Luminal B Triple Negatif Phenotype Prognosis Treatment ER+ PR+ ER+ PR+ HER2+ ER- PR- HER2- Good ATIP3 protein: a new marker for a category of TNBC 2 Biological sub-typing of the breast cancers Breast cancer: 1 of the 3 most common cancers worldwide
Luminal B Triple Negatif Phenotype Prognosis Treatment ER+ PR+ ER+ PR+ HER2+ ER- PR- HER2- Good ATIP3 protein: a new marker for a category of TNBC 2 Biological sub-typing of the breast cancers Breast cancer: 1 of the 3 most common cancers worldwide A candidate biomarker to de fi ne a new breast cancer subtype, identi fi ed by Clara Nahmias’s team •Low expression of ATIP3 in TNBC [Rodriguez&al, 2009] •Poorer prognosis for tumors that not express ATIP3 (called ATIP3- tumors) [Rodriguez&al, 2019] •70% of ATIP3- tumors resistance to the chemotherapy •ATIP3- resistant tumors more agressive than ATIP3+ tumors resistant Important unmet need for new therapies and therapeutic target Lack of knowledge for understanding the mechanism of ATIP3 ATIP3-
de fi cient TNBC Part 1 : Find a genetic signature To predict the chemotherapy response Part 2 : Find a new treatment To increase the survival rate 70%, avoid chemotherapy 30%, chemotherapy A -Pharmacological strategy B - Transcriptomics and system biology strategy 3
de fi cient in ATIP3 Essential cell biology Blocking points : Unknown proteins involved in biological mechanisms for ATIP3- TNBC tumors Goal : Search for proteins, speci fi c of these tumors and their corresponding molecules (ligands) 4
de fi cient in ATIP3 Essential cell biology Blocking points : Unknown proteins involved in biological mechanisms for ATIP3- TNBC tumors Goal : Search for proteins, speci fi c of these tumors and their corresponding molecules (ligands) 4 Tools : Public Databases of interactions between proteins and molecules Public Databases of pathways (ensembles of proteins by biological way) Data : Pharmacologic screen of molecules by Clara Nahmias’s team in IGR on cells lines TNBC ATIP3- and ATIP3+ in order to fi nd 20 molecules di ff erentially active on ATIP3- TNBC cells TNBC ATIP3+ cells Sum 52 Cell Sum52 ATIP3- Cells Sum52 Ctrl ATIP3+ Exposition of one of the 100 molecules (drugs) of TOCRIS base Apoptose Unresponsive phenotype 20 di ff erentially active molecules ATIP3- vs ATIP3+
known protein targets of the 20 di ff erentially active molecules Predict other protein targets of the 20 di ff erentially active molecules 5 Pathways enrichment: from single proteins to set of proteins Construction of a large protein/molecule interactions database Large scale kernel methods
Pubchem [Kim&al, 2019], HMS LINCS Database [Fallahi-Sichani&al,2013], A Consensus Compound/Bioactivity Dataset for Data-Driven Design and Chemogenomics [Isigkeit&al(2022)] 6 + Experimentally measures of the potency of proteins/molecules interactions, including Ki, Kd, IC50 - How to de fi ne a direct interaction ? Direct binding between protein/molecule: choice of a threshold Kd, Ki, IC50 < 100 nM Quantitative measure: Dissociation constant Kd, Ki Half maximal inhibitory concentration IC50 Activity
known protein targets of the 20 di ff erentially active molecules Predict other protein targets of the 20 di ff erentially active molecules 8 Pathways enrichment: from single proteins to set of proteins Construction of a large protein/molecule interactions database Large scale kernel methods
of proteins 72 proteins of interest relevant groups of proteins Pathways enrichment Representing biological mechanism Overlapping with the 72 proteins in Q Score(Q,T) (adjusted with Benjamini-Hockberg FDR correction) hypergeometric test p-value 9
PTK2 (FAK) TPCA1 (1_11) JAK2 STAT3 PP 2 (1_15) SRC HCK What about the other molecules ? Interesting proteins to test and associated molecules 3 molecules STAT3 already tested : not a target FAK 1/2 : not such a good target (migration) Blocking points for the biologists 10
known protein targets of the 20 di ff erentially active molecules Predict other protein targets of the 20 di ff erentially active molecules 11 Pathways enrichment: from single proteins to set of proteins Construction of a large protein/molecule interactions database Large scale kernel methods
learning Input: database of interactions Output: predicted interactions Method: Binary classi fi cation problem Select balanced set of negative examples [Mathieu Najm et al., 2021] 12 Target proteins Molecules
learning Input: database of interactions Output: predicted interactions Train kernel SVM classi fi er (use & ) Method: Binary classi fi cation problem Select balanced set of negative examples [Mathieu Najm et al., 2021] 12 Target proteins Molecules
learning Input: database of interactions Output: predicted interactions Train kernel SVM classi fi er (use & ) Method: Binary classi fi cation problem Select balanced set of negative examples [Mathieu Najm et al., 2021] Work in progress: New database of direct interactions Large scale kernel method 12 Target proteins Molecules
known protein targets of the 20 di ff erentially active molecules Predict other protein targets of the 20 di ff erentially active molecules 13 Pathways enrichment: from single proteins to set of proteins Construction of a large protein/molecule interactions database Large scale kernel methods
annotation : keep multiple annotated bioactivities within one log unit di ff erence kept 2. Structure check : keep molecule which same SMILES between di ff erent sources 3. Keep IC50, Ki, Kd known 4. Make binary interactions : measure = fi rst Kd, then Ki, then IC50 measure <10nM ( M): interactions + measure > 100 microM ( M) : interactions - <latexit sha1_base64="19OAeTsEV3mWXvQneo58YjqgWMc=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwY0lErcuiGzdCBfuAWiVJp3UwLyYTodYu/QG3+l/iH+hfeGdMQS2iE5KcOfecO3PvdWOfJ9KyXnPG1PTM7Fx+vrCwuLS8UlxdayRRKjxW9yI/Ei3XSZjPQ1aXXPqsFQvmBK7Pmu7NsYo3b5lIeBSey0HMOoHTD3mPe44kqmVbl8OdyqhwVSxZZUsvcxLYGSghW7Wo+IILdBHBQ4oADCEkYR8OEnrasGEhJq6DIXGCENdxhhEK5E1JxUjhEHtD3z7t2hkb0l7lTLTbo1N8egU5TWyRJyKdIKxOM3U81ZkV+1vuoc6p7jagv5vlCoiVuCb2L99Y+V+fqkWih0NdA6eaYs2o6rwsS6q7om5ufqlKUoaYOIW7FBeEPe0c99nUnkTXrnrr6PibVipW7b1Mm+Jd3ZIGbP8c5yRo7Jbtg/L+2V6pepSNOo8NbGKb5llBFSeooa7n+IgnPBunRmLcGfefUiOXedbxbRkPH3mckXo=</latexit> 10 7 <latexit sha1_base64="3V19iHXrJMEsQ7O1Yf/AR3qR19A=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwY0mkPpZFN26ECvYBtUqSTutgXkwmQq1d+gNu9b/EP9C/8M6YglpEJyQ5c+45d+be68Y+T6RlveaMqemZ2bn8fGFhcWl5pbi61kiiVHis7kV+JFqukzCfh6wuufRZKxbMCVyfNd2bYxVv3jKR8Cg8l4OYdQKnH/Ie9xxJVMu2Loc7lVHhqliyypZe5iSwM1BCtmpR8QUX6CKChxQBGEJIwj4cJPS0YcNCTFwHQ+IEIa7jDCMUyJuSipHCIfaGvn3atTM2pL3KmWi3R6f49ApymtgiT0Q6QVidZup4qjMr9rfcQ51T3W1AfzfLFRArcU3sX76x8r8+VYtED4e6Bk41xZpR1XlZllR3Rd3c/FKVpAwxcQp3KS4Ie9o57rOpPYmuXfXW0fE3rVSs2nuZNsW7uiUN2P45zknQ2C3b++W9s0qpepSNOo8NbGKb5nmAKk5QQ13P8RFPeDZOjcS4M+4/pUYu86zj2zIePgBydpF3</latexit> 10 4
annotation : keep multiple annotated bioactivities within one log unit di ff erence kept 2. Structure check : keep molecule which same SMILES between di ff erent sources 3. Keep IC50, Ki, Kd known 4. Make binary interactions : measure = fi rst Kd, then Ki, then IC50 measure <10nM ( M): interactions + measure > 100 microM ( M) : interactions - <latexit sha1_base64="19OAeTsEV3mWXvQneo58YjqgWMc=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwY0lErcuiGzdCBfuAWiVJp3UwLyYTodYu/QG3+l/iH+hfeGdMQS2iE5KcOfecO3PvdWOfJ9KyXnPG1PTM7Fx+vrCwuLS8UlxdayRRKjxW9yI/Ei3XSZjPQ1aXXPqsFQvmBK7Pmu7NsYo3b5lIeBSey0HMOoHTD3mPe44kqmVbl8OdyqhwVSxZZUsvcxLYGSghW7Wo+IILdBHBQ4oADCEkYR8OEnrasGEhJq6DIXGCENdxhhEK5E1JxUjhEHtD3z7t2hkb0l7lTLTbo1N8egU5TWyRJyKdIKxOM3U81ZkV+1vuoc6p7jagv5vlCoiVuCb2L99Y+V+fqkWih0NdA6eaYs2o6rwsS6q7om5ufqlKUoaYOIW7FBeEPe0c99nUnkTXrnrr6PibVipW7b1Mm+Jd3ZIGbP8c5yRo7Jbtg/L+2V6pepSNOo8NbGKb5llBFSeooa7n+IgnPBunRmLcGfefUiOXedbxbRkPH3mckXo=</latexit> 10 7 <latexit sha1_base64="3V19iHXrJMEsQ7O1Yf/AR3qR19A=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwY0mkPpZFN26ECvYBtUqSTutgXkwmQq1d+gNu9b/EP9C/8M6YglpEJyQ5c+45d+be68Y+T6RlveaMqemZ2bn8fGFhcWl5pbi61kiiVHis7kV+JFqukzCfh6wuufRZKxbMCVyfNd2bYxVv3jKR8Cg8l4OYdQKnH/Ie9xxJVMu2Loc7lVHhqliyypZe5iSwM1BCtmpR8QUX6CKChxQBGEJIwj4cJPS0YcNCTFwHQ+IEIa7jDCMUyJuSipHCIfaGvn3atTM2pL3KmWi3R6f49ApymtgiT0Q6QVidZup4qjMr9rfcQ51T3W1AfzfLFRArcU3sX76x8r8+VYtED4e6Bk41xZpR1XlZllR3Rd3c/FKVpAwxcQp3KS4Ie9o57rOpPYmuXfXW0fE3rVSs2nuZNsW7uiUN2P45zknQ2C3b++W9s0qpepSNOo8NbGKb5nmAKk5QQ13P8RFPeDZOjcS4M+4/pUYu86zj2zIePgBydpF3</latexit> 10 4
known protein targets of the 20 di ff erentially active molecules Predict other protein targets of the 20 di ff erentially active molecules 16 Pathways enrichment: from single proteins to set of proteins Construction of a large protein/molecule interactions database Large scale kernel methods
molecules a set of proteins a space subset of positive interactions Choice of training set Method : kernel SVM Choice of kernel Kernel Kernel Kernel : similarity between two pairs and de fi ned by a Kronecker product: Feature embedding in kernel space where trained by SVM [Vert&al, 2008] <latexit sha1_base64="d1zt1xTPGu6nzZqk8YLkjqm8Xnw=">AAACynicjVHLSsNAFD2Nr1pfVZduQotQEUoq+FgW3bhwUcG2QltKkk5ryJPJRAjFnT8guNIPk/6B/oV3pimoRXRCkjPnnnNn7r1W5DmxMIxJTltYXFpeya8W1tY3NreK2zutOEy4zZp26IX81jJj5jkBawpHeOw24sz0LY+1LfdCxtv3jMdOGNyINGI93xwFztCxTUFUu+L33YO+2y+Wjaqhlj4Pahko10vdw+dJPW2ExTd0MUAIGwl8MAQQhD2YiOnpoAYDEXE9jInjhBwVZ3hAgbwJqRgpTGJd+o5o18nYgPYyZ6zcNp3i0cvJqWOfPCHpOGF5mq7iicos2d9yj1VOebeU/laWyydW4I7Yv3wz5X99shaBIc5UDQ7VFClGVmdnWRLVFXlz/UtVgjJExEk8oDgnbCvnrM+68sSqdtlbU8XflVKycm9n2gQf8pY04NrPcc6D1lG1dlI9vqZJn2O68thDCRWa5ynquEQDTVXlE17wql1pXEu18VSq5TLPLr4t7fETeT6UqA==</latexit> (mk)k <latexit sha1_base64="ImYPqdqoO9jaJSPkUokq40X1EGk=">AAACynicjVHLTsJAFD3UF4IP1KWbRjTBDSkmPpZENy5cYCKPBAlpy4DFvjKdkhDizh9wq//hD/gRxj/QD9C1d4aSqMToNG3PnHvOnbn3WqHrRMIwXlLazOzc/EJ6MZNdWl5Zza2t16Ig5jar2oEb8IZlRsx1fFYVjnBZI+TM9CyX1a3rExmvDxiPnMC/EMOQtTyz5ztdxzYFUfVC2O7vtvvtXN4oGmrp06CUgHx5+/3xaZD9qAS5Z1yigwA2Ynhg8CEIuzAR0dNECQZC4loYEccJOSrOcIMMeWNSMVKYxF7Tt0e7ZsL6tJc5I+W26RSXXk5OHTvkCUjHCcvTdBWPVWbJ/pZ7pHLKuw3pbyW5PGIFroj9yzdR/tcnaxHo4kjV4FBNoWJkdXaSJVZdkTfXv1QlKENInMQdinPCtnJO+qwrT6Rql701VfxVKSUr93aijfEmb0kDLv0c5zSo7RVLB8X9c5r0McYrjU1soUDzPEQZp6igqqq8wz0etDONa0NtNJZqqcSzgW9Lu/0EMLiV4w==</latexit> (pj)j <latexit sha1_base64="p9eXCsMi1dnUvukgbD37EAIcBRw=">AAAC2nicjVHJSsRAEH3GfY+KJy9hRFCUIRFcjoNe9KbgOILRkLQ9YzPZSDrCMMzFm3j1B7zqB4l/oH9hdRvBBdEOSV6/qve6qypIQ5FL237uM/oHBoeGR0bHxicmp6bNmdnjPCkyxussCZPsJPBzHoqY16WQIT9JM+5HQcgbQXtXxRtXPMtFEh/JTsrPIr8Vi6ZgviTKM+eXI0+spZ5Y8brCckVs7Z+v9jxz0a7aelk/gVOCxVrFXb17rnUOEvMJLi6QgKFABI4YknAIHzk9p3BgIyXuDF3iMkJCxzl6GCNtQVmcMnxi2/Rt0e60ZGPaK89cqxmdEtKbkdLCEmkSyssIq9MsHS+0s2J/8+5qT3W3Dv2D0isiVuKS2L90H5n/1alaJJrY1jUIqinVjKqOlS6F7oq6ufWpKkkOKXEKX1A8I8y08qPPltbkunbVW1/HX3SmYtWelbkFXtUtacDO93H+BMfrVWezunFIk97B+xrBAipYpnluoYY9HKBO3l3c4wGPhmtcGzfG7Xuq0Vdq5vBlGXdvUvmaAg==</latexit> (mi, pi)i2I+ <latexit sha1_base64="qo/jIQdUzta41IUpb9cxIfzllcY=">AAACyHicjVHLSsNAFD2Nr1pfVZduQotQUUoi+FgW3YirCvYBbZEkndaheZFMlFLc+ANuXOiXSf9A/8I70xTUIjohyZlz7zkz9147dHksDGOc0ebmFxaXssu5ldW19Y385lY9DpLIYTUncIOoaVsxc7nPaoILlzXDiFme7bKGPTiX8cYdi2Ie+NdiGLKOZ/V93uOOJYiqlbyDcO8mXzTKhlr6LDBTUKwU2vvP48qwGuTf0EYXARwk8MDgQxB2YSGmpwUTBkLiOhgRFxHiKs7wgBxpE8pilGERO6Bvn3atlPVpLz1jpXboFJfeiJQ6dkkTUF5EWJ6mq3iinCX7m/dIecq7Delvp14esQK3xP6lm2b+VydrEejhVNXAqaZQMbI6J3VJVFfkzfUvVQlyCImTuEvxiLCjlNM+60oTq9plby0Vf1eZkpV7J81N8CFvSQM2f45zFtQPy+Zx+eiKJn2GycpiBwWUaJ4nqOACVdTIm+MJL3jVLrVQu9eGk1Qtk2q28W1pj5/cr5Oc</latexit> (m, p) <latexit sha1_base64="z8XFMuBlkcuanCmFo6KikSTRpsE=">AAACynicjVHLSsNAFD2Nr1pfVZduQou0opRE8LEsunHhooJ9QFskSac1NC8mE6EUd/6A4Eo/TPoH+hfemUZQi+iEJGfOPefO3HvtyHNjYRiTjDY3v7C4lF3OrayurW/kN7cacZhwh9Wd0At5y7Zi5rkBqwtXeKwVcWb5tsea9vBcxpt3jMduGFyLUcS6vjUI3L7rWIKoZtkvHUSlvZt80agYaumzwExBsVro7D9NqqNamH9FBz2EcJDAB0MAQdiDhZieNkwYiIjrYkwcJ+SqOMM9cuRNSMVIYRE7pO+Adu2UDWgvc8bK7dApHr2cnDp2yROSjhOWp+kqnqjMkv0t91jllHcb0d9Oc/nECtwS+5fvU/lfn6xFoI9TVYNLNUWKkdU5aZZEdUXeXP9SlaAMEXES9yjOCTvK+dlnXXliVbvsraXib0opWbl3Um2Cd3lLGrD5c5yzoHFYMY8rR1c06TNMVxY7KKBM8zxBFReooa6qfMQzXrRLjWsjbTyVapnUs41vS3v4AOQZk/4=</latexit> (m0, p0) : similarity between molecules <latexit sha1_base64="uKlMjUATfnk5o/q0OpHSPDa/VVQ=">AAAC0XicjVHLSsQwFD3W93vUpZviICrI0IqvpejGjaDoOAM+hrST0TJ9hDQVBhHErT/gVn9K/AP9C29iBHUQTWl7cu49J7n3BiKOcuV5Lz1Ob1//wODQ8Mjo2PjEZGlq+jjPChnyapjFmawHLOdxlPKqilTM60JylgQxrwXtHR2vXXGZR1l6pDqCnyXsIo1aUcgUUeenbSYEa+wtJsvJwlKjVPYqnlluN/AtKMOu/az0jFM0kSFEgQQcKRThGAw5PSfw4UEQd4Zr4iShyMQ5bjBC2oKyOGUwYtv0vaDdiWVT2mvP3KhDOiWmV5LSxTxpMsqThPVprokXxlmzv3lfG099tw79A+uVEKtwSexfus/M/+p0LQotbJoaIqpJGEZXF1qXwnRF39z9UpUiB0Gcxk2KS8KhUX722TWa3NSue8tM/NVkalbvQ5tb4E3fkgbs/xxnNzheqfjrlbWD1fLWth31EGYxh0Wa5wa2sIt9VMlb4gGPeHIOnY5z69x9pDo9VjODb8u5fwc8J5Qk</latexit> M (m, m0) <latexit sha1_base64="u0Y1LOzkasJCuZamzYIeqjadbqQ=">AAAC0XicjVHLSsNAFD3G97vq0k2wiBWkJOJrKbpxWdE+oK1lko4amscwmQhFBHHrD7jVnxL/QP/CO2MEtYhOSHLm3HvOzL3XE2GQKsd5GbKGR0bHxicmp6ZnZufmCwuLtTTJpM+rfhImsuGxlIdBzKsqUCFvCMlZ5IW87vUOdbx+xWUaJPGp6gvejthFHJwHPlNEnbV6TAjWqZTEhlhb7xSKTtkxyx4Ebg6KyFclKTyjhS4S+MgQgSOGIhyCIaWnCRcOBHFtXBMnCQUmznGDKdJmlMUpgxHbo+8F7Zo5G9Nee6ZG7dMpIb2SlDZWSZNQniSsT7NNPDPOmv3N+9p46rv16e/lXhGxCpfE/qX7zPyvTteicI49U0NANQnD6Or83CUzXdE3t79UpchBEKdxl+KSsG+Un322jSY1teveMhN/NZma1Xs/z83wpm9JA3Z/jnMQ1DbL7k55+3iruH+Qj3oCy1hBiea5i30coYIqeUs84BFP1onVt26tu49UayjXLOHbsu7fAVGrlC0=</latexit> P (p, p0) : similarity between proteins a space subset of negative interactions <latexit sha1_base64="4i5wt7ZIDXdz8pMid/F6pvKJ+9A=">AAAC23icjVHLSsNAFD2Nr1pfUcGNm2ARKmhJxNey6EZ3FWwr2BqSOOpgXiQTQWpX7sStP+BW/0f8A/0L74wR1CI6IcmZc+85M/deN/Z5KkzzpaANDA4NjxRHS2PjE5NT+vRMM42yxGMNL/Kj5NB1UubzkDUEFz47jBPmBK7PWu7Fjoy3LlmS8ig8EFcx6wTOWchPuecIomx9rhLYfDm2+ZLd5Uabh8be8UqvZOtls2qqZfQDKwdl5Kse6c9o4wQRPGQIwBBCEPbhIKXnCBZMxMR10CUuIcRVnKGHEmkzymKU4RB7Qd8z2h3lbEh76ZkqtUen+PQmpDSwSJqI8hLC8jRDxTPlLNnfvLvKU97tiv5u7hUQK3BO7F+6z8z/6mQtAqfYUjVwqilWjKzOy10y1RV5c+NLVYIcYuIkPqF4QthTys8+G0qTqtplbx0Vf1WZkpV7L8/N8CZvSQO2fo6zHzRXq9ZGdX1/rVzbzkddxDwWUKF5bqKGXdTRIO9rPOART1pHu9FutbuPVK2Qa2bxbWn37+C5lw0=</latexit> (mi, pi)i2I <latexit sha1_base64="2m6rYrNiGIfes0iP1MgLMArFwkk=">AAAC+nicjVFdTxNBFD2sqAVRKj7yMqExaZOm2RJQX0wafeljTSyQsE0zO522E2Y/MjuLIZVfwptvhlf+gK/6Awz/AP+Fd4YlQYmR2ezumXPvOTP33jjXqrBheLkUPFh++OhxbWX1ydrTZ+v15xt7RVYaIYci05k5iHkhtUrl0Cqr5UFuJE9iLffjo/cuvn8sTaGy9KM9yeUo4bNUTZXglqhxfXfaTNp5i71lkebpTEsWHXOTz1XT8632JxYZHxhHCbdzwfWifzquN8JO6Be7C7oVaKBag6z+ExEmyCBQIoFECktYg6Og5xBdhMiJG2FBnCGkfFziFKukLSlLUgYn9oi+M9odVmxKe+dZeLWgUzS9hpQML0mTUZ4h7E5jPl56Z8f+y3vhPd3dTugfV14JsRZzYv+nu8m8r87VYjHFG1+Doppyz7jqROVS+q64m7NbVVlyyIlzeEJxQ1h45U2fmdcUvnbXW+7jVz7TsW4vqtwSv9wtacDdv8d5F+xtd7qvOrsfdhq9d9Woa9jEFpo0z9fooY8BhuR9hm/4jh/B5+BL8DU4v04NlirNC/yxgovfgC6jcg==</latexit> f(m, p) = h'((m, p)), wi H <latexit sha1_base64="OnhZh16IirUcgMMJYVUMPOeLWaE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSwK4rIF2wq1SJJOa+jkQWailKI/4Fa/TfwD/QvvjFNQi+iEJGfOvefM3Hv9lIdCOs5rwZqZnZtfKC6WlpZXVtfK6xstkeRZwJpBwpPs0vcE42HMmjKUnF2mGfMin7O2PzxV8fYty0SYxBdylLJu5A3isB8GniSqcXddrjhVRy97GrgGVGBWPSm/4Ao9JAiQIwJDDEmYw4OgpwMXDlLiuhgTlxEKdZzhHiXS5pTFKMMjdkjfAe06ho1przyFVgd0Cqc3I6WNHdIklJcRVqfZOp5rZ8X+5j3WnupuI/r7xisiVuKG2L90k8z/6lQtEn0c6xpCqinVjKouMC657oq6uf2lKkkOKXEK9yieEQ60ctJnW2uErl311tPxN52pWLUPTG6Od3VLGrD7c5zToLVXdQ+rB439Su3EjLqILWxjl+Z5hBrOUUdTez/iCc/WmcUtYeWfqVbBaDbxbVkPH2v8j4Y=</latexit> w <latexit sha1_base64="q6QWtrWFBtRv/SZmvw1blRY1wT8=">AAADGHicjVHLSgMxFL2O73fVpZvBIrZQylR8bYSimy4VrQqOlEyMbWhmJmQyghR/xD9x507cuhFXbvUvvIkRX4hmmJl7zz3nJDc3koJnOgge+7z+gcGh4ZHRsfGJyanpwszsQZbmirImTUWqjiKSMcET1tRcC3YkFSNxJNhh1N029cNzpjKeJvv6QrKTmLQTfsYp0Qi1Cnthl0hJSqW4IsuVUrxUkUvlsr/ph4IkbcH88Jwo2eFvhHLlI3XMUFleK4yJ7lAieo3LVqEYVAO7/J9BzQVFcGsnLTxACKeQAoUcYmCQgMZYAIEMn2OoQQASsRPoIaYw4rbO4BLGUJsjiyGDINrFbxuzY4cmmBvPzKop7iLwVaj0YRE1KfIUxmY339Zz62zQ37x71tOc7QL/kfOKEdXQQfQv3TvzvzrTi4Yz2LA9cOxJWsR0R51Lbm/FnNz/1JVGB4mYiU+xrjCmVvl+z77VZLZ3c7fE1p8t06Amp46bw4s5JQ649n2cP4OD5Wptrbq6u1Ksb7lRj8A8LEAJ57kOdWjADjTR+xqecL8X78q78W69uzeq1+c0c/Blefevr26tLg==</latexit> ((m, p), (m0, p0)) = h'((m, p)), '((m0, p0))i H <latexit sha1_base64="8ARjBgQhZw/muUDNQthDy8PlmtE=">AAAC+nicjVHLSsNAFD3GV31XXboJFmkKpaRi1Y1QdONGqGBVUCmTOGpoHkMyEUT9EnfuxK0/4FY/QPwD/QvvjCP4QHRCknPPvefM3LmeCINMuu5zj9Xb1z8wWBgaHhkdG58oTk5tZ0me+rztJ2GS7nos42EQ87YMZMh3RcpZ5IV8x+uuqfzOKU+zIIm35JngBxE7joOjwGeSqE6xsd9lQjDHiaqiUnWiclWUKxV7xX7nOxuUiMoVE7UcofOdYsmtuXrZP0HdgBLMaiXFJ+zjEAl85IjAEUMSDsGQ0bOHOlwI4g5wTlxKKNB5jksMkzanKk4VjNgufY8p2jNsTLHyzLTap11CelNS2pgjTUJ1KWG1m63zuXZW7G/e59pTne2M/p7xioiVOCH2L91H5X91qheJIyzrHgLqSWhGdecbl1zfijq5/akrSQ6COIUPKZ8S9rXy455trcl07+pumc6/6ErFqtg3tTle1SlpwPXv4/wJtudr9cVaY3Oh1Fw1oy5gBrNwaJ5LaGIdLbTJ+wr3eMCjdWFdWzfW7Xup1WM00/iyrLs3nNGhBQ==</latexit> ((m, p), (m0, p0)) = M (m, m0)P (p, p0)) <latexit sha1_base64="OnhZh16IirUcgMMJYVUMPOeLWaE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSwK4rIF2wq1SJJOa+jkQWailKI/4Fa/TfwD/QvvjFNQi+iEJGfOvefM3Hv9lIdCOs5rwZqZnZtfKC6WlpZXVtfK6xstkeRZwJpBwpPs0vcE42HMmjKUnF2mGfMin7O2PzxV8fYty0SYxBdylLJu5A3isB8GniSqcXddrjhVRy97GrgGVGBWPSm/4Ao9JAiQIwJDDEmYw4OgpwMXDlLiuhgTlxEKdZzhHiXS5pTFKMMjdkjfAe06ho1przyFVgd0Cqc3I6WNHdIklJcRVqfZOp5rZ8X+5j3WnupuI/r7xisiVuKG2L90k8z/6lQtEn0c6xpCqinVjKouMC657oq6uf2lKkkOKXEK9yieEQ60ctJnW2uErl311tPxN52pWLUPTG6Od3VLGrD7c5zToLVXdQ+rB439Su3EjLqILWxjl+Z5hBrOUUdTez/iCc/WmcUtYeWfqVbBaDbxbVkPH2v8j4Y=</latexit> w
Loss Optimisation problem in Kernel space The solution can be shown to be of the form <latexit sha1_base64="5UtP0Vp5ugbWKXurv89sXuHRTts=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwVRLBx6ZYdCOIUKGPQK2SpNMamhfJRKjVpT/gVnd+jJ9Q/AP9C+9MU1CL6IQkZ849587ce63QdWKuaW8ZZWp6ZnYuO59bWFxaXsmvrtXjIIlsVrMDN4gMy4yZ6/isxh3uMiOMmOlZLmtYvWMRb9ywKHYCv8r7IWt5Ztd3Oo5tcqKMU7WkGsZl9Spf0IqaXOok0FNQOHzNlcKXYa4S5Ie4QBsBbCTwwOCDE3ZhIqanCR0aQuJaGBAXEXJknOEeOfImpGKkMInt0bdLu2bK+rQXOWPptukUl96InCq2yBOQLiIsTlNlPJGZBftb7oHMKe7Wp7+V5vKI5bgm9i/fWPlfn6iFo4MDWYNDNYWSEdXZaZZEdkXcXP1SFacMIXECtykeEbalc9xnVXpiWbvorSnj71IpWLG3U22CD3FLGrD+c5yToL5T1PeKu+daoXyE0cpiA5vYpnnuo4wTVFCTc3zEE56VMyVWbpW7kVTJpJ51fFvKwyev9ZS8</latexit> K = XXT <latexit sha1_base64="5EtUweOQMLtDZdJ1M1lRsrxmMKE=">AAADKHicjVFNT9wwEB1CP2D7tYUjF6urSovarpJVW7ggIbhwpFIXkAhEjte7WDhO5DjAKuQP8U+4cUNcOdFTr3Dr2DVSW1S1jpLMvHnv2eNJCylKE4ZXU8H0o8dPns7Mtp49f/HyVfv13FaZV5rxActlrndSWnIpFB8YYSTfKTSnWSr5dnq4buvbR1yXIldfzaTgexkdKzESjBqEkjaLM6GSYxKPNGV11NSqIXFZZUktVqJmX5GYS9n9QCaJIN1YUjWWnJwk4j1KtMsWyWKLkHfeASlZOqRN3Uef0+P4dL/fStqdsBe6RR4GkQ864Ndm3r6EGIaQA4MKMuCgwGAsgUKJzy5EEEKB2B7UiGmMhKtzaKCF2gpZHBkU0UP8jjHb9ajC3HqWTs1wF4mvRiWBt6jJkacxtrsRV6+cs0X/5l07T3u2Cf5T75UhauAA0X/p7pn/q7O9GBjBsutBYE+FQ2x3zLtU7lbsyckvXRl0KBCz8RDrGmPmlPf3TJymdL3bu6WufuOYFrU589wKvtlT4oCjP8f5MNjq96LPvU9fPnZW1/yoZ2AB3kAX57kEq7ABmzBA73P4DrdwF5wFF8FlcPWTGkx5zTz8toLrH1mjtTk=</latexit> min w 1 n n X i=1 `( yi(hxi, wi)) + 2 kwk2 <latexit sha1_base64="Mipgt3qeYp8picR9l0ok1eeIk58=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy6EVcVTFuwRZLptA6dJiGZKKW48Qfc6peJf6B/4Z0xBbWITkhy5tx7zsy9N4ilSJXjvBasmdm5+YXiYmlpeWV1rby+0UijLGHcY5GMklbgp1yKkHtKKMlbccL9YSB5Mxic6njzliepiMJLNYp5Z+j3Q9ETzFdEeW0uZem6XHGqjln2NHBzUEG+6lH5BW10EYEhwxAcIRRhCR8pPVdw4SAmroMxcQkhYeIc9yiRNqMsThk+sQP69ml3lbMh7bVnatSMTpH0JqS0sUOaiPISwvo028Qz46zZ37zHxlPfbUT/IPcaEqtwQ+xfuknmf3W6FoUejk0NgmqKDaOrY7lLZrqib25/qUqRQ0ycxl2KJ4SZUU76bBtNamrXvfVN/M1kalbvWZ6b4V3fkgbs/hznNGjsVd3D6sHFfqV2ko+6iC1sY5fmeYQazlCHR94Cj3jCs3VuxdadNfpMtQq5ZhPflvXwAc+YkNo=</latexit> ` <latexit sha1_base64="6pf13LL0UdhhS3zNa9wGSSp+YK4=">AAAC3HicjVHLSsNAFD2Nr1pfVRcu3ASLUFFKIr42QtGNywq2CrZKEkcNnTzITMRS3LkTt/6AW/0e8Q/0L7wzpqAW0QlJzpx7z5l757ox94W0rNecMTA4NDySHy2MjU9MThWnZxoiShOP1b2IR8mR6wjG/ZDVpS85O4oT5gQuZ4due1fFD69YIvwoPJCdmLUC5yL0z33PkUSdFufMJuO8LJbMbbMZONdla8VeFkuF02LJqlh6mf3AzkAJ2apFxRc0cYYIHlIEYAghCXM4EPQcw4aFmLgWusQlhHwdZ7hBgbQpZTHKcIht0/eCdscZG9JeeQqt9ugUTm9CShOLpIkoLyGsTjN1PNXOiv3Nu6s9VW0d+ruZV0CsxCWxf+l6mf/VqV4kzrGle/Cpp1gzqjsvc0n1rajKzS9dSXKIiVP4jOIJYU8re/dsao3Qvau7dXT8TWcqVu29LDfFu6qSBmz/HGc/aKxW7I3K+v5aqbqTjTqPeSygTPPcRBV7qKGu63/EE56NE+PWuDPuP1ONXKaZxbdlPHwA/+WWPg==</latexit> `(s) = max(0, 1 + s) with <latexit sha1_base64="MQVh7cNgGZbcnKXyeZ9ww/1s5Ow=">AAADInicjVHLahRBFL1pX3F8ZNSlmyKDMEEdeoKvZYgbwRCiOEkgPQ7VNTWTItUPqqslk6b/xj9x5y5kIYF8QLKNP+CpsgNqEK2mu889955TdevGuVaFDcPjueDK1WvXb8zfbN26fefuQvve/c0iK42QA5HpzGzHvJBapXJgldVyOzeSJ7GWW/Hea5ff+iRNobL0g53lcpjwaaomSnALatQeRolKR9UBi1TKooTb3Tiu3tcf12vG1rpPIyv3bTVWfFp3Z0vsLTtYYo9ZNDFcVJHGNmNeV8s1A06nWrqCJwxmxoetUbsT9kK/2GXQb0CHmrWRtb9RRGPKSFBJCUlKyQJr4lTg2aE+hZSDG1IFzgApn5dUUwvaElUSFRzsHr5TRDsNmyJ2noVXC+yi8RooGT2CJkOdAXa7MZ8vvbNj/+ZdeU93thn+ceOVgLW0C/ZfuovK/9W5XixN6JXvQaGn3DOuO9G4lP5W3MnZL11ZOOTgHB4jb4CFV17cM/Oawvfu7pb7/KmvdKyLRVNb0pk7JQbc/3Ocl8Hmcq//ovf83bPOymoz6nl6SIvUxTxf0gq9oQ0awPsLXM/pe/A5+BocBkc/S4O5RvOAflvByQ/nLbL+</latexit> min z2RN L( diag(y)Kz) + 2 hKz, zi <latexit sha1_base64="OnhZh16IirUcgMMJYVUMPOeLWaE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSwK4rIF2wq1SJJOa+jkQWailKI/4Fa/TfwD/QvvjFNQi+iEJGfOvefM3Hv9lIdCOs5rwZqZnZtfKC6WlpZXVtfK6xstkeRZwJpBwpPs0vcE42HMmjKUnF2mGfMin7O2PzxV8fYty0SYxBdylLJu5A3isB8GniSqcXddrjhVRy97GrgGVGBWPSm/4Ao9JAiQIwJDDEmYw4OgpwMXDlLiuhgTlxEKdZzhHiXS5pTFKMMjdkjfAe06ho1przyFVgd0Cqc3I6WNHdIklJcRVqfZOp5rZ8X+5j3WnupuI/r7xisiVuKG2L90k8z/6lQtEn0c6xpCqinVjKouMC657oq6uf2lKkkOKXEK9yieEQ60ctJnW2uErl311tPxN52pWLUPTG6Od3VLGrD7c5zToLVXdQ+rB439Su3EjLqILWxjl+Z5hBrOUUdTez/iCc/WmcUtYeWfqVbBaDbxbVkPH2v8j4Y=</latexit> w
k 2513 2513 Protein kernel 4813 4813 Molecule kernel Kronecker kernel for training <latexit sha1_base64="JhUk4wXzwRCmCXl9jAE1rQYQvmU=">AAACxnicjVHLSsNAFD2NrxpfVZdugkVwVRLxtSy6KbipaB9QiyTptA7Ni8lEKUXwB9zqp4l/oH/hnTEFtYhOSHLm3HvOzL3XSwKeStt+LRgzs3PzC8VFc2l5ZXWttL7RTONM+Kzhx0Es2p6bsoBHrCG5DFg7EcwNvYC1vOGpirdumUh5HF3KUcK6oTuIeJ/7riTq4sw0r0tlu2LrZU0DJwdl5Ksel15whR5i+MgQgiGCJBzARUpPBw5sJMR1MSZOEOI6znAPk7QZZTHKcIkd0ndAu07ORrRXnqlW+3RKQK8gpYUd0sSUJwir0ywdz7SzYn/zHmtPdbcR/b3cKyRW4obYv3STzP/qVC0SfRzrGjjVlGhGVefnLpnuirq59aUqSQ4JcQr3KC4I+1o56bOlNamuXfXW1fE3nalYtffz3Azv6pY0YOfnOKdBc6/iHFYOzvfL1ZN81EVsYRu7NM8jVFFDHQ3yHuART3g2akZkZMbdZ6pRyDWb+LaMhw9/Ho+C</latexit> K <latexit sha1_base64="ami8dpBoKqyKqi/626Rpw+6DOLE=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy6UdxUsA+opSTptA3Ni8mkWIoLf8Ct/pn4B/oX3hmnoBbRCUnOnHvPmbn3ukngp8KyXnPG3PzC4lJ+ubCyura+Udzcqqdxxj1W8+Ig5k3XSVngR6wmfBGwZsKZE7oBa7jDcxlvjBhP/Ti6EeOEtUOnH/k933OEpK461UKnWLLKllrmLLA1KEGvalx8wS26iOEhQwiGCIJwAAcpPS3YsJAQ18aEOE7IV3GGexRIm1EWowyH2CF9+7RraTaivfRMldqjUwJ6OSlN7JEmpjxOWJ5mqnimnCX7m/dEecq7jenvaq+QWIEBsX/pppn/1claBHo4VTX4VFOiGFmdp10y1RV5c/NLVYIcEuIk7lKcE/aUctpnU2lSVbvsraPibypTsnLv6dwM7/KWNGD75zhnQf2gbB+Xj64PS5UzPeo8drCLfZrnCSq4QBU18h7gEU94Ni6N2BgZd5+pRk5rtvFtGQ8fLi+QMQ==</latexit> KP CC: 152 k 152 k 100 Gb Molecule kernel Issues: - Big data - Time - sklearn impractical 460 k 460 k Kronecker kernel for training <latexit sha1_base64="JhUk4wXzwRCmCXl9jAE1rQYQvmU=">AAACxnicjVHLSsNAFD2NrxpfVZdugkVwVRLxtSy6KbipaB9QiyTptA7Ni8lEKUXwB9zqp4l/oH/hnTEFtYhOSHLm3HvOzL3XSwKeStt+LRgzs3PzC8VFc2l5ZXWttL7RTONM+Kzhx0Es2p6bsoBHrCG5DFg7EcwNvYC1vOGpirdumUh5HF3KUcK6oTuIeJ/7riTq4sw0r0tlu2LrZU0DJwdl5Ksel15whR5i+MgQgiGCJBzARUpPBw5sJMR1MSZOEOI6znAPk7QZZTHKcIkd0ndAu07ORrRXnqlW+3RKQK8gpYUd0sSUJwir0ywdz7SzYn/zHmtPdbcR/b3cKyRW4obYv3STzP/qVC0SfRzrGjjVlGhGVefnLpnuirq59aUqSQ4JcQr3KC4I+1o56bOlNamuXfXW1fE3nalYtffz3Azv6pY0YOfnOKdBc6/iHFYOzvfL1ZN81EVsYRu7NM8jVFFDHQ3yHuART3g2akZkZMbdZ6pRyDWb+LaMhw9/Ho+C</latexit> K <latexit sha1_base64="ami8dpBoKqyKqi/626Rpw+6DOLE=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy6UdxUsA+opSTptA3Ni8mkWIoLf8Ct/pn4B/oX3hmnoBbRCUnOnHvPmbn3ukngp8KyXnPG3PzC4lJ+ubCyura+Udzcqqdxxj1W8+Ig5k3XSVngR6wmfBGwZsKZE7oBa7jDcxlvjBhP/Ti6EeOEtUOnH/k933OEpK461UKnWLLKllrmLLA1KEGvalx8wS26iOEhQwiGCIJwAAcpPS3YsJAQ18aEOE7IV3GGexRIm1EWowyH2CF9+7RraTaivfRMldqjUwJ6OSlN7JEmpjxOWJ5mqnimnCX7m/dEecq7jenvaq+QWIEBsX/pppn/1claBHo4VTX4VFOiGFmdp10y1RV5c/NLVYIcEuIk7lKcE/aUctpnU2lSVbvsraPibypTsnLv6dwM7/KWNGD75zhnQf2gbB+Xj64PS5UzPeo8drCLfZrnCSq4QBU18h7gEU94Ni6N2BgZd5+pRk5rtvFtGQ8fLi+QMQ==</latexit> KP 1627 1627 Protein kernel <latexit sha1_base64="Ux6WcUgQ/myjZYS7Q1AJsdHo4vM=">AAACyHicjVHLSsNAFD2NrxpfVZdugkVwVVLxtSy6EUWoYNpCLSWZTutgXiQTpRQ3/oBb/TLxD/QvvDOmoBbRCUnOnHvPmbn3erEvUmnbrwVjanpmdq44by4sLi2vlFbXGmmUJYw7LPKjpOW5KfdFyB0ppM9bccLdwPN507s5VvHmLU9SEYWXchjzTuAOQtEXzJVEOWfdc9Pslsp2xdbLmgTVHJSRr3pUesEVeojAkCEARwhJ2IeLlJ42qrARE9fBiLiEkNBxjnuYpM0oi1OGS+wNfQe0a+dsSHvlmWo1o1N8ehNSWtgiTUR5CWF1mqXjmXZW7G/eI+2p7jakv5d7BcRKXBP7l26c+V+dqkWij0Ndg6CaYs2o6ljukumuqJtbX6qS5BATp3CP4glhppXjPltak+raVW9dHX/TmYpVe5bnZnhXt6QBV3+OcxI0dirV/crexW65dpSPuogNbGKb5nmAGk5Qh0PeAo94wrNxasTGnTH8TDUKuWYd35bx8AFlk5BC</latexit> KM <latexit sha1_base64="gxgwsrlJXtjgOKDHetTN95gLgl8=">AAADAHicjVFPSxtBHH1ubU2jbdN67GUxCFmQsBFrCyIEeykEIYLRgAnL7jrqxP3H7mxBghe/SW+9lV77BXptT+I3sN+ib6YrtA2lzrK7b97vvTfzmwmySBbKdW/mrAfzDx8t1B7XF5eePH3WeP7ioEjLPBSDMI3SfBj4hYhkIgZKqkgMs1z4cRCJw+D8ra4fvhd5IdNkX11kYhz7p4k8kaGvSHmNrV6rFXtyLfOks0Y0IZo4jr1t97xdUyHn2CMlY1GQ67cyo5449brXaLpt1wx7FnQq0EQ1+mnjGiMcI0WIEjEEEijiCD4KPkfowEVGbowpuZxImrrAJer0llQJKnyy5/yecnZUsQnnOrMw7pCrRHxzOm2s0pNSlxPr1WxTL02yZv+VPTWZem8X/AdVVkxW4Yzs/3x3yvv6dC8KJ3hjepDsKTOM7i6sUkpzKnrn9m9dKSZk5DQ+Zj0nDo3z7pxt4ylM7/psfVO/NUrN6nlYaUv80LvkBXf+vs5ZcLDe7my2X+1tNLs71VXX8BIraPE+X6OLd+hjwOwP+Ipv+G5dWR+tT9bnX1JrrvIs449hffkJlNyjOA==</latexit> K((mi, pi), (mj, pj)) = KM (mi, mj) ⇥ KP (pi, pj)
152k Molecule features <latexit sha1_base64="wlQqN/dnLCLVaDWz4G0wQMTCMug=">AAADAHicjVHLSuRAFD3Gd3y1ztJNYSO4atLiC9yIbtwIjtjaYLRJ0qVddF5UKj4IvfFP3LmT2c4PzHZciX/g/MXcKiP4QLRCklPn3nOq7r1+GopMOc5jn9U/MDg0PDJqj41PTE5VpmcOsiSXAW8ESZjIpu9lPBQxbyihQt5MJfciP+SHfndLxw/PucxEEu+rq5QfR95ZLE5F4CmiWpV1V/FLVVx0uOSs5yoRtnnRbO30mCti5kae6vh+sdc7KeLWDqN4xDPWprht261K1ak5ZrGPoF6CKsq1m1Qe4KKNBAFyROCIoQiH8JDRc4Q6HKTEHaMgThISJs7Rg03anLI4ZXjEdul7Rrujko1prz0zow7olJBeSUqGedIklCcJ69OYiefGWbOfeRfGU9/tiv5+6RURq9Ah9ivdS+Z3dboWhVOsmRoE1ZQaRlcXlC656Yq+OXtVlSKHlDiN2xSXhAOjfOkzM5rM1K5765n4k8nUrN4HZW6Of/qWNOD6+3F+BAeLtfpKbfnnUnVjsxz1CGYxhwWa5yo2sI1dNMj7Bn/wF/fWtXVr3Vm/nlOtvlLzA2+W9fs/gz6nJQ==</latexit> where ˜ XM 2 RnM ⇥dM <latexit sha1_base64="O3Uf4vnd+aqzIufIv9BDDQSn1eg=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy60V0F+wAtJUmn7dA0CZNJsRQX/oBb/TPxD/QvvDNOQS2iE5KcOfeeM3Pv9ZOQp9JxXnPW3PzC4lJ+ubCyura+UdzcqqdxJgJWC+IwFk3fS1nII1aTXIasmQjmDf2QNfzBuYo3RkykPI6u5ThhraHXi3iXB55UVNLmhXax5JQdvexZ4BpQglnVuPiCW3QQI0CGIRgiSMIhPKT03MCFg4S4FibECUJcxxnuUSBtRlmMMjxiB/Tt0e7GsBHtlWeq1QGdEtIrSGljjzQx5QnC6jRbxzPtrNjfvCfaU91tTH/feA2JlegT+5dumvlfnapFootTXQOnmhLNqOoC45Lprqib21+qkuSQEKdwh+KCcKCV0z7bWpPq2lVvPR1/05mKVfvA5GZ4V7ekAbs/xzkL6gdl97h8dHVYqpyZUeexg13s0zxPUMEFqqiRdx+PeMKzdWnF1si6+0y1ckazjW/LevgAwfeQbw==</latexit> pi 1627 Protein features <latexit sha1_base64="cr9PrbFrLZbhZvMjskS2Od5QDqI=">AAAC83icjVHLSsNAFD2N7/iKunQzWARXJRVfS9GNyyrWFtpaknSqQ/MimQgS+hfu3Ilbf8Ct/oP4B/oX3hkj+EB0QpIz595zZu69buyLVNr2c8kYGR0bn5icMqdnZufmrYXFkzTKEo/XvciPkqbrpNwXIa9LIX3ejBPuBK7PG+5gX8UbFzxJRRQey8uYdwLnLBR94TmSqK5VaUvh93je7NaGrC1C1g4cee66+dHwNA+7NUbxgKesR3HTNLtW2a7YerGfoFqAMopVi6wntNFDBA8ZAnCEkIR9OEjpaaEKGzFxHeTEJYSEjnMMYZI2oyxOGQ6xA/qe0a5VsCHtlWeq1R6d4tObkJJhlTQR5SWE1WlMxzPtrNjfvHPtqe52SX+38AqIlTgn9i/dR+Z/daoWiT52dA2Caoo1o6rzCpdMd0XdnH2qSpJDTJzCPYonhD2t/Ogz05pU16566+j4i85UrNp7RW6GV3VLGnD1+zh/gpP1SnWrsnm4Ud7dK0Y9iWWsYI3muY1dHKCGOnlf4R4PeDQy49q4MW7fU41SoVnCl2XcvQHpIaFY</latexit> ˜ XP 2 RnP ⇥dP
152k Molecule features <latexit sha1_base64="wlQqN/dnLCLVaDWz4G0wQMTCMug=">AAADAHicjVHLSuRAFD3Gd3y1ztJNYSO4atLiC9yIbtwIjtjaYLRJ0qVddF5UKj4IvfFP3LmT2c4PzHZciX/g/MXcKiP4QLRCklPn3nOq7r1+GopMOc5jn9U/MDg0PDJqj41PTE5VpmcOsiSXAW8ESZjIpu9lPBQxbyihQt5MJfciP+SHfndLxw/PucxEEu+rq5QfR95ZLE5F4CmiWpV1V/FLVVx0uOSs5yoRtnnRbO30mCti5kae6vh+sdc7KeLWDqN4xDPWprht261K1ak5ZrGPoF6CKsq1m1Qe4KKNBAFyROCIoQiH8JDRc4Q6HKTEHaMgThISJs7Rg03anLI4ZXjEdul7Rrujko1prz0zow7olJBeSUqGedIklCcJ69OYiefGWbOfeRfGU9/tiv5+6RURq9Ah9ivdS+Z3dboWhVOsmRoE1ZQaRlcXlC656Yq+OXtVlSKHlDiN2xSXhAOjfOkzM5rM1K5765n4k8nUrN4HZW6Of/qWNOD6+3F+BAeLtfpKbfnnUnVjsxz1CGYxhwWa5yo2sI1dNMj7Bn/wF/fWtXVr3Vm/nlOtvlLzA2+W9fs/gz6nJQ==</latexit> where ˜ XM 2 RnM ⇥dM <latexit sha1_base64="O3Uf4vnd+aqzIufIv9BDDQSn1eg=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy60V0F+wAtJUmn7dA0CZNJsRQX/oBb/TPxD/QvvDNOQS2iE5KcOfeeM3Pv9ZOQp9JxXnPW3PzC4lJ+ubCyura+UdzcqqdxJgJWC+IwFk3fS1nII1aTXIasmQjmDf2QNfzBuYo3RkykPI6u5ThhraHXi3iXB55UVNLmhXax5JQdvexZ4BpQglnVuPiCW3QQI0CGIRgiSMIhPKT03MCFg4S4FibECUJcxxnuUSBtRlmMMjxiB/Tt0e7GsBHtlWeq1QGdEtIrSGljjzQx5QnC6jRbxzPtrNjfvCfaU91tTH/feA2JlegT+5dumvlfnapFootTXQOnmhLNqOoC45Lprqib21+qkuSQEKdwh+KCcKCV0z7bWpPq2lVvPR1/05mKVfvA5GZ4V7ekAbs/xzkL6gdl97h8dHVYqpyZUeexg13s0zxPUMEFqqiRdx+PeMKzdWnF1si6+0y1ckazjW/LevgAwfeQbw==</latexit> pi 1627 Protein features <latexit sha1_base64="cr9PrbFrLZbhZvMjskS2Od5QDqI=">AAAC83icjVHLSsNAFD2N7/iKunQzWARXJRVfS9GNyyrWFtpaknSqQ/MimQgS+hfu3Ilbf8Ct/oP4B/oX3hkj+EB0QpIz595zZu69buyLVNr2c8kYGR0bn5icMqdnZufmrYXFkzTKEo/XvciPkqbrpNwXIa9LIX3ejBPuBK7PG+5gX8UbFzxJRRQey8uYdwLnLBR94TmSqK5VaUvh93je7NaGrC1C1g4cee66+dHwNA+7NUbxgKesR3HTNLtW2a7YerGfoFqAMopVi6wntNFDBA8ZAnCEkIR9OEjpaaEKGzFxHeTEJYSEjnMMYZI2oyxOGQ6xA/qe0a5VsCHtlWeq1R6d4tObkJJhlTQR5SWE1WlMxzPtrNjfvHPtqe52SX+38AqIlTgn9i/dR+Z/daoWiT52dA2Caoo1o6rzCpdMd0XdnH2qSpJDTJzCPYonhD2t/Ogz05pU16566+j4i85UrNp7RW6GV3VLGnD1+zh/gpP1SnWrsnm4Ud7dK0Y9iWWsYI3muY1dHKCGOnlf4R4PeDQy49q4MW7fU41SoVnCl2XcvQHpIaFY</latexit> ˜ XP 2 RnP ⇥dP
sha1_base64="N/jWUraLGjzi7eD0iNLDrJ+eAOc=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVVLxtSy60V0F+wAtJUmn7dC8mEyKpbjwB9zqn4l/oH/hnXEKahGdkOTMufecmXuvlwQ8lY7zmrPm5hcWl/LLhZXVtfWN4uZWI40z4bO6HwexaHluygIesbrkMmCtRDA39ALW9IbnKt4cMZHyOLqW44S1Q7cf8R73XamosMMLnWLJKTt62bOgYkAJZtXi4gtu0UUMHxlCMESQhAO4SOm5QQUOEuLamBAnCHEdZ7hHgbQZZTHKcIkd0rdPuxvDRrRXnqlW+3RKQK8gpY090sSUJwir02wdz7SzYn/znmhPdbcx/T3jFRIrMSD2L9008786VYtED6e6Bk41JZpR1fnGJdNdUTe3v1QlySEhTuEuxQVhXyunfba1JtW1q966Ov6mMxWr9r7JzfCubkkDrvwc5yxoHJQrx+Wjq8NS9cyMOo8d7GKf5nmCKi5QQ528B3jEE56tSyu2RtbdZ6qVM5ptfFvWwwe6zpBs</latexit> mi 152k Molecule features <latexit sha1_base64="wlQqN/dnLCLVaDWz4G0wQMTCMug=">AAADAHicjVHLSuRAFD3Gd3y1ztJNYSO4atLiC9yIbtwIjtjaYLRJ0qVddF5UKj4IvfFP3LmT2c4PzHZciX/g/MXcKiP4QLRCklPn3nOq7r1+GopMOc5jn9U/MDg0PDJqj41PTE5VpmcOsiSXAW8ESZjIpu9lPBQxbyihQt5MJfciP+SHfndLxw/PucxEEu+rq5QfR95ZLE5F4CmiWpV1V/FLVVx0uOSs5yoRtnnRbO30mCti5kae6vh+sdc7KeLWDqN4xDPWprht261K1ak5ZrGPoF6CKsq1m1Qe4KKNBAFyROCIoQiH8JDRc4Q6HKTEHaMgThISJs7Rg03anLI4ZXjEdul7Rrujko1prz0zow7olJBeSUqGedIklCcJ69OYiefGWbOfeRfGU9/tiv5+6RURq9Ah9ivdS+Z3dboWhVOsmRoE1ZQaRlcXlC656Yq+OXtVlSKHlDiN2xSXhAOjfOkzM5rM1K5765n4k8nUrN4HZW6Of/qWNOD6+3F+BAeLtfpKbfnnUnVjsxz1CGYxhwWa5yo2sI1dNMj7Bn/wF/fWtXVr3Vm/nlOtvlLzA2+W9fs/gz6nJQ==</latexit> where ˜ XM 2 RnM ⇥dM <latexit sha1_base64="O3Uf4vnd+aqzIufIv9BDDQSn1eg=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy60V0F+wAtJUmn7dA0CZNJsRQX/oBb/TPxD/QvvDNOQS2iE5KcOfeeM3Pv9ZOQp9JxXnPW3PzC4lJ+ubCyura+UdzcqqdxJgJWC+IwFk3fS1nII1aTXIasmQjmDf2QNfzBuYo3RkykPI6u5ThhraHXi3iXB55UVNLmhXax5JQdvexZ4BpQglnVuPiCW3QQI0CGIRgiSMIhPKT03MCFg4S4FibECUJcxxnuUSBtRlmMMjxiB/Tt0e7GsBHtlWeq1QGdEtIrSGljjzQx5QnC6jRbxzPtrNjfvCfaU91tTH/feA2JlegT+5dumvlfnapFootTXQOnmhLNqOoC45Lprqib21+qkuSQEKdwh+KCcKCV0z7bWpPq2lVvPR1/05mKVfvA5GZ4V7ekAbs/xzkL6gdl97h8dHVYqpyZUeexg13s0zxPUMEFqqiRdx+PeMKzdWnF1si6+0y1ckazjW/LevgAwfeQbw==</latexit> pi 1627 Protein features <latexit sha1_base64="cr9PrbFrLZbhZvMjskS2Od5QDqI=">AAAC83icjVHLSsNAFD2N7/iKunQzWARXJRVfS9GNyyrWFtpaknSqQ/MimQgS+hfu3Ilbf8Ct/oP4B/oX3hkj+EB0QpIz595zZu69buyLVNr2c8kYGR0bn5icMqdnZufmrYXFkzTKEo/XvciPkqbrpNwXIa9LIX3ejBPuBK7PG+5gX8UbFzxJRRQey8uYdwLnLBR94TmSqK5VaUvh93je7NaGrC1C1g4cee66+dHwNA+7NUbxgKesR3HTNLtW2a7YerGfoFqAMopVi6wntNFDBA8ZAnCEkIR9OEjpaaEKGzFxHeTEJYSEjnMMYZI2oyxOGQ6xA/qe0a5VsCHtlWeq1R6d4tObkJJhlTQR5SWE1WlMxzPtrNjfvHPtqe52SX+38AqIlTgn9i/dR+Z/daoWiT52dA2Caoo1o6rzCpdMd0XdnH2qSpJDTJzCPYonhD2t/Ogz05pU16566+j4i85UrNp7RW6GV3VLGnD1+zh/gpP1SnWrsnm4Ud7dK0Y9iWWsYI3muY1dHKCGOnlf4R4PeDQy49q4MW7fU41SoVnCl2XcvQHpIaFY</latexit> ˜ XP 2 RnP ⇥dP
predicted score Cross validation with CC Results on Drugbank [Playe&al, 2018] Performance : bias ? Number of CC molecules which are similar Back to the 20 molecules How hard is the prediction ? Similarity
set of diverse proteins Chemogenomics: enlarge and consolidate this set of proteins Contributions: A large new molecule/protein interactions dataset Fast large scale kernel method Perspectives: Analysis of the target proteins predicted for the 20 di ff erentially active molecules Use transcriptomic datas to fi nd transcription factors and pathways activities
matrix (Cj,k ) ∈ N^(J×K) where K = 6 and J = 25472. From a certain gene j, Cj,k is proportional to the abundance of its mRNA in the cell. Have more robust data in public data base of TNBC cell lines Experimental dataset
matrix (Cj,k ) ∈ N^(J×K) where K = 6 and J = 25472. From a certain gene j, Cj,k is proportional to the abundance of its mRNA in the cell. To do : Make a network of the proteins involved these pathways Find the di ff erentially active pathways (GSEA) Search in network the proteins known and predicted (A) Have more robust data in public data base of TNBC cell lines Experimental dataset