHZEi308ON1u8ZL70xNyzwbfmZP6l52y0WiYqndTGR8Gkxll3bNK5Vr0HWf8e/THZ6ZAd2utcizOQ96X935+VIPo+1PecpS5n0njUo8pLRjHj+qQ5YqH4tr1GuW1gpLC9/GszPq9um0becd8h0G5OHI6GBIpyAhn0a3tsdBkgLy+lDpL/t0dakFz1KfNBRSrr9ViLm7gZDvkEoZf6csR0Z61Jw4/c7OS9VH67Au1f+wgDyhaLags6MRH1KPWMlvyxHNnfgblk2PKOfdI59F2vX2iNTubVYhqtlrE83Js2B4peJ95Y2PaQ1K8aaV2/ZCfLhtRYiRkPd9aeXB4yq/CVpljNvkztCxutt7K2iV0JLkFM9Lr7FPOmoxyyBvscYw+3rf3SCpZ+ITD+0g40pzUuz9hZ9NVVSCY/s99MSZNyvv6sHzS705cvwucp/VI8txovzA2dzzxWj1lCWpP7fNw3SOr5mPqRirmFB77yaSqmO64mNvLlKiMC4S48MlbBQh8odJHiKzvLfxpax7a8r1aF7qmGOKSbj3IBHh8qCuOj2ma8w4+gv0+oS1qckWjhLmuzIVg9vaFjM/lxZskWy91GqRUssaNVkLTd22GEaHSw0Zk/ZLBZcXkb0HQr6P2hRB2bHBx1DwbyRc8ZO2Jj7ZtT3wIvG9er9vRbTf5L9QdZnxi6gFT/JwLjrtqXHWe7Sv8guLuk3fh4M/jwTmmpM+ITsYKrukzEtuU/en/5LOcC5iVnrTM3wMNhd+JIucQsaTkF7iR5MI/T2m0LFoDj4jqXPx5yPz/twojoT+Pl3YGDR1fgR1DiE89P2835qb3uG8bE7t87XIxZeH1OH6RkLj8GasOdow/Xw0VG6tyLfPAbXDUQt1bS3+13FoPoZTOC9fbgV91+lrj1WX/WKVs0RvNvzMGG4+u7mZoz/PrBqd8XXc/KTXFgWtVGaN5tunj96k2QOa10zITCEvncTbu8jI60sFM+cuGTLxHy8ZJL5JBl8qOoPfTEn34Knpb/q5RqU/85HJ0GmSqU4N6clIu0tnOKZsgbnZGdKzyaa5v8Epv9mdqZuT82eXl1fnv5u+WDlcu7G6cmP14dryp7fV99bfEb8SvwV/f1V8JD4Vd8EPPQA+fxF/E/8Q/7x56+bo5vjmRHZ9+y2F+aWo/dw8+y98ezp5</latexit> <latexit sha1_base64="NHBrzuHY/DIiTVSeYz9st2EbBcI=">AAA/v3iczVvpchy3EYady2IuOfmZH5mEViylZBXJuMqpcrlkiaQoWiuREg/J9lrKHsPlWMOd1cwsJWpDv0QeI0+Qyr/kKfIG0SPkX7obwACzi5kGGKfKRJHEYPF1N66+MNufpElRrqz86623v/f9H/zwR+9cWvrxT376s59ffvcXh0U2zQfxwSBLs/xJv1fEaTKOD8qkTOMnkzzunfTT+HH/+Tp+/vg0zoskG++XZ5P4q5PeaJwcJYNeCU3PLn8QdZMy2s2zfq+fpEl5Fg2BaZ70p/h5EfXGw+gYWrJR3jspnl1eXrmxQj/RYmVVVZaF+tnN3v31J6IrhiITAzEVJyIWY1FCPRU9UUD5UqyKFTGBtq/EDNpyqCX0eSzOxRJgp9Arhh49aH0Of0fw9KVqHcMz0iwIPQAuKfzmgIzEFcBk0C+HOnKL6PMpUcbWJtozoomyncH/vqJ1Aq2lOIZWDqd7+uOG0HoEsuHMtI+5hH5/pLEm0HtCLTgLA8VtSrOHI4ys0ZdAYQJtWB/C5znUB4TU6xERpqA5wjXo0ef/pp7Yis8D1Xcq3tBovivz992blysBJRLb4oFYFx1xIDbEptgjedvLEuHWYRwTmOMcJB/BDKG0V0Gaa/B/Dc7UivgIalsgY5/6xDCWSOzC/zOSf0nJGon74pbYF3eJ91Wo34fatYB14nrqvV3QavjvmyVml+W0ImetEpQ0/ilpgFy8au2Le2eoVvOI9kOhTmT7msoZXBePxE7r+iHnMdB/SZrohGYQOc6gfQQy4Q5NgR/qRNzLfxXfiGWofyP+rvZxBHLlamcfEz355E/zT1CQ5vtQzsUlonkAUi9Vo4zgSa5AVu3+njilsxGRJp/CZ/IspbT3xtSrbXQPoJxTTe+aPpQZtZ63ItehuJDrLHILigu5xSI7UFzIDovcheJC7ipkG/YhFBf2Icv1ERQX8hGL3IfiQu6zyEMoLuQhi/wCigv5BYu8A8WFvMMi70FxIe+xyAMoLuQBi9yE4kJuKmTzWUO9lhGdhDlXt6Be54F2KoWWW6x8t0nHurC3PU7loAHLn8sN+O/GbnjMadyA3fTYPUcNWH7/bIGWc2N5bXKXbKQLe5fFbsMOcGO3Wexn4usG7Gce5+V5A5Y/MR2yNy4srz/vw5Mbe5/FPoCaG8tbmR1ocWN3PHT+pAG7y2IfihcNWB+tnzdgeb2/R76YC7vnYTPKBixvNQ7Ad3BjeX16CD6IG8vbnMfQ6sY+ZrFPyGt0YZ+w2M/JO3VhP/ewk68bsNpSSu99RD5gDCe2jVqvOpVYmwC1HsM/rWwL1tBGDVnMqMKMCHPCIrYqxJYnolMhOt5yFZUeLchj5bnsVYg9T0S/sk1YK9n+w6r/kGIzHrFRITbmEG1RAK61HsspeRe6hUOWleXCms+Yskp/Yy1W+6Fd82rETg0h9/Yx7fzrFKtjJDOkuLWZ2nFl4yUyouc2xEuK9fQoNQ8eV1ZawUa9YlF9B6rPos4cqDMWNXWgpizq1IE6ZVHm5Nu4rscOMPOPazGjJx37c7mUeu5iByzuJlg/bNmB/z65lPaoHDMCaCl19Gx0cQ61GUXSJrLboBhZZhpikEz23FE5JnzC3ORMnTqph88rWx4JnfH0p5OQPKOKDvqLEZ2oMDr3qOWc/DtZC8PfrU6+roXhN2nGz8mPl7UwfKmkLy8g+77C7l8AuwfnaaJm39RDacgciqSh65xu3q70JuYrX9HJkW2h/NepJufA1MNoFNYYitoYQmiYuSysuQyjgj6S9G11LQoeyVhFt6YeKkNGtnKs5DBPoSuDfYZqZXQ9jMYu+FXrFFnPrHroDp1UozH1MBqHQubWz8lf1/UwGiN6lvNh6mE0MKfSU9G8qYdqb5wBGSGbuvZZcvJidMY5IevdnkuxPfJFG4MZlaeVB99OyXiezXT6lZ1pl2heu4TIgdZ/anlIdRozscZGP1KGsmZ7F+kY+4sz34FZjODUyrw+l5NOQUKdMYgpS/6UqLVj6iPTuDUWh5rkaA7VVa0l68sZvjKnU297Rq1c1GRGa+axS3q2oL03IY+tQzPLzUOncYWbKHIz1KnNEE8vZO5e0wnO5mZ/hcVN5hCTaqcN6HZI3lK3R5GuWd+z5viKukUpocg7FbN/MRd8RLicIpKMtA3K0sbT7qezPHYb2sPrwmSg5WcRrSjqq1PSGgnd+BSsH6JzudJTntGzoX1A92z1W6tIUZkIeaOKOW7Mdkd0n2nrWo43zpfOn8l6QVrX3KO3344Z9MiBDo0+1sFWPIDaPnjzB/C07xF/mDu3jOY7Fx9U958ZrV97tG3f7HUrGlLbxDX92BYBH9eovAQ07gUZQfvTmKej8d0FSnxE7pLHxJV1vX+F7vT1myM92uHNe7k5SzIkrmvENaIzI+/75dM8BynBzPnJGnmd7aNEfiEcUYNyXJ9anOW8jOldmphiywn5symdNe5s1HvbuaP5TzSnXaHfqsC74oz0Y0TaLwLrlNGejOjXfitHv1sh9UFKGtJH6ySVb+PydBJ2jyV0yuUeke8Lmf0WkyabEn9N1z5dBe1F6edLK3A+t7f1nHTIE4yJa650uznb7bYHkeZNCHuXSIpmr1wl/tfor/7V+2R5YUfgDOMKFErTudYjo0gD56hHNr5dB+m+tpTvVTI8VVIb62dkeq8m2QbFSSgP2uohcB7Qs+SFuyQnuYuFPtKKtmVakfJkbh5xtGhdu0rrj5T9Rbmvk41cpjPXFeYNG+37675chneebzuvOnU/2sX/hbqZ6/qsIcVImOyqnCEu9x5TjGVLmdI7SfLtm1hRWpz1fK5XO58x7cUT6yz/GVp/A3+13PrZj06/phVu0x6QFMyTmRHZEi308ON1u8ZL70xNyzwbfmZP6l52y0WiYqndTGR8Gkxll3bNK5Vr0HWf8e/THZ6ZAd2utcizOQ96X935+VIPo+1PecpS5n0njUo8pLRjHj+qQ5YqH4tr1GuW1gpLC9/GszPq9um0becd8h0G5OHI6GBIpyAhn0a3tsdBkgLy+lDpL/t0dakFz1KfNBRSrr9ViLm7gZDvkEoZf6csR0Z61Jw4/c7OS9VH67Au1f+wgDyhaLags6MRH1KPWMlvyxHNnfgblk2PKOfdI59F2vX2iNTubVYhqtlrE83Js2B4peJ95Y2PaQ1K8aaV2/ZCfLhtRYiRkPd9aeXB4yq/CVpljNvkztCxutt7K2iV0JLkFM9Lr7FPOmoxyyBvscYw+3rf3SCpZ+ITD+0g40pzUuz9hZ9NVVSCY/s99MSZNyvv6sHzS705cvwucp/VI8txovzA2dzzxWj1lCWpP7fNw3SOr5mPqRirmFB77yaSqmO64mNvLlKiMC4S48MlbBQh8odJHiKzvLfxpax7a8r1aF7qmGOKSbj3IBHh8qCuOj2ma8w4+gv0+oS1qckWjhLmuzIVg9vaFjM/lxZskWy91GqRUssaNVkLTd22GEaHSw0Zk/ZLBZcXkb0HQr6P2hRB2bHBx1DwbyRc8ZO2Jj7ZtT3wIvG9er9vRbTf5L9QdZnxi6gFT/JwLjrtqXHWe7Sv8guLuk3fh4M/jwTmmpM+ITsYKrukzEtuU/en/5LOcC5iVnrTM3wMNhd+JIucQsaTkF7iR5MI/T2m0LFoDj4jqXPx5yPz/twojoT+Pl3YGDR1fgR1DiE89P2835qb3uG8bE7t87XIxZeH1OH6RkLj8GasOdow/Xw0VG6tyLfPAbXDUQt1bS3+13FoPoZTOC9fbgV91+lrj1WX/WKVs0RvNvzMGG4+u7mZoz/PrBqd8XXc/KTXFgWtVGaN5tunj96k2QOa10zITCEvncTbu8jI60sFM+cuGTLxHy8ZJL5JBl8qOoPfTEn34Knpb/q5RqU/85HJ0GmSqU4N6clIu0tnOKZsgbnZGdKzyaa5v8Epv9mdqZuT82eXl1fnv5u+WDlcu7G6cmP14dryp7fV99bfEb8SvwV/f1V8JD4Vd8EPPQA+fxF/E/8Q/7x56+bo5vjmRHZ9+y2F+aWo/dw8+y98ezp5</latexit> Probability Distributions in Data Sciences