Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Cryptography: 500 BC to Quantum Computing

Ec25d046746de3be33779256f6957d8f?s=47 luke crouch
October 22, 2019

Cryptography: 500 BC to Quantum Computing

Have you always wanted to learn more about cryptography? This high-level survey of crypto takes the audience all the way from Scytales and Caesar ciphers in ancient Greece, to Vigenere Square, to Enigma in World War II, to TLS, and even Post-Quantum Cryptography!

Ec25d046746de3be33779256f6957d8f?s=128

luke crouch

October 22, 2019
Tweet

Transcript

  1. Cryptography: 500 BC - Quantum Computing

  2. None
  3. About me I’m not a crypto engineer I’m a web

    developer
 who got into
 Security Engineering I’ve always been scared
 and fascinated by crypto
  4. About this talk 2700 years in 40 minutes Don’t take

    notes Slides are already up at:
 speakerdeck.com/groovecoder
  5. 2 “stories” of cryptography

  6. technology

  7. code-makers 
 vs.
 code-breakers

  8. Thru-out this talk, I’m going to track this with a

    timeline …
  9. “Ages” “Code-making” “Code-breaking”

  10. “Ages” of technology Ancient: 7m Renaissance: 5m Industrial: 7m Computing:

    12m Quantum: 5m
  11. Ancient Code-making

  12. T ranspositional/Permutation
 Ciphers Anagrams: move letters around

  13. Permutation Cipher For example, consider this short sentence 35 letters

    50,000,000,000,000,000,000,000,000,000,000
 (50 trillion trillion) permutations
  14. “Strength” of encryption systems: How “easy” or “hard” are they?

  15. Time Complexity

  16. Permutation Cipher EXPERIMENTATIONS FRESH CHORD LOSS 50,000,000,000,000,000,000,000,000,000,000
 (50 trillion trillion)

    permutations 1 check/second =
 1,500,000,000,000,000,000,000,000 years
 (1 trillion billion years)
  17. Drawbacks of random permutation cipher Impossible for intended recipient too

    False positives: which anagram is right? Do Not Attack at Midnight Attack at Mind: do T onight
  18. We need a
 deterministic way to encrypt & decrypt

  19. Algorithms & Keys

  20. Rail fence cipher http://crypto.interactive-maths.com/rail-fence-cipher.html

  21. Rail fence cipher key = 4 http://crypto.interactive-maths.com/rail-fence-cipher.html they are attacking

    from the north
  22. Rail fence cipher; k=4 http://crypto.interactive-maths.com/rail-fence-cipher.html they are attacking from the

    north
  23. Rail fence cipher; k=4 http://crypto.interactive-maths.com/rail-fence-cipher.html they are attacking from the

    north TEKOOHRACIRMNREATANFTETYTGHH
  24. Rail fence cipher; k=4 http://crypto.interactive-maths.com/rail-fence-cipher.html they are attacking from the

    north TEKOOHRACIRMNREATANFTETYTGHH they are attacking from the north
  25. Machines for cryptography

  26. Scytale, ~700 BCE - 120 AD Algorithm Wrap message around

    a cylinder Key Diameter of cylinder
  27. Ancient Scytale ~700 BC

  28. Cryptanalysis Breaking encrypted messages

  29. Breaking rail fence cipher http://crypto.interactive-maths.com/rail-fence-cipher.html “Naive Brute Force” 
 key

    search:
 T ry a bunch of numbers of rows by hand
  30. Breaking rail fence cipher DELEHELFTAAEDSWNT 2 rows: daealeedhsewlnftt 3 rows:

    deslefwtlanaeetdh 4 rows: detwaheeanellfdts 5 rows: defend the east wall
  31. So, the first cryptanalysis is simply “naive brute force” 


    key searching
  32. “Key space” How many possible keys are there?

  33. Breaking a Scytale “Naive Brute Force”
 key search:
 T ry

    a bunch of cylinders
  34. Ancient Scytale ~700 BC Brute Force Key Search

  35. Substitutional Cipher Change letters into other letters

  36. Caesar Cipher, 49 - 44 BC Algorithm Replace each letter

    with another letter Key K positions down the alphabet
  37. Caesar (Shift) Cipher Plain alphabet: abcdefghijklmnopqrstuvwxyz Cipher alphabet: DEFGHIJKLMNOPQRSTUVWXZYABC

  38. Ancient Steganography,
 Scytale ~700 BC Brute Force Key Search Caesar

    Cipher ~50 BC
  39. Breaking a Caesar Cipher “Naive Brute Force” 
 key search:


    26 possible shifts
  40. Can we give ourselves a really large key space?
 


    So it would take an attacker a long time to search them all?
  41. Non-shifted Random Substitution Algorithm Replace each letter with another letter

    Key Any Cipher Alphabet (An anagram of the alphabet! such meta!)
  42. Non-shifted Substitutional Cipher 26 letters to re-arrange Key space: 403,291,461,000,000,000,000,000,000


    (403 trillion trillion or ~288)
 possible re-arrangements (English) 120,000,000,000,000,000,000
 (120 billion billion)
 years at 1 check/s
  43. Most crypto-systems don’t try to offer “perfect” encryption …

  44. … most crypto systems try to force attackers into 


    key searches that take too long to complete
  45. Non-shifted Substitutional Cipher 26 letters to re-arrange Key space: 403,291,461,000,000,000,000,000,000


    (403 trillion trillion or ~288)
 possible re-arrangements (English) 120,000,000,000,000,000,000
 (120 billion billion)
 years at 1 check/s
  46. Key: XZAVOIDBYGERSPCFHJKLMNQTUW

  47. Can we create a
 “pseudo-random” key that is easy to

    memorize?
  48. Easy to memorize key JULIUS CAESAR
 JULISCAER

  49. Easy to memorize key Cipher alphabet: JULISCAERTVWXYZBDFGHKMNOPQ JULIUS CAESAR
 JULISCAER

  50. Easy to memorize key Plain alphabet: abcdefghijklmnopqrstuvwxyz Cipher alphabet: JULISCAERTVWXYZBDFGHKMNOPQ

    JULIUS CAESAR
 JULISCAER Note: smaller key space
  51. “key derivation function” Cipher alphabet: JULISCAERTVWXYZBDFGHKMNOPQ JULIUS CAESAR

  52. Plain alphabet: abcdefghijklmnopqrstuvwxyz Cipher alphabet: JULISCAERTVWXYZBDFGHKMNOPQ Defend the East wall

    ISCSYI HES SJGH NJWW
  53. Ancient Steganography,
 Scytale ~700 BC Brute Force Key Search Caesar

    Cipher ~50 BC Non-shifted
 Substitution
 Cipher
  54. So, we’ve got a simple crypto- system that would take

    decades for hundreds of thousands of computers to break!
  55. npm install keyed-substitution-cipher git commit -m
 “lulz crypto”

  56. Non-shifted Substitution Cipher considered un-breakable for ~800 years, until …

  57. ةامعملا بتكلا جارختسا يف ةلاسر (On Decrypting Encrypted Correspondence) يدنكلا

    حاّبصلا قاحسإ نب بوقعي فسوي وبأ
 (Abu Yūsuf Yaʻqūb ibn ʼIsḥāq aṣ-Ṣabbāḥ al-Kindī)
 Al-Kindi 801-873 AD
  58. Frequency Analysis Attack

  59. None
  60. “PCQ VMJYPD LBYK LYSO KBXBJXWXV BXV ZCJPO EYPD KBXBJYUXJ LBJOO

    KCPK. CP LBO LBCMKXPV XPV IYJKL PYDBL, QBOP KBO BXV OPVOV LBO LXRO CI SX’XJMI, KBO JCKO XPV EYKKOV LBO DJCMPV ZOICJO BYS, KXUYPD: “DJOXL EYPD, ICJ X LBCMKXPV XPV CPO PYDBLK Y BXNO ZOOP JOACMPLYPD LC UCM LBO IXZROK CI FXKL XDOK XPV LBO RODOPVK CI XPAYOPL EYPDK. SXU Y SXEO KC ZCRV XK LC AJXNO X IXNCMJ CI UCMJ SXGOKLU?” –OFYRCDMO, LXROK IJCS LBO LBCMKXPV XPV CPO PYDBLK
  61. Plain alphabet: abcdefghijklmnopqrstuvwxyz Cipher alphabet: ??????????????????????????

  62. Likeliest plaintext letters O = e X = t P

    = a
  63. English frequency rules Vowels appear before and after most other

    letters Consonants avoid many letters E.g., ‘e’ appears before/after virtually every other letter; while ’t’ is rarely seen before or after ‘b’, ‘d’, ‘g’, ‘j’, ‘k’, ‘m’, ‘q’, ‘v’ “ee” occurs more than “oo” occurs more than other double-vowels “a” occurs on its own often - more than “I” on its own ‘h’ frequently goes before ‘e’ but rarely after ‘e’
  64. Cipher O = e X = a Y = i

    B = h P = t ?
  65. “PCQ VMJiPD LhiK LiSe KhahJaWaV haV ZCJPe EiPD KhahJiUaJ LhJee

    KCPK. CP Lhe LhCMKaPV aPV IiJKL PiDhL, QheP Khe haV ePVeV Lhe LaRe CI Sa’aJMI, Khe JCKe aPV EiKKeV Lhe DJCMPV ZeICJe hiS, KaUiPD: “DJeaL EiPD, ICJ a LhCMKaPV aPV CPe PiDhLK i haNe ZeeP JeACMPLiPD LC UCM Lhe IaZReK CI FaKL aDeK aPV Lhe ReDePVK CI aPAiePL EiPDK. SaU i SaEe KC ZCRV aK LC AJaNe a IaNCMJ CI UCMJ SaGeKLU?” –eFiRCDMe, LaReK IJCS Lhe LhCMKaPV aPV CPe PiDhLK
  66. “PCQ VMJiPD LhiK LiSe KhahJaWaV haV ZCJPe EiPD KhahJiUaJ LhJee

    KCPK. CP Lhe LhCMKaPV aPV IiJKL PiDhL, QheP Khe haV ePVeV Lhe LaRe CI Sa’aJMI, Khe JCKe aPV EiKKeV Lhe DJCMPV ZeICJe hiS, KaUiPD: “DJeaL EiPD, ICJ a LhCMKaPV aPV CPe PiDhLK i haNe ZeeP JeACMPLiPD LC UCM Lhe IaZReK CI FaKL aDeK aPV Lhe ReDePVK CI aPAiePL EiPDK. SaU i SaEe KC ZCRV aK LC AJaNe a IaNCMJ CI UCMJ SaGeKLU?” –eFiRCDMe, LaReK IJCS Lhe LhCMKaPV aPV CPe PiDhLK “Lhe” 6 times
  67. “Lhe” Plain alphabet: abcdefghijklmnopqrstuvwxyz Cipher alphabet: X???O??BY??????????L?????? “the”

  68. “PCQ VMJiPD thiK tiSe KhahJaWaV haV ZCJPe EiPD KhahJiUaJ thJee

    KCPK. CP the thCMKaPV aPV IiJKt PiDht, QheP Khe haV ePVeV the taRe CI Sa’aJMI, Khe JCKe aPV EiKKeV the DJCMPV ZeICJe hiS, KaUiPD: “DJeat EiPD, ICJ a thCMKaPV aPV CPe PiDhtK i haNe ZeeP JeACMPtiPD tC UCM the IaZReK CI FaKt aDeK aPV the ReDePVK CI aPAiePt EiPDK. SaU i SaEe KC ZCRV aK tC AJaNe a IaNCMJ CI UCMJ SaGeKtU?” –eFiRCDMe, taReK IJCS the thCMKaPV aPV CPe PiDhtK “aPV” 5 times
  69. “aPV” Plain alphabet: abcdefghijklmnopqrstuvwxyz Cipher alphabet: X??VO??BY????P?????L?????? “and”

  70. None
  71. “now during this time shahra[qxzj]ad had borne king shahriyar three

    sons. on the thousand and first night, when she had ended the tale of ma’aruf, she rose and kissed the ground before him, saying: “great king, for a thousand and one nights i have been recounting to you the fables of past ages and the legends of ancient kings. may i make so bold as to crave a favour of your ma[qxzj]esty?” –epilogue, tales from the thousand and one nights Plain alphabet: abcdefghijklmnopqrstuvwxyz Cipher alphabet: XZAVOIDBY?ERSPCF?JKLMNQ?U?
  72. Frequency Analysis: An analytical attack faster than naive brute force

    key search
  73. Ancient Steganography,
 Scytale ~700 BC Brute Force Key Search Caesar

    Cipher ~50 BC Non-shifted
 Substitution
 Cipher Frequency
 Analysis
 ~800 AD
  74. Frequency Analysis considered indefensible for ~800 years

  75. Code-makers needed a
 crypto-system that wasn’t vulnerable to
 Frequency Analysis

  76. Leon Battista Alberti 1404-1472 “poly-alphabetic” cipher

  77. D M B X K I V A S Z

    N P L Y F C J O R T E Q H WG U Z J D P A I Q H T WL F B G O X N H U K R C Y V S E a b c d e f g h i j k l m n o p q r s t u v w x y z Poly-alphabetic Substitution Cipher
  78. D M B X K I V A S Z

    N P L Y F C J O R T E Q H WG U Z J D P A I Q H T WL F B G O X N H U K R C Y V S E a b c d e f g h i j k l m n o p q r s t u v w x y z “secret” “R?????” Poly-alphabetic Substitution Cipher
  79. D M B X K I V A S Z

    N P L Y F C J O R T E Q H WG U Z J D P A I Q H T WL F B G O X N H U K R C Y V S E a b c d e f g h i j k l m n o p q r s t u v w x y z “secret” “RA????” Poly-alphabetic Substitution Cipher
  80. D M B X K I V A S Z

    N P L Y F C J O R T E Q H WG U Z J D P A I Q H T WL F B G O X N H U K R C Y V S E a b c d e f g h i j k l m n o p q r s t u v w x y z “secret” “RAB???” Poly-alphabetic Substitution Cipher
  81. D M B X K I V A S Z

    N P L Y F C J O R T E Q H WG U Z J D P A I Q H T WL F B G O X N H U K R C Y V S E “RABH??” a b c d e f g h i j k l m n o p q r s t u v w x y z “secret” Poly-alphabetic Substitution Cipher
  82. D M B X K I V A S Z

    N P L Y F C J O R T E Q H WG U Z J D P A I Q H T WL F B G O X N H U K R C Y V S E “RABHK?” a b c d e f g h i j k l m n o p q r s t u v w x y z “secret” Poly-alphabetic Substitution Cipher
  83. D M B X K I V A S Z

    N P L Y F C J O R T E Q H WG U Z J D P A I Q H T WL F B G O X N H U K R C Y V S E a b c d e f g h i j k l m n o p q r s t u v w x y z “secret” “RABHKK” Poly-alphabetic Substitution Cipher
  84. False frequencies ‘e’ is enciphered as both ‘A’ and ‘K’

    ‘K’ is deciphered as both ‘e’ and ‘t’ “secret” “RABHKK”
  85. Ancient Steganography,
 Scytale Brute Force Key Search Caesar Shift Non-shifted


    Substitution Frequency
 Analysis
 ~800 AD Homophonic Substitution Renaissance Poly-alphabetic Substitution ~1450 AD
  86. Poly-alphabetic beats frequency analysis, but …

  87. Poly-alphabetic ciphers are complex D M B X K I

    V A S Z N P L Y F C J O R T E Q H WG U Z J D P A I Q H T WL F B G O X N H U K R C Y V S E a b c d e f g h i j k l m n o p q r s t u v w x y z D M B X K I V A S Z N P L Y F C J O R T E Q H WG U Z J D P A I Q H T WL F B G O X N H U K R C Y V S E D M B X K I V A S Z N P L Y F C J O R T E Q H WG U Z J D P A I Q H T WL F B G O X N H U K R C Y V S E
  88. Keyword
 SECRET D M B X K I V A

    S Z N P L Y F C J O R T E Q H WG U Z J D P A I Q H T WL F B G O X N H U K R C Y V S E a b c d e f g h i j k l m n o p q r s t u v w x y z
  89. Le Chiffre Indéchiffrable created by Blaise de Vigenère 1523 -

    1596 Created new
 poly-alphabetic cipher
  90. Vigenère Square

  91. a b c d e f g h i j

    k l m n o p q r s t u v w x y z B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H I J K L M N O P Q R S T U V W X Y Z A B C D E F G I J K L M N O P Q R S T U V W X Y Z A B C D E F G H J K L M N O P Q R S T U V W X Y Z A B C D E F G H I K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N O P Q R S T U V W X Y Z A B C D E F G H I J K L M O P Q R S T U V W X Y Z A B C D E F G H I J K L M N P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R S T U V W X Y Z A B C D E F G H I J K L M N O P Q S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V W X Y Z A B C D E F G H I J K L M N O P Q R S T U W X Y Z A B C D E F G H I J K L M N O P Q R S T U V X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z A B C D E F G H I J K L M N O P Q R S T U V W X Y A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  92. Repeat keyword for all of text Plaintext: AttackFromTheSouthAtDawn Ciphertext: ????????????????????????

    Keyword: SECRETSECRETSECRETSECRET
  93. a b c d e f g h i j

    k l m n o p q r s t u v w x y z B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H I J K L M N O P Q R S T U V W X Y Z A B C D E F G I J K L M N O P Q R S T U V W X Y Z A B C D E F G H J K L M N O P Q R S T U V W X Y Z A B C D E F G H I K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N O P Q R S T U V W X Y Z A B C D E F G H I J K L M O P Q R S T U V W X Y Z A B C D E F G H I J K L M N P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R S T U V W X Y Z A B C D E F G H I J K L M N O P Q S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V W X Y Z A B C D E F G H I J K L M N O P Q R S T U W X Y Z A B C D E F G H I J K L M N O P Q R S T U V X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z A B C D E F G H I J K L M N O P Q R S T U V W X Y A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ciphertext: S??????????????????????? Plaintext: AttackFromTheSouthAtDawn Keyword: SECRETSECRETSECRETSECRET S
  94. a b c d e f g h i j

    k l m n o p q r s t u v w x y z B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H I J K L M N O P Q R S T U V W X Y Z A B C D E F G I J K L M N O P Q R S T U V W X Y Z A B C D E F G H J K L M N O P Q R S T U V W X Y Z A B C D E F G H I K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N O P Q R S T U V W X Y Z A B C D E F G H I J K L M O P Q R S T U V W X Y Z A B C D E F G H I J K L M N P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R S T U V W X Y Z A B C D E F G H I J K L M N O P Q S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V W X Y Z A B C D E F G H I J K L M N O P Q R S T U W X Y Z A B C D E F G H I J K L M N O P Q R S T U V X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z A B C D E F G H I J K L M N O P Q R S T U V W X Y A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ciphertext: SX?????????????????????? Plaintext: AttackFromTheSouthAtDawn Keyword: SECRETSECRETSECRETSECRET X
  95. a b c d e f g h i j

    k l m n o p q r s t u v w x y z B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H I J K L M N O P Q R S T U V W X Y Z A B C D E F G I J K L M N O P Q R S T U V W X Y Z A B C D E F G H J K L M N O P Q R S T U V W X Y Z A B C D E F G H I K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N O P Q R S T U V W X Y Z A B C D E F G H I J K L M O P Q R S T U V W X Y Z A B C D E F G H I J K L M N P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R S T U V W X Y Z A B C D E F G H I J K L M N O P Q S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V W X Y Z A B C D E F G H I J K L M N O P Q R S T U W X Y Z A B C D E F G H I J K L M N O P Q R S T U V X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z A B C D E F G H I J K L M N O P Q R S T U V W X Y A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ciphertext: SXV????????????????????? Plaintext: AttackFromTheSouthAtDawn Keyword: SECRETSECRETSECRETSECRET V
  96. Plaintext: AttackFromTheSouthAtDawn Ciphertext: SXVRGDXVQDXAWWQLXASXFRAG Keyword: SECRETSECRETSECRETSECRET

  97. Ancient Steganography,
 Scytale Brute Force Key Search Caesar Shift Non-shifted


    Substitution Frequency
 Analysis
 ~800 AD Homophonic Substitution Renaissance Poly-alphabetic Substitution Le Chiffre Indéchiffrable ~1550 AD
  98. Industrial Revolution ~1760 - 1840

  99. “Black Chambers” • 1700s • “Assembly-line” Cryptanalysis • Each European

    power had one • Breaking all mono-alphabetic ciphers • Encouraged adoption of Vigenère Square for
 poly-alphabetic ciphers
  100. Ancient Steganography,
 Scytale Brute Force Key Search Caesar Shift Non-shifted


    Substitution Frequency
 Analysis Homophonic Substitution Renaissance Poly-alphabetic Substitution Le Chiffre Indéchiffrable ~1550 AD Assembly-line Frequency Analysis ~1700’s Industrial
  101. Charles Babbage • 1791 - 1871 • 1854: Broke Vigenère

    Cipher • Without machinery
  102. REPEATING KEYWORD Plaintext: AttackFromTheSouthAtDawn Ciphertext: SXVRGDXVQDXAWWQLXASXFRAG Keyword: SECRETSECRETSECRETSECRET

  103. False SYMBOL frequencies • ‘e’ is enciphered as both ‘A’

    and ‘K’ • ‘K’ is deciphered as both ‘e’ and ‘t’ “secret” “RABHKK”
  104. Word frequencies

  105. Plaintext: thesunandthemaninthemoon Ciphertext: DPRYEVNTNBUKWIAOXBUKWWBT Keyword: KINGKINGKINGKINGKINGKING

  106. Plaintext: thesunandthemaninthemoon Ciphertext: DPRYEVNTNBUKWIAOXBUKWWBT Keyword: KINGKINGKINGKINGKINGKING

  107. Breaking Vigenère • Look for repeated sequences of letters •

    Measure spacing between repetitions • Identify most likely length of key: L
  108. Cipher text WUBEFIQLZURMVOFEHMYMWTIXCQTMPIFKRZUPMVOIRQMM WOZMPULMBNYVQQQMVMVJLEYMHFEFNZPSDLPPSDLPEVQM WCXYMDAVQEEFIQCAYTQOWCXYMWMSEMEFCFWYEYQETRLI QYCGMTWCWFBSMYFPLRXTQYEEXMRULUKSGWFPTLRQAERL UVPMVYQYCXTWFQLMTELSFJPQEHMOZCIWCIWFPZSLMAEZ IQVLQMZVPPXAWCSMZMORVGVVQSZETRLQZPBJAZVQIYXE WWOICCGDWHQMMVOWSGNTJPFPPAYBIYBJUTWRLQKLLLMD PYVACDCFQNZPIFPPKSDVPTIDGXMQQVEBMQALKEZMGCVK

    UZKIZBZLIUAMMVZ
  109. REPETITIONS EFIQ, PSDLP, WCXYM, ETRL WUBEFIQLZURMVOFEHMYMWTIXCQTMPIFKRZUPMVOIRQMM WOZMPULMBNYVQQQMVMVJLEYMHFEFNZPSDLPPSDLPEVQM WCXYMDAVQEEFIQCAYTQOWCXYMWMSEMEFCFWYEYQETRLI QYCGMTWCWFBSMYFPLRXTQYEEXMRULUKSGWFPTLRQAERL UVPMVYQYCXTWFQLMTELSFJPQEHMOZCIWCIWFPZSLMAEZ

    IQVLQMZVPPXAWCSMZMORVGVVQSZETRLQZPBJAZVQIYXE WWOICCGDWHQMMVOWSGNTJPFPPAYBIYBJUTWRLQKLLLMD PYVACDCFQNZPIFPPKSDVPTIDGXMQQVEBMQALKEZMGCVK UZKIZBZLIUAMMVZ
  110. spacing between repetitions Repetition Spacing Possible Length of Key 2

    3 4 5 6 7 8 9 10 11 121314 15 1617181920 EFIQ 95 ✓ ✓ PSDLP 5 ✓ WCXYM 20 ✓ ✓ ✓ ✓ ✓ ETRL 120 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
  111. 5 separate cipher texts WIREWQFPROLVVEESSV XVITXSCYLGWYXELWRL VXLSECWLQPSRQRBQCH OTPYWLCNPVGVAMZUZ WIREWQFPROLVVEESSV XVITXSCYLGWYXELWRL

    VXLSECWLQPSRQRBQCH OTPYWLCNPVGVAMZUZ WIREWQFPROLVVEESSV XVITXSCYLGWYXELWRL VXLSECWLQPSRQRBQCH OTPYWLCNPVGVAMZUZ WIREWQFPROLVVEESSV XVITXSCYLGWYXELWRL VXLSECWLQPSRQRBQCH OTPYWLCNPVGVAMZUZ WIREWQFPROLVVEESSV XVITXSCYLGWYXELWRL VXLSECWLQPSRQRBQCH OTPYWLCNPVGVAMZUZ Break each with frequency analysis
  112. Ancient Steganography,
 Scytale Brute Force Key Search Caesar Shift Non-shifted


    Substitution Frequency
 Analysis
 ~800 AD Homophonic Substitution Renaissance Poly-alphabetic Substitution Le Chiffre Indéchiffrable ~1550 AD Assembly-line Frequency Analysis ~1700’s Industrial Babbage Frequency Analysis ~1800’s
  113. Electric Telegraphs • Buried underground or suspended overhead • 1844


    60km wire between Baltimore & Washington DC
  114. How can you represent letters and words as electrical signals?

  115. Morse Code: “Encoding” not “Encryption”

  116. I.e., this is still “plaintext”

  117. Radio, 1899-1901 • 3,000 km from Cornwall to to Newfoundland

    • Transatlantic communication • Instant military commands • All messages reach enemy too • Increases need for encryption
  118. Enigma: Electrical Encryption • Arthur Scherbius, 1918 • Mass Production

    in 1925 CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=497329
  119. Input Keyboard Rotors Output Lampboard

  120. By User:RadioFan, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30719651

  121. By MesserWoland - Own work based on Image:Enigma-action.pnj by Jeanot;

    original diagram by Matt Crypto, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1794494
  122. 3 rotors of 26 wirings 26 x 26 x 26

    = 17,576 Cipher Alphabets
  123. 17,576 orientations x 6 arrangements = 105,456 Cipher Alphabets

  124. 105,456 possible keys • A new key was used every

    day • Assume 1 orientation check per minute • (Just type ciphertext and look at plaintext) • 96 enigma machines = .75 days to crack
  125. Plugboard By Bob Lord - German Enigma Machine, uploaded in

    english wikipedia on 16. Feb. 2005 by en:User:Matt Crypto, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=258976 Swap up to 6 of 26 letters
  126. 100,391,791,500 Plugboard Settings

  127. 10,586,916,711,696 (10 trillion) Total Possible Keys

  128. 10,586,916,711,696 possible keys • At 1 check per minute: •

    38,291,799 enigma machines = 1 day to crack
  129. Message Keys • Using day key, send a message rotor

    orientation first. 
 E.g., A, S, D • Send it at the beginning, twice for integrity. 
 E.g., ‘asdasd’ = QWERTY • Receiver types QWERTY, sees ‘asdasd’ • Re-orients their rotors to A, S, D for the rest of the message • Minimizes amount of ciphertext created by day key
  130. Is cracking Enigma possible? • At 1 check per minute:

    • 38,291,799 enigma machines = 1 day to crack 
 
 A SINGLE MESSAGE!
  131. Ancient Steganography,
 Scytale Brute Force Key Search Caesar Shift Non-shifted


    Substitution Frequency
 Analysis
 ~800 AD Homophonic Substitution Renaissance Poly-alphabetic Substitution Le Chiffre Indéchiffrable Assembly-line Frequency Analysis Industrial Babbage Frequency Analysis One-Time Pad Enigma ~1925
  132. Cracking Enigma

  133. Polish Biuro Szyfrów • Established after WWI to protect Poland

    from Russian & Germany • Received photographs of Enigma instruction manual from French espionage • Deduced rotor wirings • Usage of codebook A. Jankowski "Warszawa" Publisher:Wydawnictwo Polskie, Poznań, 
 Public Domain, https://commons.wikimedia.org/w/index.php?curid=1514113
  134. Marian Rejewski By Unknown - Rejewski's daughter's private archive, CC

    BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=216461
  135. Found “chain” cycles
 in the first 6 letters 4th Letter:

    FQHPLWOGBMVRXUYCZITNJEASDK 1st Letter: ABCDEFGHIJKLMNOPQRSTUVWXYZ 3 links: A-F-W-A
  136. Found “chain” loops
 in the first 6 letters 4th Letter:

    FQHPLWOGBMVRXUYCZITNJEASDK 1st Letter: ABCDEFGHIJKLMNOPQRSTUVWXYZ 7 links: C-H-G-O-Y-D-P-C
  137. Marian Rejewski • Realized the # links in the chain

    were only caused by the rotors • Could try to break the 105,456 possible rotor settings, not all 10,000,000,000,000,000 possible day keys • 100,000,000,000 times easier By Unknown - Rejewski's daughter's private archive, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=216461
  138. Cyclometer • Team checked each of 105,456 possible settings on

    replica Enigma machines and recorded which chains were generated by each rotor setting • Took 1 year to complete • Could look up rotor settings by chains found in first 6 letters of ciphertext http://www.cryptomuseum.com/crypto/cyclometer/index.htm
  139. Cyclometer created the first “Rainbow Table” for looking up cryptographic

    keys
  140. How to find the plugboard settings out of 100,391,791,500? •

    Plugboard: Un-plug all • Rotor Arrangement: III, I, II • Initial Rotor Orientations: Q, C, W • Type in ciphertext, see: • “rettew” • Swap R/W = Wetter (weather)
  141. Polish Cryptographic Bombs • 6 machines for the 6 possible

    rotor arrangements • Each with 6 full Enigma rotor sets at top for the 6 characters of the repeated message key • Given a number of “females” to find, Bomba could recover settings in less than 2 hours
  142. British Bombes • 36 rotors arrange in 3 banks of

    12 • 210 bombes by the end of the war • Operated by 2,000 members of Women’s Royal Navy Service
  143. Colossus • Inspired by Turings ideas and his bombe •

    1,500 electronic valves - faster than electromechanical relay switches • Programmable - first computers?
  144. Ancient Steganography,
 Scytale Brute Force Key Search Caesar Shift Non-shifted


    Substitution Frequency
 Analysis
 ~800 AD Homophonic Substitution Renaissance Poly-alphabetic Substitution Le Chiffre Indéchiffrable Assembly-line Frequency Analysis Industrial Babbage Frequency Analysis Enigma ~1925 Colossus Mark 1 1943 Computer
  145. Computer Cryptography

  146. In the early days of computing, electrical signals were much

    harder to measure and control precisely It made more sense to only distinguish between an “on” state and an “off” state
  147. Like the telegraph required morse to encode messages into electrical

    signals … In computers, we need a way to encode messages in 1’ and 0’s
  148. None
  149. ASCII 1963 Encoding,
 not encryption
 (like Morse code) E.g., A:

    1000001 B: 1000010
  150. In Binary, we encrypt at the level of 1’s and

    0’s
  151. This is called “bitwise”

  152. Bitwise anagram For example, consider this short sentence. 01000110011011110111001000100000011001010111100001100001011011010111000001101100011001010010110000100000011000110 11011110110111001110011011010010110010001100101011100100010000001110100011010000110100101110011001000000111001101

    101000011011110111001001110100001000000111001101100101011011100111010001100101011011100110001101100101 “Bitwise” rail fence cipher with 2 rails 00010111010101000100011001000110010001100100011001000101011101110101011001000100010101000100011001100101010001010 11001110101010001000101010001110100010001110101010010101011110000001011110010011011110010101011001000001001101110 101101100110101011110000001110100010011101000011011000101111001110000011011011101011101011101010011011
  153. Bitwise substitution: XOR The XOR operator outputs a 1 whenever

    the inputs do not match, which occurs when one of the two inputs is exclusively true 0 XOR 0 = 0 0 XOR 1 = 1 1 XOR 0 = 1 1 XOR 1 = 0
  154. Bitwise substitution: XOR For example, consider this short sentence. 01000110011011110111001000100000011001010111100001100001011011010111000001101100011001010010110000100000011000110

    11011110110111001110011011010010110010001100101011100100010000001110100011010000110100101110011001000000111001101 101000011011110111001001110100001000000111001101100101011011100111010001100101011011100110001101100101 Key: “Julius Caesar” 01001010011101010110110001101001011101010111001100100000010000110110000101100101011100110110000101110010 Output 10001100110111101110010001000000110010101111000011000010110110101110000011011000110010100101100001000000110001101 10111101101110011100110110100101100100011001010111001000100000011101000110100001101001011100110010000001110011001 00010000110100001111000011101010101010000000001000101001011010001010100000000000111010000001000010111
  155. Bitwise substitution: XOR For example, consider this short sentence. 010001100110111101110010001000000110010101111000011000010110110101110000011011000110010100101100001000000110001101

    101111011011100111001101101001011001000110010101110010001000000111010001101000011010010111001100100000011100110110 1000011011110111001001110100001000000111001101100101011011100111010001100101011011100110001101100101 Key: “random” 1|0’s length of plaintext 000000111010001101000011010010111001100100000011100110110100001101111011100100111010000100000011100110110010101101 110011101000110010101101110011000110110010101000110011011110111001000100000011001010111100001100001011011010111000 0011011000110010100101100001000000110001101101111011011100111001101101001011001000110010101110010001 Output 100011001101111011100100010000001100101011110000110000101101101011100000110110001100101001011000010000001100011011 011110110111001110011011010010110010001100101011100100010000001110100011010000110100101110011001000000111001100100 010000110100001111000011101010101010000000001000101001011010001010100000000000111010000001000010111
  156. None
  157. None
  158. Bitwise substitution: XOR For example, consider this short sentence. 010001100110111101110010001000000110010101111000011000010110110101110000011011000110010100101100001000000110001101

    101111011011100111001101101001011001000110010101110010001000000111010001101000011010010111001100100000011100110110 1000011011110111001001110100001000000111001101100101011011100111010001100101011011100110001101100101 Key: “random” 1|0’s length of plaintext 000000111010001101000011010010111001100100000011100110110100001101111011100100111010000100000011100110110010101101 110011101000110010101101110011000110110010101000110011011110111001000100000011001010111100001100001011011010111000 0011011000110010100101100001000000110001101101111011011100111001101101001011001000110010101110010001 Output 100011001101111011100100010000001100101011110000110000101101101011100000110110001100101001011000010000001100011011 011110110111001110011011010010110010001100101011100100010000001110100011010000110100101110011001000000111001100100 010000110100001111000011101010101010000000001000101001011010001010100000000000111010000001000010111
  159. Horst Feistel 1971: Published “Lucifer” cipher for computer encryption First(?)

    Block Cipher
  160. None
  161. XOR S-box Permutation

  162. SP Network

  163. Lucifer Cipher: “block” cipher Break message into 128-bit blocks 128-bit

    key 16 rounds: Break block in half the f-function is calculated using that round's subkey and the left half of the block. The result is then XORed to the right half of the block, which is the only part of the block altered for that round. After every round except the last one, the right and left halves of the block are swapped.
  164. 256 bit message (in ASCII) 01010100011010000110010100100000010101010101001101000001001000000100111001010011 01000001001000000111001101110100011011110111001001100101011100110010000001111001 01101111011101010111001000100000011101000111011101100101011001010111010001110011 0010000100100001

  165. Break into 128-bit blocks 01010100011010000110010100100000010101010101001101000001001000000100111001010011010000010010000001110011011101000110111101110010 01100101011100110010000001111001011011110111010101110010001000000111010001110111011001010110010101110100011100110010000100100001 The USA NSA stor

    es your tweets!!
  166. Generate 128-bit key awesomepassword! 01100001011101110110010101110011011011110110110101100101011100000110000101110011011100110111011101101111011100100110010000100001

  167. Break block in half 01010100011010000110010100100000010101010101001101000001 The USA NSA stor 0100111001010011010000010010000001110011011101000110111101110010

  168. Generate 72-bit sub-key awesomepassword! 01100001011101110110010101110011011011110110110101100101011100000110000101110011011100110111011101101111011100100110010000100001 a a 01100001 01100001 wesomep

    01110111011001010111001101101111011011010110010101110000
  169. Rotate key left 7 bytes password!awesome 01110000011000010111001101110011011101110110111101110010011001000010000101100001011101110110010101110011011011110110110101100101 7 bytes

  170. None
  171. Data Encryption Standard (DES) 1977 Lucifer with 56-bit keys So

    the NSA could brute force keys if they “needed” to
  172. Ancient Steganography,
 Scytale Brute Force Key Search Caesar Shift Non-shifted


    Substitution Frequency
 Analysis Homophonic Substitution Renaissance Poly-alphabetic Substitution Le Chiffre Indéchiffrable Assembly-line Frequency Analysis Industrial Babbage Frequency Analysis One-Time Pad Enigma Cryptanalytic “Bombs”: Polish, British, US Lucifer, DES 1971-1977 Computer
  173. How hard is it to find a
 binary 56-bit key?

  174. 1001101010011010100110101001 1010100110101001101010011010 Unique Possible Permutations 256 72,057,594,037,927,936 72 quadrillion (million

    billion) In 1976, estimated to cost $20M to build a computer to crack such a key Affordable to the NSA
  175. DES 1971-1977 Computer- powered Brute Force Key Search

  176. By Max Roser - https://ourworldindata.org/uploads/2019/05/Transistor-Count-over-time-to-2018.png, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=79751151

  177. 1100110101001101010011010100 1101010011010100110101001101 0 Unique Possible Permutations 256 72,057,594,037,927,936 72 quadrillion

    (million billion) 257 144,115,188,075,855,870 144 quadrillion (million billion)
  178. DES 1971-1977 Computer-powered Brute Force Key Search Moore’s Law

  179. 3DES EDE:
 DES: Encrypt, Decrypt, Encrypt https://www.researchgate.net/figure/Flowchart-of-3DES-encryption-and-decryption-algorithm-40_fig4_322277374

  180. What about messages that are longer than the key?

  181. Block cipher
 mode of operation

  182. Electronic Codebook (ECB) https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

  183. https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

  184. Attribution, https://commons.wikimedia.org/w/index.php?curid=828161

  185. Cipher Block Chaining (CBC) https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

  186. Attribution, https://commons.wikimedia.org/w/index.php?curid=828161

  187. DES Computer-powered Brute Force Key Search Moore’s Law 3DES +

    CBC
  188. The forever problem of cryptography: Key distribution

  189. Banks literally flew people around with code-books of keys

  190. We need a way to communicate secret keys over non-secret

    channels.
  191. Whitfield Diffie Stanford AI Lab 1974

  192. Martin Hellman IBM Watson Research Center 1968-1969

  193. New Directions in Cryptography Published 1976

  194. Alice, Bob, and Eve Alice and Bob need to communicate

    securely They need to share a secret They only have public channels between them “Eve is always eavesdropping” How can they share a secret without sharing it with Eve?
  195. Diffie-Hellman Key Establishment

  196. https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-1

  197. https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-1

  198. https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-1

  199. https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-1 + ____ ____ +

  200. The key can be anything that can encode to 1’s

    and 0’s So, anything … like a number.
  201. None
  202. And in MATH! , we have some 1-way functions!

  203. Modular Arithmetic aka “Clock” arithmetic https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/discrete-logarithm-problem

  204. To find 46 mod 12 … https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/discrete-logarithm-problem

  205. Wrap a cord 46 “hours” long around a 12-hour clock

    … … and it ends on 10
  206. Easy to perform … 46 mod 12 is “congruent” to

    10 generator Modulus
  207. ? mod 12 ≡ 10 … hard to reverse

  208. ? mod 12 ≡ 10 22 mod 12 ≡ 10

    34 mod 12 ≡ 10 46 mod 12 ≡ 10 58 mod 12 ≡ 10 70 mod 12 ≡ 10 .. mod 12 ≡ 10 … impossible to reverse!
  209. … impossible for recipient too!

  210. Alice picks an exponent https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-2 Prime Modulus “n” generator “g”

  211. Alice keeps her exponent secret https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-2 Prime Modulus “n” generator

    “g”
  212. “Discrete Logarithm” problem https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-2

  213. “Discrete Logarithm” problem Have to resort to “brute force” guessing

    the exponent
  214. For small numbers, it’s easy, but not for a large

    prime modulus. https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-2
  215. How can we turn that single exponent secret into 2

    secrets?
  216. “Commutative” Arithmetic:
 Order of operands doesn’t matter 3 + 5

    5 + 3 = = 8 3 * 5 = = 15 5 * 3
  217. “Commutative” Arithmetic:
 Order of operands doesn’t matter 323 332 =

    = 729 3 + 5 5 + 3 = = 8 3 * 5 = = 15 5 * 3
  218. Alice and Bob publicly agree on a generator and prime

    modulus https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-2
  219. Alice picks a private number, and sends the result to

    Bob https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-2
  220. Bob picks a private number, and sends the result to

    Alice https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-2
  221. Now the cool part … https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-2

  222. Alice raises Bob’s result to her private exponent and gets

    10
  223. Bob raises Alice’s mixture to his private exponent and also

    gets 10!
  224. Because their results were calculated from the shared public generator

    and prime modulus
  225. So, they did the same calculation with exponents in different

    order, which doesn’t affect the result
  226. Public Key Cryptography!

  227. Diffie-Hellman
 Key Establishment 3DES +

  228. DES Computer-powered Brute Force Key Search Moore’s Law 1970+ 3DES

    + CBC DH + 3DES + CBC 1976
  229. None
  230. None
  231. Use Diffie-Hellman Exchange to make a key … … for

    Triple-DES … … with Cipher Block Chaining mode. … Encrypt-Decrypt-Encrypt …
  232. What’s RSA?

  233. Diffie-Hellman makes a new key between every 2 people! https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/intro-to-rsa-encryption

  234. https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/intro-to-rsa-encryption

  235. Clifford Cox 1971 Trap Door
 One-way Function By Royal Society

    uploader - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=43268163
  236. https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/intro-to-rsa-encryption

  237. The “e” means encrypt! “d” is for decrypt! https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/intro-to-rsa-encryption

  238. https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/intro-to-rsa-encryption

  239. https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/intro-to-rsa-encryption

  240. None
  241. None
  242. None
  243. None
  244. None
  245. None
  246. Bob's number

  247. None
  248. None
  249. Ron Rivest, Adi Shamir, Leonard Adelman

  250. DES Computer-powered Brute Force Key Search Moore’s Law 1970+ 3DES

    + CBC DH/RSA + 3DES + CBC 1976
  251. Public Key Certificates https://www.youtube.com/watch?v=704dudhA7UI Alice's Alice's Alice's

  252. Look! The public exponent and modulus!

  253. Another RSA public exponent and modulus

  254. None
  255. Quantum Computing For fun, profit, and breaking the whole world

  256. None
  257. None
  258. Public Key Certificates https://www.youtube.com/watch?v=704dudhA7UI Alice's Alice's Alice's Quantum- cracked

  259. None
  260. DES Computer-powered Brute Force Key Search Moore’s Law 3DES +

    CBC DH/RSA + 3DES + CBC Quantum Computing
  261. 2048-bit RSA key needs
 4096-qubit computer to crack

  262. None
  263. DES Computer-powered Brute Force Key Search Moore’s Law 3DES +

    CBC DH/RSA + 3DES + CBC Quantum Computing Post-Quantum Cryptography
  264. None
  265. None
  266. None
  267. None
  268. Don’t invent your own crypto

  269. Mind your keys

  270. https://techcrunch.com/2019/10/21/nordvpn-confirms-it-was-hacked/

  271. Questions? Scytale Caesar Cipher Unshifted cipher Frequency Analysis Poly-alphabetic cipher

    Vigenere Square Enigma Lucifer/DES Modes of Encryption Diffie-Hellman RSA Quantum speakerdeck.com/groovecoder