Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Pigeons to Padlocks: 5000 years of Network Secu...

Pigeons to Padlocks: 5000 years of Network Security

Want to learn more about data networks & security? This high-level survey of centuries of data networking takes the audience all the way from homing pigeons in ancient Egypt to Napoleon's semaphore network to HTTPS, concluding with practical advice for how the audience can maximize HTTPS security.

luke crouch

October 23, 2024
Tweet

More Decks by luke crouch

Other Decks in Technology

Transcript

  1. About Me: Luke • Not a networking expert
 • Web

    dev who got into Security
 • Always been scared of cryptography
  2. • Focus on networking • 5000 years of networking in

    35 minutes • Don’t take notes • Slides are at speakerdeck.com/groovecoder
  3. 5000 years in 35 minutes • Intro & CIA model

    • Beacons • Messengers • Hydraulic Telegraph • Torch Telegraphs • Optical/Semaphore Telegraph Networks • Electric Telegraphs • Telephone Network • Internet & HTTPS
  4. 5000 years in 40 minutes • Intro & CIA (Con

    fi dentiality, Integrity, Availability) • Beacons • Messengers • Hydraulic Telegraph • Torch Telegraphs • Optical/Semaphore Telegraph Networks • Electric Telegraphs • Telephone Network • Internet & HTTPS
  5. Bits latency (seconds) Bandwidth (bps) Fire beacons 1 28,000 0.00003

    Messenger Relay Network 680,000 324,000 2.09
  6. Scytale, ~700 BCE - 120 AD Algorithm Wrap message around

    a cylinder Key Diameter of cylinder
  7. Plain alphabet: 01100001 01100010 01100011 01100100 01100101 01100110 01100111 01101000

    01101001 01101010 01101011 01101100 01101101 01101110 01101111 01110000 01110001 01110010 01110011 01110100 01110101 01110110 01110111 01111000 01111001 01111010 Cipher alphabet: 01101010 01110101 01101100 01101001 01110011 01100011 01100001 01100101 01110010 01110100 01110110 01110111 01111000 01111001 01111010 01100010 01100100 01100110 01100111 01101000 01101011 01101101 01101110 01101111 01110000 01110001 01000100 01100101 01100110 01100101 01101110 01100100 00100000 01110100 01101000 01100101 00100000 01100101 01100001 01110011 01110100 00100000 01110111 01100001 01101100 01101100 01001001 01010011 01000011 01010011 01011001 01001001 00100000 01001000 01000101 01010011 00100000 01010011 01001010 01000111 01001000 00100000 01001110 01001010 01010111 01010111
  8. XOR

  9. AES

  10. Alice, Bob, and Eve • Alice needs to send secret

    data to Bob • They need to share a secret key • They only have public Internet between them • i.e., “Eve is always eavesdropping” • How can they share a secret, but NOT share it with Eve?
  11. Diffie-Hellman Key Exchange Algorithms • Modular arithmetic • Eliptic Curves

    • Galois Fields • Lattices • Note: quantum-safe
  12. AES

  13. Questions? • CIA model • Beacons • Messengers • Hydraulic

    Telegraph • Torch Telegraph • Optical Semaphore Telegraph • Electric Telegraph • Telephone Network • Internet & HTTPS • Let’s Encrypt • MDN HTTP Observatory • Math?
  14. ? mod 12 ≡ 10 22 mod 12 ≡ 10

    34 mod 12 ≡ 10 46 mod 12 ≡ 10 58 mod 12 ≡ 10 70 mod 12 ≡ 10 .. mod 12 ≡ 10 … impossible to reverse!
  15. For small numbers, it’s easy, but not for a large

    prime modulus. https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/dif fi e-hellman-key-exchange-part-2
  16. Alice and Bob publicly agree on a generator and prime

    modulus https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/dif fi e-hellman-key-exchange-part-2
  17. Alice picks a private number, and sends the result to

    Bob https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/dif fi e-hellman-key-exchange-part-2
  18. Bob picks a private number, and sends the result to

    Alice https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/dif fi e-hellman-key-exchange-part-2
  19. So, they did the same calculation with exponents in different

    order, which doesn’t affect the result