Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ML for drug discovery: data, methods and practice

Guichaoua
January 24, 2025

ML for drug discovery: data, methods and practice

Invited Lecture and TP for students of UE Industrie 4.0 at Chimie ParisTech, January 2025

Guichaoua

January 24, 2025
Tweet

More Decks by Guichaoua

Other Decks in Education

Transcript

  1. Machine Learning for drug discovery data, methods and practice 1

    ENSPC 08/01/2025 Gwenn Guichaoua Collaborators: Véronique Stoven, Philippe Pinel, Clara Nahmias, Sylvie Rodrigues-Ferreira, Chloé Azencott
  2. Plan Who am I? https://guichaoua.github.io/ Thesis General context Di ff

    erent Approaches/Collaborations Particular ML project: Drug Target Interaction prediction General context Modelisation LCIdb: a large new training database Komet: a large scale DTI prediction method Results 2 Practice https://github.com/Guichaoua/komet/blob/main/docs/source/vignettes/komet_TP.ipynb
  3. Who I am? Agregation of Mathematic Math and informatic Teacher

    Master 2 Thesis 2002 2003-2022 2020-2021 2022-2025 Lycée E. Mounier (92) MVA (Mathematics, Vision and Apprentissage), ENS Paris Saclay Directed by Véronique Stoven, Chloé Azencott (CBIO - Mines Paris - Curie) Clara NAHMIAS (Institut Gustave Roussy) Machine Learning and System Biologies Approaches to fi nd new therapeutic strategies against Triple Negative Breast Cancer de fi cient in the ATIP3 protein 3
  4. Bad Subtype Luminal A HER2 positif Chemotherapy Hormonotherapy monoclonal antibodies

    Luminal B Triple Negatif (15%) Phenotype Prognosis Treatment ER+ PR+ ER+ PR+ HER2+ ER- PR- HER2- Good ATIP3 protein: a new marker for a category of TNBC Biological sub-typing of the breast cancers Breast cancer A candidate biomarker to de fi ne a new breast cancer subtype, identi fi ed by Clara Nahmias’s team •In TNBC, low expression of MTUS1 (gene which expresses ATIP3 protein) [Rodrigues-Ferreira et al, 2009] •Poorer prognosis for tumors that not express ATIP3 (called ATIP3- tumors)[Rodrigues-Ferreira et al, 2019] •70% of ATIP3- tumours resistance to the chemotherapy •ATIP3- resistant tumours more agressive than ATIP3+ tumours resistant Important unmet need for new therapies and therapeutic target Lack of knowledge for understanding the mechanism of ATIP3 ATIP3- 4 1 of the 3 most common cancers worldwide per year/in France: 61k new cases, 12k deaths
  5. Different Approaches/Collaborations Part 3: Transcriptomics Part 2: Chemogenomics 5 Part

    1: Systems Biology Drug-Target Interaction Prediction Drug-Target Interactions Prediction at Scale: the Komet Algorithm with the LCIdb Dataset. Guichaoua G., Pinel P., Ho ff mann B., Azencott C-A., Stoven V. (2024). JCIM Code: https://komet.readthedocs.io Database: https://zenodo.org/records/10731712 Collaboration with biologists X1 <latexit sha1_base64="eIy6t1iFadWKddLt+hz4M4j+UWQ=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZRkOq1D0yRMJkIp7vwBt/ph4h/oX3hnTEEtohOSnDn3nDtz7w2SUKTKdV8L1tLyyupacd3e2Nza3int7rXSOJOMN1kcxrIT+CkPRcSbSqiQdxLJ/UkQ8nYwPtfx9h2XqYijazVNeG/ijyIxFMxXRLUrnb5Xse1+qexWXbOcReDloIx8NeLSC24wQAyGDBNwRFCEQ/hI6enCg4uEuB5mxElCwsQ57mGTNyMVJ4VP7Ji+I9p1czaivc6ZGjejU0J6JTkdHJEnJp0krE9zTDwzmTX7W+6ZyanvNqV/kOeaEKtwS+xfvrnyvz5di8IQp6YGQTUlhtHVsTxLZrqib+58qUpRhoQ4jQcUl4SZcc777BhPamrXvfVN/M0oNav3LNdmeNe3pAF7P8e5CFq1qudWvatauX6Wj7qIAxzimOZ5gjou0EDTVPmIJzxbl5a0ptbsU2oVcs8+vi3r4QM2uJCD</latexit> <latexit sha1_base64="eIy6t1iFadWKddLt+hz4M4j+UWQ=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZRkOq1D0yRMJkIp7vwBt/ph4h/oX3hnTEEtohOSnDn3nDtz7w2SUKTKdV8L1tLyyupacd3e2Nza3int7rXSOJOMN1kcxrIT+CkPRcSbSqiQdxLJ/UkQ8nYwPtfx9h2XqYijazVNeG/ijyIxFMxXRLUrnb5Xse1+qexWXbOcReDloIx8NeLSC24wQAyGDBNwRFCEQ/hI6enCg4uEuB5mxElCwsQ57mGTNyMVJ4VP7Ji+I9p1czaivc6ZGjejU0J6JTkdHJEnJp0krE9zTDwzmTX7W+6ZyanvNqV/kOeaEKtwS+xfvrnyvz5di8IQp6YGQTUlhtHVsTxLZrqib+58qUpRhoQ4jQcUl4SZcc777BhPamrXvfVN/M0oNav3LNdmeNe3pAF7P8e5CFq1qudWvatauX6Wj7qIAxzimOZ5gjou0EDTVPmIJzxbl5a0ptbsU2oVcs8+vi3r4QM2uJCD</latexit> <latexit sha1_base64="eIy6t1iFadWKddLt+hz4M4j+UWQ=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZRkOq1D0yRMJkIp7vwBt/ph4h/oX3hnTEEtohOSnDn3nDtz7w2SUKTKdV8L1tLyyupacd3e2Nza3int7rXSOJOMN1kcxrIT+CkPRcSbSqiQdxLJ/UkQ8nYwPtfx9h2XqYijazVNeG/ijyIxFMxXRLUrnb5Xse1+qexWXbOcReDloIx8NeLSC24wQAyGDBNwRFCEQ/hI6enCg4uEuB5mxElCwsQ57mGTNyMVJ4VP7Ji+I9p1czaivc6ZGjejU0J6JTkdHJEnJp0krE9zTDwzmTX7W+6ZyanvNqV/kOeaEKtwS+xfvrnyvz5di8IQp6YGQTUlhtHVsTxLZrqib+58qUpRhoQ4jQcUl4SZcc777BhPamrXvfVN/M0oNav3LNdmeNe3pAF7P8e5CFq1qudWvatauX6Wj7qIAxzimOZ5gjou0EDTVPmIJzxbl5a0ptbsU2oVcs8+vi3r4QM2uJCD</latexit> <latexit sha1_base64="eIy6t1iFadWKddLt+hz4M4j+UWQ=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZRkOq1D0yRMJkIp7vwBt/ph4h/oX3hnTEEtohOSnDn3nDtz7w2SUKTKdV8L1tLyyupacd3e2Nza3int7rXSOJOMN1kcxrIT+CkPRcSbSqiQdxLJ/UkQ8nYwPtfx9h2XqYijazVNeG/ijyIxFMxXRLUrnb5Xse1+qexWXbOcReDloIx8NeLSC24wQAyGDBNwRFCEQ/hI6enCg4uEuB5mxElCwsQ57mGTNyMVJ4VP7Ji+I9p1czaivc6ZGjejU0J6JTkdHJEnJp0krE9zTDwzmTX7W+6ZyanvNqV/kOeaEKtwS+xfvrnyvz5di8IQp6YGQTUlhtHVsTxLZrqib+58qUpRhoQ4jQcUl4SZcc777BhPamrXvfVN/M0oNav3LNdmeNe3pAF7P8e5CFq1qudWvatauX6Wj7qIAxzimOZ5gjou0EDTVPmIJzxbl5a0ptbsU2oVcs8+vi3r4QM2uJCD</latexit> X2 <latexit sha1_base64="0p0UsmXBIWUs/DXfCwaN93CBu6k=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZQkndahaRImE6EUd/6AW/0w8Q/0L7wzTkEtohOSnDn3nDtz7w3SiGfSdV8L1tLyyupacd3e2Nza3int7rWyJBcha4ZJlIhO4Gcs4jFrSi4j1kkF8ydBxNrB+FzF23dMZDyJr+U0Zb2JP4r5kIe+JKpd6fRrFdvul8pu1dXLWQSeAWWY1UhKL7jBAAlC5JiAIYYkHMFHRk8XHlykxPUwI04Q4jrOcA+bvDmpGCl8Ysf0HdGua9iY9ipnpt0hnRLRK8jp4Ig8CekEYXWao+O5zqzY33LPdE51tyn9A5NrQqzELbF/+ebK//pULRJDnOoaONWUakZVF5osue6KurnzpSpJGVLiFB5QXBAOtXPeZ0d7Ml276q2v429aqVi1D402x7u6JQ3Y+znORdCqVT236l3VyvUzM+oiDnCIY5rnCeq4QANNXeUjnvBsXVrCmlqzT6lVMJ59fFvWwwc5G5CE</latexit> <latexit sha1_base64="0p0UsmXBIWUs/DXfCwaN93CBu6k=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZQkndahaRImE6EUd/6AW/0w8Q/0L7wzTkEtohOSnDn3nDtz7w3SiGfSdV8L1tLyyupacd3e2Nza3int7rWyJBcha4ZJlIhO4Gcs4jFrSi4j1kkF8ydBxNrB+FzF23dMZDyJr+U0Zb2JP4r5kIe+JKpd6fRrFdvul8pu1dXLWQSeAWWY1UhKL7jBAAlC5JiAIYYkHMFHRk8XHlykxPUwI04Q4jrOcA+bvDmpGCl8Ysf0HdGua9iY9ipnpt0hnRLRK8jp4Ig8CekEYXWao+O5zqzY33LPdE51tyn9A5NrQqzELbF/+ebK//pULRJDnOoaONWUakZVF5osue6KurnzpSpJGVLiFB5QXBAOtXPeZ0d7Ml276q2v429aqVi1D402x7u6JQ3Y+znORdCqVT236l3VyvUzM+oiDnCIY5rnCeq4QANNXeUjnvBsXVrCmlqzT6lVMJ59fFvWwwc5G5CE</latexit> <latexit sha1_base64="0p0UsmXBIWUs/DXfCwaN93CBu6k=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZQkndahaRImE6EUd/6AW/0w8Q/0L7wzTkEtohOSnDn3nDtz7w3SiGfSdV8L1tLyyupacd3e2Nza3int7rWyJBcha4ZJlIhO4Gcs4jFrSi4j1kkF8ydBxNrB+FzF23dMZDyJr+U0Zb2JP4r5kIe+JKpd6fRrFdvul8pu1dXLWQSeAWWY1UhKL7jBAAlC5JiAIYYkHMFHRk8XHlykxPUwI04Q4jrOcA+bvDmpGCl8Ysf0HdGua9iY9ipnpt0hnRLRK8jp4Ig8CekEYXWao+O5zqzY33LPdE51tyn9A5NrQqzELbF/+ebK//pULRJDnOoaONWUakZVF5osue6KurnzpSpJGVLiFB5QXBAOtXPeZ0d7Ml276q2v429aqVi1D402x7u6JQ3Y+znORdCqVT236l3VyvUzM+oiDnCIY5rnCeq4QANNXeUjnvBsXVrCmlqzT6lVMJ59fFvWwwc5G5CE</latexit> <latexit sha1_base64="0p0UsmXBIWUs/DXfCwaN93CBu6k=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZQkndahaRImE6EUd/6AW/0w8Q/0L7wzTkEtohOSnDn3nDtz7w3SiGfSdV8L1tLyyupacd3e2Nza3int7rWyJBcha4ZJlIhO4Gcs4jFrSi4j1kkF8ydBxNrB+FzF23dMZDyJr+U0Zb2JP4r5kIe+JKpd6fRrFdvul8pu1dXLWQSeAWWY1UhKL7jBAAlC5JiAIYYkHMFHRk8XHlykxPUwI04Q4jrOcA+bvDmpGCl8Ysf0HdGua9iY9ipnpt0hnRLRK8jp4Ig8CekEYXWao+O5zqzY33LPdE51tyn9A5NrQqzELbF/+ebK//pULRJDnOoaONWUakZVF5osue6KurnzpSpJGVLiFB5QXBAOtXPeZ0d7Ml276q2v429aqVi1D402x7u6JQ3Y+znORdCqVT236l3VyvUzM+oiDnCIY5rnCeq4QANNXeUjnvBsXVrCmlqzT6lVMJ59fFvWwwc5G5CE</latexit> Xt <latexit sha1_base64="1l4avmz/Y0HKqidmgmNRTcwCWTk=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZRkOq1D0yRMJkIp7vwBt/ph4h/oX3hnTEEtohOSnDn3nDtz7w2SUKTKdV8L1tLyyupacd3e2Nza3int7rXSOJOMN1kcxrIT+CkPRcSbSqiQdxLJ/UkQ8nYwPtfx9h2XqYijazVNeG/ijyIxFMxXRLUrnb6q2Ha/VHarrlnOIvByUEa+GnHpBTcYIAZDhgk4IijCIXyk9HThwUVCXA8z4iQhYeIc97DJm5GKk8IndkzfEe26ORvRXudMjZvRKSG9kpwOjsgTk04S1qc5Jp6ZzJr9LffM5NR3m9I/yHNNiFW4JfYv31z5X5+uRWGIU1ODoJoSw+jqWJ4lM13RN3e+VKUoQ0KcxgOKS8LMOOd9downNbXr3vom/maUmtV7lmszvOtb0oC9n+NcBK1a1XOr3lWtXD/LR13EAQ5xTPM8QR0XaKBpqnzEE56tS0taU2v2KbUKuWcf35b18AHWoZDG</latexit> <latexit sha1_base64="1l4avmz/Y0HKqidmgmNRTcwCWTk=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZRkOq1D0yRMJkIp7vwBt/ph4h/oX3hnTEEtohOSnDn3nDtz7w2SUKTKdV8L1tLyyupacd3e2Nza3int7rXSOJOMN1kcxrIT+CkPRcSbSqiQdxLJ/UkQ8nYwPtfx9h2XqYijazVNeG/ijyIxFMxXRLUrnb6q2Ha/VHarrlnOIvByUEa+GnHpBTcYIAZDhgk4IijCIXyk9HThwUVCXA8z4iQhYeIc97DJm5GKk8IndkzfEe26ORvRXudMjZvRKSG9kpwOjsgTk04S1qc5Jp6ZzJr9LffM5NR3m9I/yHNNiFW4JfYv31z5X5+uRWGIU1ODoJoSw+jqWJ4lM13RN3e+VKUoQ0KcxgOKS8LMOOd9downNbXr3vom/maUmtV7lmszvOtb0oC9n+NcBK1a1XOr3lWtXD/LR13EAQ5xTPM8QR0XaKBpqnzEE56tS0taU2v2KbUKuWcf35b18AHWoZDG</latexit> <latexit sha1_base64="1l4avmz/Y0HKqidmgmNRTcwCWTk=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZRkOq1D0yRMJkIp7vwBt/ph4h/oX3hnTEEtohOSnDn3nDtz7w2SUKTKdV8L1tLyyupacd3e2Nza3int7rXSOJOMN1kcxrIT+CkPRcSbSqiQdxLJ/UkQ8nYwPtfx9h2XqYijazVNeG/ijyIxFMxXRLUrnb6q2Ha/VHarrlnOIvByUEa+GnHpBTcYIAZDhgk4IijCIXyk9HThwUVCXA8z4iQhYeIc97DJm5GKk8IndkzfEe26ORvRXudMjZvRKSG9kpwOjsgTk04S1qc5Jp6ZzJr9LffM5NR3m9I/yHNNiFW4JfYv31z5X5+uRWGIU1ODoJoSw+jqWJ4lM13RN3e+VKUoQ0KcxgOKS8LMOOd9downNbXr3vom/maUmtV7lmszvOtb0oC9n+NcBK1a1XOr3lWtXD/LR13EAQ5xTPM8QR0XaKBpqnzEE56tS0taU2v2KbUKuWcf35b18AHWoZDG</latexit> <latexit sha1_base64="1l4avmz/Y0HKqidmgmNRTcwCWTk=">AAACynicjVHLSsNAFD2NrxpfVZdugq3gqiTd6LLoxoWLCvYBtZRkOq1D0yRMJkIp7vwBt/ph4h/oX3hnTEEtohOSnDn3nDtz7w2SUKTKdV8L1tLyyupacd3e2Nza3int7rXSOJOMN1kcxrIT+CkPRcSbSqiQdxLJ/UkQ8nYwPtfx9h2XqYijazVNeG/ijyIxFMxXRLUrnb6q2Ha/VHarrlnOIvByUEa+GnHpBTcYIAZDhgk4IijCIXyk9HThwUVCXA8z4iQhYeIc97DJm5GKk8IndkzfEe26ORvRXudMjZvRKSG9kpwOjsgTk04S1qc5Jp6ZzJr9LffM5NR3m9I/yHNNiFW4JfYv31z5X5+uRWGIU1ODoJoSw+jqWJ4lM13RN3e+VKUoQ0KcxgOKS8LMOOd9downNbXr3vom/maUmtV7lmszvOtb0oC9n+NcBK1a1XOr3lWtXD/LR13EAQ5xTPM8QR0XaKBpqnzEE56tS0taU2v2KbUKuWcf35b18AHWoZDG</latexit> Label Yt <latexit sha1_base64="lOBgN7Dkfrj0Gi5MT2TySLSGB4Y=">AAAC0HicjVG7TsNAEJyYVzCvACWNRYJEFdlpoIygoaAIiDxQiCL7cglW/MI+I6IIIVp+gBa+CvEH8BfsHY4ERAjOsj03uzN3u+tEnpsI03zNaTOzc/ML+UV9aXllda2wvtFIwjRmvM5CL4xbjp1wzw14XbjC460o5rbveLzpDA9lvHnN48QNgzMxinjHtweB23eZLYjqHNsO94zSeVeUdL1bKJplUy1jGlgZKCJbtbDwggv0EIIhhQ+OAIKwBxsJPW1YMBER18GYuJiQq+Ict9BJm1IWpwyb2CF9B7RrZ2xAe+mZKDWjUzx6Y1Ia2CFNSHkxYXmaoeKpcpbsb95j5SnvNqK/k3n5xApcEvuXbpL5X52sRaCPfVWDSzVFipHVscwlVV2RNze+VCXIISJO4h7FY8JMKSd9NpQmUbXL3toq/qYyJSv3LMtN8S5vSQO2fo5zGjQqZcssWyeVYvUgG3UeW9jGLs1zD1UcoYY6eV/hEU941k61G+1Ou/9M1XKZZhPflvbwAY+ikwM=</latexit> <latexit sha1_base64="lOBgN7Dkfrj0Gi5MT2TySLSGB4Y=">AAAC0HicjVG7TsNAEJyYVzCvACWNRYJEFdlpoIygoaAIiDxQiCL7cglW/MI+I6IIIVp+gBa+CvEH8BfsHY4ERAjOsj03uzN3u+tEnpsI03zNaTOzc/ML+UV9aXllda2wvtFIwjRmvM5CL4xbjp1wzw14XbjC460o5rbveLzpDA9lvHnN48QNgzMxinjHtweB23eZLYjqHNsO94zSeVeUdL1bKJplUy1jGlgZKCJbtbDwggv0EIIhhQ+OAIKwBxsJPW1YMBER18GYuJiQq+Ict9BJm1IWpwyb2CF9B7RrZ2xAe+mZKDWjUzx6Y1Ia2CFNSHkxYXmaoeKpcpbsb95j5SnvNqK/k3n5xApcEvuXbpL5X52sRaCPfVWDSzVFipHVscwlVV2RNze+VCXIISJO4h7FY8JMKSd9NpQmUbXL3toq/qYyJSv3LMtN8S5vSQO2fo5zGjQqZcssWyeVYvUgG3UeW9jGLs1zD1UcoYY6eV/hEU941k61G+1Ou/9M1XKZZhPflvbwAY+ikwM=</latexit> <latexit sha1_base64="lOBgN7Dkfrj0Gi5MT2TySLSGB4Y=">AAAC0HicjVG7TsNAEJyYVzCvACWNRYJEFdlpoIygoaAIiDxQiCL7cglW/MI+I6IIIVp+gBa+CvEH8BfsHY4ERAjOsj03uzN3u+tEnpsI03zNaTOzc/ML+UV9aXllda2wvtFIwjRmvM5CL4xbjp1wzw14XbjC460o5rbveLzpDA9lvHnN48QNgzMxinjHtweB23eZLYjqHNsO94zSeVeUdL1bKJplUy1jGlgZKCJbtbDwggv0EIIhhQ+OAIKwBxsJPW1YMBER18GYuJiQq+Ict9BJm1IWpwyb2CF9B7RrZ2xAe+mZKDWjUzx6Y1Ia2CFNSHkxYXmaoeKpcpbsb95j5SnvNqK/k3n5xApcEvuXbpL5X52sRaCPfVWDSzVFipHVscwlVV2RNze+VCXIISJO4h7FY8JMKSd9NpQmUbXL3toq/qYyJSv3LMtN8S5vSQO2fo5zGjQqZcssWyeVYvUgG3UeW9jGLs1zD1UcoYY6eV/hEU941k61G+1Ou/9M1XKZZhPflvbwAY+ikwM=</latexit> <latexit sha1_base64="lOBgN7Dkfrj0Gi5MT2TySLSGB4Y=">AAAC0HicjVG7TsNAEJyYVzCvACWNRYJEFdlpoIygoaAIiDxQiCL7cglW/MI+I6IIIVp+gBa+CvEH8BfsHY4ERAjOsj03uzN3u+tEnpsI03zNaTOzc/ML+UV9aXllda2wvtFIwjRmvM5CL4xbjp1wzw14XbjC460o5rbveLzpDA9lvHnN48QNgzMxinjHtweB23eZLYjqHNsO94zSeVeUdL1bKJplUy1jGlgZKCJbtbDwggv0EIIhhQ+OAIKwBxsJPW1YMBER18GYuJiQq+Ict9BJm1IWpwyb2CF9B7RrZ2xAe+mZKDWjUzx6Y1Ia2CFNSHkxYXmaoeKpcpbsb95j5SnvNqK/k3n5xApcEvuXbpL5X52sRaCPfVWDSzVFipHVscwlVV2RNze+VCXIISJO4h7FY8JMKSd9NpQmUbXL3toq/qYyJSv3LMtN8S5vSQO2fo5zGjQqZcssWyeVYvUgG3UeW9jGLs1zD1UcoYY6eV/hEU941k61G+1Ou/9M1XKZZhPflvbwAY+ikwM=</latexit> t <latexit sha1_base64="5sAhqKPX1ULdLRNsf6KDgJqvkhA=">AAACx3icjVHLTsJAFD3UF+ILdemmEUxckZaNLoludIeJPBIkph0GaCidZjolEuLCH3Crf2b8A/0L74wlUYnRadqeOfeeM3Pv9eMwSJTjvOaspeWV1bX8emFjc2t7p7i710xEKhlvMBEK2fa9hIdBxBsqUCFvx5J7Yz/kLX90ruOtCZdJIKJrNY15d+wNoqAfME9pqqzKhdtiyak4ZtmLwM1ACdmqi+ILbtCDAEOKMTgiKMIhPCT0dODCQUxcFzPiJKHAxDnuUSBtSlmcMjxiR/Qd0K6TsRHttWdi1IxOCemVpLRxRBpBeZKwPs028dQ4a/Y375nx1Heb0t/PvMbEKgyJ/Us3z/yvTtei0MepqSGgmmLD6OpY5pKaruib21+qUuQQE6dxj+KSMDPKeZ9to0lM7bq3nom/mUzN6j3LclO861vSgN2f41wEzWrFdSruVbVUO8tGnccBDnFM8zxBDReoo0HeQzziCc/WpSWsiXX3mWrlMs0+vi3r4QOWiY/n</latexit> <latexit sha1_base64="5sAhqKPX1ULdLRNsf6KDgJqvkhA=">AAACx3icjVHLTsJAFD3UF+ILdemmEUxckZaNLoludIeJPBIkph0GaCidZjolEuLCH3Crf2b8A/0L74wlUYnRadqeOfeeM3Pv9eMwSJTjvOaspeWV1bX8emFjc2t7p7i710xEKhlvMBEK2fa9hIdBxBsqUCFvx5J7Yz/kLX90ruOtCZdJIKJrNY15d+wNoqAfME9pqqzKhdtiyak4ZtmLwM1ACdmqi+ILbtCDAEOKMTgiKMIhPCT0dODCQUxcFzPiJKHAxDnuUSBtSlmcMjxiR/Qd0K6TsRHttWdi1IxOCemVpLRxRBpBeZKwPs028dQ4a/Y375nx1Heb0t/PvMbEKgyJ/Us3z/yvTtei0MepqSGgmmLD6OpY5pKaruib21+qUuQQE6dxj+KSMDPKeZ9to0lM7bq3nom/mUzN6j3LclO861vSgN2f41wEzWrFdSruVbVUO8tGnccBDnFM8zxBDReoo0HeQzziCc/WpSWsiXX3mWrlMs0+vi3r4QOWiY/n</latexit> <latexit sha1_base64="5sAhqKPX1ULdLRNsf6KDgJqvkhA=">AAACx3icjVHLTsJAFD3UF+ILdemmEUxckZaNLoludIeJPBIkph0GaCidZjolEuLCH3Crf2b8A/0L74wlUYnRadqeOfeeM3Pv9eMwSJTjvOaspeWV1bX8emFjc2t7p7i710xEKhlvMBEK2fa9hIdBxBsqUCFvx5J7Yz/kLX90ruOtCZdJIKJrNY15d+wNoqAfME9pqqzKhdtiyak4ZtmLwM1ACdmqi+ILbtCDAEOKMTgiKMIhPCT0dODCQUxcFzPiJKHAxDnuUSBtSlmcMjxiR/Qd0K6TsRHttWdi1IxOCemVpLRxRBpBeZKwPs028dQ4a/Y375nx1Heb0t/PvMbEKgyJ/Us3z/yvTtei0MepqSGgmmLD6OpY5pKaruib21+qUuQQE6dxj+KSMDPKeZ9to0lM7bq3nom/mUzN6j3LclO861vSgN2f41wEzWrFdSruVbVUO8tGnccBDnFM8zxBDReoo0HeQzziCc/WpSWsiXX3mWrlMs0+vi3r4QOWiY/n</latexit> <latexit sha1_base64="5sAhqKPX1ULdLRNsf6KDgJqvkhA=">AAACx3icjVHLTsJAFD3UF+ILdemmEUxckZaNLoludIeJPBIkph0GaCidZjolEuLCH3Crf2b8A/0L74wlUYnRadqeOfeeM3Pv9eMwSJTjvOaspeWV1bX8emFjc2t7p7i710xEKhlvMBEK2fa9hIdBxBsqUCFvx5J7Yz/kLX90ruOtCZdJIKJrNY15d+wNoqAfME9pqqzKhdtiyak4ZtmLwM1ACdmqi+ILbtCDAEOKMTgiKMIhPCT0dODCQUxcFzPiJKHAxDnuUSBtSlmcMjxiR/Qd0K6TsRHttWdi1IxOCemVpLRxRBpBeZKwPs028dQ4a/Y375nx1Heb0t/PvMbEKgyJ/Us3z/yvTtei0MepqSGgmmLD6OpY5pKaruib21+qUuQQE6dxj+KSMDPKeZ9to0lM7bq3nom/mUzN6j3LclO861vSgN2f41wEzWrFdSruVbVUO8tGnccBDnFM8zxBDReoo0HeQzziCc/WpSWsiXX3mWrlMs0+vi3r4QOWiY/n</latexit> Sensible <latexit sha1_base64="FMlQvHtrxuoTpqfYXhveVABOSlk=">AAACznicjVHLSsNAFD2NrxpfVZdugkVwVZJudFl047KifUAtkkyndWiahGRSKKW49Qfc6meJf6B/4Z1xCmoRnZDkzLnn3Jl7b5CEIpOu+1qwlpZXVteK6/bG5tb2Tml3r5nFecp4g8VhnLYDP+OhiHhDChnydpJyfxSEvBUMz1W8NeZpJuLoWk4S3h35g0j0BfMlUZ0rHmWCtLZt35bKbsXVy1kEngFlmFWPSy+4QQ8xGHKMwBFBEg7hI6OnAw8uEuK6mBKXEhI6zjGDTd6cVJwUPrFD+g5o1zFsRHuVM9NuRqeE9KbkdHBEnph0KWF1mqPjuc6s2N9yT3VOdbcJ/QOTa0SsxB2xf/nmyv/6VC0SfZzqGgTVlGhGVcdMllx3Rd3c+VKVpAwJcQr3KJ4SZto577OjPZmuXfXW1/E3rVSs2jOjzfGubkkD9n6OcxE0qxXPrXiX1XLtzIy6iAMc4pjmeYIaLlBHQ3f8EU94turW2JpZ959Sq2A8+/i2rIcPwauSug==</latexit> <latexit sha1_base64="FMlQvHtrxuoTpqfYXhveVABOSlk=">AAACznicjVHLSsNAFD2NrxpfVZdugkVwVZJudFl047KifUAtkkyndWiahGRSKKW49Qfc6meJf6B/4Z1xCmoRnZDkzLnn3Jl7b5CEIpOu+1qwlpZXVteK6/bG5tb2Tml3r5nFecp4g8VhnLYDP+OhiHhDChnydpJyfxSEvBUMz1W8NeZpJuLoWk4S3h35g0j0BfMlUZ0rHmWCtLZt35bKbsXVy1kEngFlmFWPSy+4QQ8xGHKMwBFBEg7hI6OnAw8uEuK6mBKXEhI6zjGDTd6cVJwUPrFD+g5o1zFsRHuVM9NuRqeE9KbkdHBEnph0KWF1mqPjuc6s2N9yT3VOdbcJ/QOTa0SsxB2xf/nmyv/6VC0SfZzqGgTVlGhGVcdMllx3Rd3c+VKVpAwJcQr3KJ4SZto577OjPZmuXfXW1/E3rVSs2jOjzfGubkkD9n6OcxE0qxXPrXiX1XLtzIy6iAMc4pjmeYIaLlBHQ3f8EU94turW2JpZ959Sq2A8+/i2rIcPwauSug==</latexit> <latexit sha1_base64="FMlQvHtrxuoTpqfYXhveVABOSlk=">AAACznicjVHLSsNAFD2NrxpfVZdugkVwVZJudFl047KifUAtkkyndWiahGRSKKW49Qfc6meJf6B/4Z1xCmoRnZDkzLnn3Jl7b5CEIpOu+1qwlpZXVteK6/bG5tb2Tml3r5nFecp4g8VhnLYDP+OhiHhDChnydpJyfxSEvBUMz1W8NeZpJuLoWk4S3h35g0j0BfMlUZ0rHmWCtLZt35bKbsXVy1kEngFlmFWPSy+4QQ8xGHKMwBFBEg7hI6OnAw8uEuK6mBKXEhI6zjGDTd6cVJwUPrFD+g5o1zFsRHuVM9NuRqeE9KbkdHBEnph0KWF1mqPjuc6s2N9yT3VOdbcJ/QOTa0SsxB2xf/nmyv/6VC0SfZzqGgTVlGhGVcdMllx3Rd3c+VKVpAwJcQr3KJ4SZto577OjPZmuXfXW1/E3rVSs2jOjzfGubkkD9n6OcxE0qxXPrXiX1XLtzIy6iAMc4pjmeYIaLlBHQ3f8EU94turW2JpZ959Sq2A8+/i2rIcPwauSug==</latexit> <latexit sha1_base64="FMlQvHtrxuoTpqfYXhveVABOSlk=">AAACznicjVHLSsNAFD2NrxpfVZdugkVwVZJudFl047KifUAtkkyndWiahGRSKKW49Qfc6meJf6B/4Z1xCmoRnZDkzLnn3Jl7b5CEIpOu+1qwlpZXVteK6/bG5tb2Tml3r5nFecp4g8VhnLYDP+OhiHhDChnydpJyfxSEvBUMz1W8NeZpJuLoWk4S3h35g0j0BfMlUZ0rHmWCtLZt35bKbsXVy1kEngFlmFWPSy+4QQ8xGHKMwBFBEg7hI6OnAw8uEuK6mBKXEhI6zjGDTd6cVJwUPrFD+g5o1zFsRHuVM9NuRqeE9KbkdHBEnph0KWF1mqPjuc6s2N9yT3VOdbcJ/QOTa0SsxB2xf/nmyv/6VC0SfZzqGgTVlGhGVcdMllx3Rd3c+VKVpAwJcQr3KJ4SZto577OjPZmuXfXW1/E3rVSs2jOjzfGubkkD9n6OcxE0qxXPrXiX1XLtzIy6iAMc4pjmeYIaLlBHQ3f8EU94turW2JpZ959Sq2A8+/i2rIcPwauSug==</latexit> R´ esistante <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> R´ esistante <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> R´ esistante <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> <latexit sha1_base64="0nrWva21ONU+1sHOwCT1wG11cEo=">AAAC33icjVHLSsNAFD2Nr1pfVZdugkVwVRI3uiy6cVnFPqAtkkyndWiahJlEKEVw507c+gNu9W/EP9C/8M40BbWIzpDJmXPvOTN3rh8HQiWO85az5uYXFpfyy4WV1bX1jeLmVl1FqWS8xqIgkk3fUzwQIa8lIgl4M5bcG/oBb/iDEx1vXHOpRBReJKOYd4ZePxQ9wbyEqBDn+ICCoC+Bh5BWjsJkXhZLTtkxw54FbgZKyEY1Kr6ijS4iMKQYkpG2YwjIWNFswYWDmLgOxsRJQsLEOW7owDapFOGYYgwDWvu0a2VsSHvtqYya0SkBfZKUNvZIE1GeJKxPs008Nc6a/c17bDz13Ub09zOvIbEJroj9SzfN/K9O15KghyNTg6CaYsPo6ljmkppX0Te3v1SlmxMTp3GX4pIwM8rpO9tGo0zt+m09E383mZrVe5blpqbpusHuz3bOgvpB2XXK7tlBqXKctTqPHexin/p5iApOUUWNvG/xhGe8WJ51Z91bD5NUK5dptvFtWI+fDMmU4Q==</latexit> Find di ff erential genes/pathways to understand biological mechanisms Find a genetic signature To predict the chemotherapy response Work in progress A general study Biological role in Breast Cancer of 17 speci fi c genes DE sensitive/resistant VIM RACGAP1 KIF23 AURKB KIF18B TPX2 MTUS1 KIF11 COMPLEX:_KIF2C_KIF18B MAPT COMPLEX:_CCNB1_CDK1 CDK5 ASPM AURKA KIF15 GTSE1 MAST4 KIF4A KIF2A PLK1 CDK4 ATM TUBB3 PRC1 EPHB2 TP53 DIAPH2 FYN TTBK1 CAMK2A KIFC1 CENPE KIF14 CIT CAMK2B LRRK2 STMN1 PRKAA1 KIF20A PRKACA MARK1 CDK1 KIF2C A Network of 17 Microtubule-Related Genes Highlights Functional Deregulations in BC. Rodrigues-Ferreira S., Guichaoua G. et al (2023). Cancers. Collaboration with academics/biologists Collaboration with industry (Iktos)
  6. Drug-Target Interactions Prediction at Scale: The Komet Algorithm With the

    LCIdb Dataset 6 Gwenn Guichaoua1,2,3, Philippe Pinel 1,2,3,4, Brice Hoffmann 4, Chloé Azencott 1,2,3, Véronique Stoven1,2,3 1 Institut Curie, PSL Research University, 75428 Paris, France 2 Center for Computational Biology, Mines Paris, PSL Research University, 75006 Paris, France 3 INSERM U900, 75005 Paris, France 4 Iktos SAS, 75017 Paris, France
  7. Context 7 Pinel et al, BioRxiv 2024 Drug-Target interaction (DTI)

    Small molecule (drug) that interacts with a protein (target) Modulates protein function to prevent disease progression Applications De-orphanising a phenotypic drug Anticipating unexpected o ff -targets by predicting drug interaction pro fi les Find unwanted side e ff ects O ff er drug repositioning opportunities De-orphanising a new therapeutic target At large scales In the chemical and protein spaces DTI Predictions Drug discovery process Hit Discovery Hit to Lead Lead Optimisation Drug Development Target Identification
  8. v Supervised learning Input database of interactions Binary classi fi

    cation problem 1 -1 DTIs prediction at large scale 8 Proteins/Targets Molecules/Drugs Goal Predict drugs’ protein interaction pro fi le De-orphan Output predicted interactions Reasonable computing resources Challenges The most complete training base The most e ff i cient algorithm Large and diverse Con fi dent Interactions negative positive All prediction scenarios Timely manner Predict proteins’ molecular interaction pro fi le Find Off-targets
  9. Plan 9 LCIdb: a large new training database Motivation and

    Construction Coverage of the protein and molecule spaces Komet: a Large-scale DTI prediction method Features of proteins and molecules Mixing for pair’s features DTI classi fi cation Results Parameters set-up of the model Impact of the mixing for pair’s features Comparison with ML algorithms
  10. Why a new training database ? Binary interactions databases 2.513

    proteins 4.813 molecules 13.716 interactions + + well curated + FDA-approved drugs - only interactions + - medium-sized Protein Molecule 10 Drugbank v1.5.1 [Wishart et al, 2018] BIOSNAP [Zitnik et al, 2018] Back to bioactivity databases + Large-sized + Experimentally measures, including thermodynamic values - May have di ff erent bioactivity measures for a DTI - All molecules and proteins Kd , Ki , IC50 BindingDB [Tiqing et al, 2007], PubChem [Kim et al, 2019], ChEMBL [Mendez et al, 2019]
  11. Building of a Large Consensus Interactions dataset 11 PubChem BindingDB

    Probes&Drugs IUPHAR/BPS ChEMBL Consensus dataset [Isigkei et al,2022] Chemical structure quality fi lter • molecular weights between 100 and 900 g/mol • Structure check: same SMILES representation in all sources • Keep molecules which target at least 1 human protein. Bioactivity fi lter • Keep negative logarithm of Kd, Ki, IC50 known • Keep multiple annotated bioactivities within 1 log unit di ff erence kept Binary labelling of DTIs • measure = fi rst Kd, then Ki, then IC50 • measure <10 nM ( M): Positive DTI • measure > 100 M ( M): Negative DTI 10−7 μ 10−4 LCIdb 2,069 proteins 274,515 molecules 402,538 Positive DTI 8,296 Negative DTI
  12. Analysis of our dataset LCIdb Representation of the molecular space

    with the t-SNE algorithm on Tanimoto molecule features Comparisons with literature medium-sized datasets Coverage of the molecular space 12 LCIdb and BindingDB LCIdb and DrugBank LCIdb and BIOSNAP
  13. Coverage of the protein space of our dataset LCIdb LCIdb

    Drugbank BIOSNAP BindingDB LCIdb Drugbank BIOSNAP LCIdb Drugbank t-SNE algorithm on protein features derived from the LAkernel Protein kinase G-protein coupled receptor 1 Cytochrome P450 Tubulin Ligand-gated ion channel PI3/PI4-kinase SDRs Major facilitator Sodium chanel ARTD/PARP Aldo/keto reductase Cyclic nucleoDde phosphodiesterase Transient receptor Calcium channel alpha-1 subunit Calycin Integrin alpha chain G-protein coupled receptor 2 G-protein coupled receptor 3 adenylyl/guanylyl cyclase Nuclear hormone receptor Cyclins Bcl-2 Alpha-carbonic anhydrase Phospholipase A2 Histone deacetylase Small GTPase ABC transporter 13 LCIdb and BindingDB LCIdb and DrugBank LCIdb and BIOSNAP
  14. Komet: a Large-scale DTI prediction method Features of proteins and

    molecules Mixing for pair’s features DTI classi fi cation Plan 14 LCIdb: a large new training database Motivation and Construction Coverage of the protein and molecule spaces Results Parameters set-up of the model Impact of the mixing for pair’s features Comparison of ML algorithms
  15. General DTI prediction pipeline 15 Supervised learning Binary classi fi

    cation problem Tree-based methods [Shi et al, 2019] Neural network with Logistic loss [Huang et al, 2021],[Singh et al, 2023] SVM with Hinge loss [Jacob et al, 2008],[Playe et al, 2018] Linear model Step 1 Features for protein and molecule Step 2 Features for (molecule, protein) pairs Step 3 DTI prediction model Nystrom approximation Dimension reduction Kronecker kernel LCIdb ( ik , jk ) SMILES Protein Sequence z k Combined Features Prediction φ Loss ℓ Training Supervised Model Parameter w ik ψ M ψ P y k Local Alignment kernel Tanimoto kernel jk m ik Molecule Features Protein Features p jk # of proteins : 2,060 # of molecules : 271,180 # of Positive DTI : 396,798 # of Negative DTI: 7,965 (+ 388,833 balanced) SVM z k = m ik p⊤ jk m ik p jk z k Training dataset Training dataset 𝒟 = {( 𝔪 ik , 𝔭 jk )}k∈1…N Step 1 Features for protein and molecule Step 2 Features for (molecule, protein) pairs Step 3 DTI prediction model ( ik , jk ) SMILES Protein Sequence z k Combined Features Prediction φ Loss ℓ Training Supervised Model Parameter w ik ψ M ψ P y k Local Alignment kernel Tanimoto kernel jk m ik Molecule Features Protein Features p jk # of proteins : 2,060 # of molecules : 271,180 # of Positive DTI : 396,798 # of Negative DTI: 7,965 (+ 388,833 balanced) z k = m ik p⊤ jk m ik p jk z k Training dataset
  16. Kernel SVM where trained by SVM [Vert&al, 2008] w 16

    Kernel point of view de fi nes a kernel , a similarity between two pairs and φ κ ( 𝔪 , 𝔭 ) ( 𝔪 ′  , 𝔭 ′  ) κ(( 𝔪 , 𝔭 ), ( 𝔪 ′  , 𝔭 ′  )) := ⟨φ(( 𝔪 , 𝔭 )), φ(( 𝔪 ′  , 𝔭 ′  ))⟩ℋ yk = 1 yk = − 1 zk = φ(( 𝔪 ik , 𝔭 jk )) Step 1 Features for protein and molecule Step 2 Features for (molecule, protein) pairs Step 3 DTI prediction model Dimension reduction kernel ( ik , jk ) SMILES Protein Sequence z k Combined Features Prediction φ Loss ℓ Training Supervised Model Parameter w ik ψ M ψ P y k Local Alignment kernel Tanimoto kernel jk m ik Molecule Features Protein Features p jk # of proteins : 2,060 # of molecules : 271,180 # of Positive DTI : 396,798 # of Negative DTI: 7,965 (+ 388,833 balanced) z k = m ik p⊤ jk m ik p jk z k Training dataset 𝒟 = {( 𝔪 ik , 𝔭 jk )}k∈1…N φ ℋ w f( 𝔪 , 𝔭 ) = ⟨φ(( 𝔪 , 𝔭 )), w⟩ℋ f > 0 f < 0 Linear classi fi er in features space Note that we can also start by and de fi ne a κ φ Useful if dim( ) is large, even in fi nite ℋ
  17. Optimisation problem 17 In feature space Hinge Loss <latexit sha1_base64="Mipgt3qeYp8picR9l0ok1eeIk58=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy6EVcVTFuwRZLptA6dJiGZKKW48Qfc6peJf6B/4Z0xBbWITkhy5tx7zsy9N4ilSJXjvBasmdm5+YXiYmlpeWV1rby+0UijLGHcY5GMklbgp1yKkHtKKMlbccL9YSB5Mxic6njzliepiMJLNYp5Z+j3Q9ETzFdEeW0uZem6XHGqjln2NHBzUEG+6lH5BW10EYEhwxAcIRRhCR8pPVdw4SAmroMxcQkhYeIc9yiRNqMsThk+sQP69ml3lbMh7bVnatSMTpH0JqS0sUOaiPISwvo028Qz46zZ37zHxlPfbUT/IPcaEqtwQ+xfuknmf3W6FoUejk0NgmqKDaOrY7lLZrqib25/qUqRQ0ycxl2KJ4SZUU76bBtNamrXvfVN/M1kalbvWZ6b4V3fkgbs/hznNGjsVd3D6sHFfqV2ko+6iC1sY5fmeYQazlCHR94Cj3jCs3VuxdadNfpMtQq5ZhPflvXwAc+YkNo=</latexit>

    ` <latexit sha1_base64="6pf13LL0UdhhS3zNa9wGSSp+YK4=">AAAC3HicjVHLSsNAFD2Nr1pfVRcu3ASLUFFKIr42QtGNywq2CrZKEkcNnTzITMRS3LkTt/6AW/0e8Q/0L7wzpqAW0QlJzpx7z5l757ox94W0rNecMTA4NDySHy2MjU9MThWnZxoiShOP1b2IR8mR6wjG/ZDVpS85O4oT5gQuZ4due1fFD69YIvwoPJCdmLUC5yL0z33PkUSdFufMJuO8LJbMbbMZONdla8VeFkuF02LJqlh6mf3AzkAJ2apFxRc0cYYIHlIEYAghCXM4EPQcw4aFmLgWusQlhHwdZ7hBgbQpZTHKcIht0/eCdscZG9JeeQqt9ugUTm9CShOLpIkoLyGsTjN1PNXOiv3Nu6s9VW0d+ruZV0CsxCWxf+l6mf/VqV4kzrGle/Cpp1gzqjsvc0n1rajKzS9dSXKIiVP4jOIJYU8re/dsao3Qvau7dXT8TWcqVu29LDfFu6qSBmz/HGc/aKxW7I3K+v5aqbqTjTqPeSygTPPcRBV7qKGu63/EE56NE+PWuDPuP1ONXKaZxbdlPHwA/+WWPg==</latexit> `(s) = max(0, 1 + s) min w∈ℝd 1 N N ∑ k=1 ℓ(−yk ⟨zk , w⟩) + C 2 ∥w∥2 = L(−diag(y)Zw) + C 2 ∥w∥2 yk = 1 yk = − 1 zk = φ(( 𝔪 ik , 𝔭 jk )) ℋ w 2 ∥w∥ −yk ⟨zk , w⟩ < − 1 −yk ⟨zk , w⟩ = − 1 −yk ⟨zk , w⟩ < − 1 −yk ⟨zk , w⟩ = − 1 In kernel space The solution can be shown to be of the form w = ZTγ = N ∑ k=1 γk zk min γ∈ℝN L(−diag(y)Kγ) + C 2 ⟨Kγ, γ⟩ with (Kernel trick) K = ZZT Kkk′  = ⟨zk , zk′  ⟩ = κ(( 𝔪 ik , 𝔭 jk ), ( 𝔪 ik′  , 𝔭 jk′  )) Useful if is large dim(ℋ) = d Useful if is large N ⟨zk , w⟩ = 1 ⟨zk , w⟩ = − 1 ⟨zk , w⟩ > 1 ⟨zk , w⟩ < − 1 −1 < − yk ⟨zk , w⟩ < 0 −yk ⟨zk , w⟩ > 0
  18. Medium vs Large training datasets Medium dataset Drugbank N =

    27k sklearn.svm.SVC (kernel=‘precomputed’) 18 27 k 27 k 2507 2507 Protein kernel 4813 4813 Molecule kernel Kronecker kernel for training <latexit sha1_base64="JhUk4wXzwRCmCXl9jAE1rQYQvmU=">AAACxnicjVHLSsNAFD2NrxpfVZdugkVwVRLxtSy6KbipaB9QiyTptA7Ni8lEKUXwB9zqp4l/oH/hnTEFtYhOSHLm3HvOzL3XSwKeStt+LRgzs3PzC8VFc2l5ZXWttL7RTONM+Kzhx0Es2p6bsoBHrCG5DFg7EcwNvYC1vOGpirdumUh5HF3KUcK6oTuIeJ/7riTq4sw0r0tlu2LrZU0DJwdl5Ksel15whR5i+MgQgiGCJBzARUpPBw5sJMR1MSZOEOI6znAPk7QZZTHKcIkd0ndAu07ORrRXnqlW+3RKQK8gpYUd0sSUJwir0ywdz7SzYn/zHmtPdbcR/b3cKyRW4obYv3STzP/qVC0SfRzrGjjVlGhGVefnLpnuirq59aUqSQ4JcQr3KC4I+1o56bOlNamuXfXW1fE3nalYtffz3Azv6pY0YOfnOKdBc6/iHFYOzvfL1ZN81EVsYRu7NM8jVFFDHQ3yHuART3g2akZkZMbdZ6pRyDWb+LaMhw9/Ho+C</latexit> K Kkk′  = (KP )jk jk′  × (KM )ik ik′  (KP )jj′  = κP ( 𝔭 j , 𝔭 j′  ) KP (KM )ii′  = κM ( 𝔪 i , 𝔪 i′  ) KM Large dataset LCIdb N = 800k 274 k 274 k 100 Gb Molecule kernel Issues: - Big data - Time - sklearn impractical 800 k 800 k Kronecker kernel for training <latexit sha1_base64="JhUk4wXzwRCmCXl9jAE1rQYQvmU=">AAACxnicjVHLSsNAFD2NrxpfVZdugkVwVRLxtSy6KbipaB9QiyTptA7Ni8lEKUXwB9zqp4l/oH/hnTEFtYhOSHLm3HvOzL3XSwKeStt+LRgzs3PzC8VFc2l5ZXWttL7RTONM+Kzhx0Es2p6bsoBHrCG5DFg7EcwNvYC1vOGpirdumUh5HF3KUcK6oTuIeJ/7riTq4sw0r0tlu2LrZU0DJwdl5Ksel15whR5i+MgQgiGCJBzARUpPBw5sJMR1MSZOEOI6znAPk7QZZTHKcIkd0ndAu07ORrRXnqlW+3RKQK8gpYUd0sSUJwir0ywdz7SzYn/zHmtPdbcR/b3cKyRW4obYv3STzP/qVC0SfRzrGjjVlGhGVefnLpnuirq59aUqSQ4JcQr3KC4I+1o56bOlNamuXfXW1fE3nalYtffz3Azv6pY0YOfnOKdBc6/iHFYOzvfL1ZN81EVsYRu7NM8jVFFDHQ3yHuART3g2akZkZMbdZ6pRyDWb+LaMhw9/Ho+C</latexit> K 2069 2069 Protein kernel KP KM
  19. From kernel back to features 19 Fixed features derived from

    kernel theory Note that we can use learned features Features compatible with large-scale Computed on simple representations for protein and molecule 𝔪 Smiles MAGPSLACCLLGLLALTSACYIQNCPLGGKRAAPDLDVRKCLPCGPGGKG RCFGPNICCAEELGCFVGTAEALRCQEENYLPSPCQSGQKACGSGGRCAV LGLCCSPDGCHADPACDAEATFSQR 𝔭 Sequence of amino acids Morgan fi ngerprints ECFP4 [Rogers&al,2010] Tanimoto kernel ⟶ Local Alignement kernel [Saigo&al,2004] …CACGTGATCAA… …AGCATCGGTTG… 𝔭 𝔭 ′  CA-CGTGAT || || |X| CATCG-GTT
  20. 20 Molecule kernel Morgan fi ngerprint of radius 2 Smiles

    𝔪 Fingerprint fp( 𝔪 ) Similarity between molecules Tanimoto kernel κM ( 𝔪 , 𝔪 ′  ) = | fp( 𝔪 ) ∩ fp( 𝔪 ′  )| | fp( 𝔪 ) ∪ fp( 𝔪 ′  )| κM ( 𝔪 , 𝔪 ′  ) = ⟨ψM ( 𝔪 ), ψM ( 𝔪 ′  )⟩ Molecule kernel ECFP4 [Rogers&al,2010] Binary vector
  21. Empirical molecule kernel nM = 274k KM = 21 Nyström

    approximation Singular value decomposition (SVD) ̂ KM = Udiag(λ)U⊤ Approximated features derived from kernel κM ( 𝔪 , 𝔪 ′  ) = ⟨ψM ( 𝔪 ), ψM ( 𝔪 ′  )⟩ Molecule kernel random landmarks molecules mM ̂ KM mM KM ≈ XM X⊤ M where XM = VUdiag(1/ λ) nM = 274k mM XM XM → ˜ XM where ˜ XM ∈ ℝnM ×dM dM nM = 274k ˜ XM dM λ mM computing, storage and factorisation impossible Reduction dimension <latexit sha1_base64="xFnqVH93OHwwcQZCasLSlO47rBI=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy6ceGign2ALTJJpzU0LyYTsRR3/oBb/TDxD/QvvDNOQS2iE5KcOfecO3Pv9dIwyKTjvBasmdm5+YXiYmlpeWV1rby+0cySXPi84SdhItoey3gYxLwhAxnydio4i7yQt7zhqYq3brnIgiS+lKOUdyM2iIN+4DNJVKvD0lQkd9flilN19LKngWtABWbVk/ILOughgY8cEThiSMIhGDJ6ruDCQUpcF2PiBKFAxznuUSJvTipOCkbskL4D2l0ZNqa9yplpt0+nhPQKctrYIU9COkFYnWbreK4zK/a33GOdU91tRH/P5IqIlbgh9i/fRPlfn6pFoo9jXUNANaWaUdX5Jkuuu6Jubn+pSlKGlDiFexQXhH3tnPTZ1p5M1656y3T8TSsVq/a+0eZ4V7ekAbs/xzkNmntV97B6cLFfqZ2YURexhW3s0jyPUMMZ6mjoKh/xhGfr3BLWyBp/Sq2C8Wzi27IePgBFE5JB</latexit> ⇡ <latexit sha1_base64="qUbluARsbWKNRtFd+wji/TxcnTc=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy6EdxUsA9oiyTTaR2bl8lErMWVP+BWf0z8A/0L74wpqEV0QpIz595zZu69buSJRFrWa86Ymp6ZncvPFxYWl5ZXiqtr9SRMY8ZrLPTCuOk6CfdEwGtSSI83o5g7vuvxhjs4VvHGDY8TEQbnchjxju/0A9ETzJFE1dtS+Dy5KJassqWXOQnsDJSQrWpYfEEbXYRgSOGDI4Ak7MFBQk8LNixExHUwIi4mJHSc4x4F0qaUxSnDIXZA3z7tWhkb0F55JlrN6BSP3piUJrZIE1JeTFidZup4qp0V+5v3SHuquw3p72ZePrESl8T+pRtn/lenapHo4VDXIKimSDOqOpa5pLor6ubml6okOUTEKdyleEyYaeW4z6bWJLp21VtHx990pmLVnmW5Kd7VLWnA9s9xToL6TtneL++d7ZYqR9mo89jAJrZpngeo4ARV1Mj7Co94wrNxalwbt8bdZ6qRyzTr+LaMhw//0ZG/</latexit> ⇥ <latexit sha1_base64="qUbluARsbWKNRtFd+wji/TxcnTc=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy6EdxUsA9oiyTTaR2bl8lErMWVP+BWf0z8A/0L74wpqEV0QpIz595zZu69buSJRFrWa86Ymp6ZncvPFxYWl5ZXiqtr9SRMY8ZrLPTCuOk6CfdEwGtSSI83o5g7vuvxhjs4VvHGDY8TEQbnchjxju/0A9ETzJFE1dtS+Dy5KJassqWXOQnsDJSQrWpYfEEbXYRgSOGDI4Ak7MFBQk8LNixExHUwIi4mJHSc4x4F0qaUxSnDIXZA3z7tWhkb0F55JlrN6BSP3piUJrZIE1JeTFidZup4qp0V+5v3SHuquw3p72ZePrESl8T+pRtn/lenapHo4VDXIKimSDOqOpa5pLor6ubml6okOUTEKdyleEyYaeW4z6bWJLp21VtHx990pmLVnmW5Kd7VLWnA9s9xToL6TtneL++d7ZYqR9mo89jAJrZpngeo4ARV1Mj7Co94wrNxalwbt8bdZ6qRyzTr+LaMhw//0ZG/</latexit> ⇥ ̂ K−1 M V⊤ V V⊤ V (KM )ii′  = κM ( 𝔪 i , 𝔪 i′  ) KM ∈ ℝnM ×nM nM = 274k
  22. From protein kernel back to features Protein kernel Empirical protein

    kernel Factorisation of the empirical protein kernel KP = XP XT P KP ∈ ℝnP ×nP Singular value decomposition (SVD) : Empirical features in dimension dP KP = Udiag(λ)U⊤ λ XP = Udiag( λ) Approximation nP = 2069 dP = nP dP < < nP XP ˜ XP ˜ XP = U[: , : dP ]diag( λ[: dP ]) κP ( 𝔭 , 𝔭 ′  ) = ⟨ψP ( 𝔭 ), ψP ( 𝔭 ′  )⟩ Local Alignement kernel [Saigo&al,2004] …CACGTGATCAA… …AGCATCGGTTG… CA-CGTGAT || || |X| CATCG-GTT 𝔭 𝔭 ′  (KP )jj′  = κP ( 𝔭 j , 𝔭 j′  ) nP = 2069 22
  23. 23 Approximated features derived from molecule kernel Features for protein

    and molecule for Komet Protein Sequence 𝔪 ik ψM ψP Local Alignment kernel Tanimoto kernel 𝔭 jk mik Molecule Features Protein Features pjk Smiles ( 𝔪 ik , 𝔭 jk ) # of proteins : 2,069 # of molecules : 274,515 # of Positive DTI : 402,538 # of Negative DTI: 8,296 (+ 394,242 balanced) LCIdb Fixed features derived from kernel theory Fast computed Method depends on 2 parameters dM ≤ mM dimension of the encoding dM # landmarks molecules from the training set mM np = 2069 pjk dp = 2069 Expressivity Quality and precision
  24. Step 2 : Features for (molecule, protein) pairs 24 ψP

    ( 𝔭 ) = p z Mixing of molecule and protein features ψM ( 𝔪 ) = m Capture well information about interaction Favorable mathematical properties Non linear mixing: key element of Komet Fixed features z = mp⊤ m p z dZ = dM × dP Tensor product for features Kkk′  = (KP )jk jk′  × (KM )ik ik′  = Kronecker kernel
  25. Step 3 : Komet model 25 (Zw)k = ⟨w, zk

    ⟩ℝdZ = ⟨w, mik p⊤ jk ⟩ℝdP×dM = ⟨Wpjk , mik ⟩ℝdM E ffi cient computation [Airola&Pahikkala,2017] can be computed in only operations (qj )nP j=1 nP × dZ ⏟ qjk Complexity Explicit Zw Implicit computation nZ × dZ nP × dZ + nZ × dM Problem is too big for both storage and computation of Z Zw Z ∈ ℝnZ ×dZ zk nZ = 460k dZ = dM × dP GPU Code in PyTorch Full batch BFGS method to solve the optimisation problem Optimisation problem min w∈ℝ(dP×dM) nZ ∑ k=1 ℓ(⟨w, zk ⟩, yk ) + C 2 ∥w∥2 SVM https://komet.readthedocs.io
  26. Plan 26 LCIdb: a large new training database Motivation and

    Construction Coverage of the protein and molecule spaces Komet: a Large-scale DTI prediction method Features of proteins and molecules Mixing for pair’s features DTI classi fi cation Results Parameters set-up of the model Impact of the mixing for pair’s features Comparison of ML algorithms
  27. AUPR Impact of molecule landmarks LCIdb_Orphan Dataset Parameters set up

    of the model Komet dM ≤ mM Peak_GPU (Gb) Impact of reduction dimension Train Time (s) Same performance Save by a factor of 2: Time and GPU dM = 1000 Same performance Save computational ressources mM = 3000 0 500 1000 1500 2000 2500 3000 dM 0.82 0.84 0.86 0.88 0 500 1000 1500 2000 2500 3000 5 15 20 25 10 30 dM 0 500 1000 1500 2000 2500 3000 dM 5 15 20 10 27
  28. Impact of molecule and protein features Comparison fi xed and

    learned features Komet on the LCIdb_Orphan Dataset Fixed features better than DL features for this speci fi c problem (Drug-like molecules and human druggable proteins) Stability of the Komet performance dM = 1000 mM = 3000 Protein features Tanimoto kernel Molecule feature AUPR 28
  29. 29 AUPR Training Time Tensor product key element for the

    expressivity of pairs’ feature Impact of the mixing for pair’s features Comparison concatenated and Komet features on large-sized datasets
  30. Comparison with Deep Learning algorithms 30 On an External dataset

    AUPR On large-scale datasets AUPR Training Time DrugBank_Ext : DrugBank without DTIs of LCIdb and BindingDB [Singh, 2023] [Huang, 2021]
  31. Why does it work ? Tensor product key element for

    BIOSNAP BindingDB LCIdb LCIdb Drugbank Optimisation (scale) Capturing information about interaction Large and diverse training dataset LCIdb and BindingDB LCIdb and Drugbank_Ext Molecule Molecule Protein Protein 31
  32. Conclusion 32 Initial problem DTI prediction at large scale in

    protein and molecule spaces Contributions: A large new molecule/protein interactions dataset https://zenodo.org/records/10731712 Komet: Fast & State of the Art https://komet.readthedocs.io Perspectives: Analysis of the target proteins predicted for the molecules found in phenotypic drug screening
  33. Acknowledgments Project supported by the Île-de-France Region as part of

    the “DIM AI4IDF” Clara NAHMIAS Sylvie RODRIGUES-FERREIRA Philippe PINEL Véronique STOVEN Chloé AZENCOTT Brice HOFFMANN Thanks for your attention!
  34. TP Subject https://github.com/Guichaoua/komet/blob/main/docs/source/vignettes/komet_TP.ipynb Use Colab, Kaggle, or a laptop with

    a GPU to load this notebook. Correction https://github.com/Guichaoua/komet/blob/main/tests/komet_TP_correction.ipynb