Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
偏光で理解する重ね合わせ状態
Search
gyu-don
May 28, 2018
Technology
0
1.6k
偏光で理解する重ね合わせ状態
OpenQL LT会の15分LTで発表させていただきました。量子コンピュータの基本である重ね合わせ状態を、古典光学の偏光を使って理解しよう、という試みです。
gyu-don
May 28, 2018
Tweet
Share
More Decks by gyu-don
See All by gyu-don
フロントエンド初心者がサクッとReactに入門する
gyudon
0
250
任意の2 qubitユニタリのゲートでの実装〜KAK分解を使って〜
gyudon
0
920
【Blueqat Summit】Re:ゼロから始める量子プログラミング
gyudon
0
720
Shorのアルゴリズム
gyudon
23
8.6k
Blueqat♥量子化学
gyudon
0
1.3k
arXivQurationのご紹介
gyudon
0
200
Other Decks in Technology
See All in Technology
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.9k
Symfony AI in Action
el_stoffel
2
220
その意思決定、まだ続けるんですか? ~痛みを超えて未来を作る、AI時代の撤退とピボットの技術~
applism118
45
24k
今すぐGoogle Antigravityを触りましょう
rfdnxbro
0
230
AI時代のインシデント対応 〜時代を切り抜ける、組織アーキテクチャ〜
jacopen
4
170
AWS re:Invent 2025 で頻出の 生成 AI サービスをおさらい
komakichi
3
260
How native lazy objects will change Doctrine and Symfony forever
beberlei
1
200
組織の“見えない壁”を越えよ!エンタープライズシフトに必須な3つのPMの「在り方」変革 #pmconf2025
masakazu178
1
1k
Flutter Thread Merge - Flutter Tokyo #11
itsmedreamwalker
1
110
段階的に進める、 挫折しない自宅サーバ入門
yu_kod
4
1.8k
Active Directory 勉強会 第 6 回目 Active Directory セキュリティについて学ぶ回
eurekaberry
10
3.7k
私も懇親会は苦手でした ~苦手だからこそ懇親会を楽しむ方法~ / 20251127 Masaki Okuda
shift_evolve
PRO
4
350
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
174
15k
A designer walks into a library…
pauljervisheath
210
24k
Automating Front-end Workflow
addyosmani
1371
200k
Unsuck your backbone
ammeep
671
58k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Designing Experiences People Love
moore
142
24k
Bash Introduction
62gerente
615
210k
Thoughts on Productivity
jonyablonski
73
4.9k
Building Adaptive Systems
keathley
44
2.8k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Fireside Chat
paigeccino
41
3.7k
Transcript
偏光で理解する重ね合わせ状態 Qiita/GitHub: gyu-don OpenQL 量子コンピューターについて語ろうLT大会 2018/05/28
みなさん、重ね合わせ状態って、理解してますか? 2
∣0⟩ + ∣1⟩ ∣0⟩ − ∣1⟩ 位相が違うってどういうこと? 3
∣0⟩と∣1⟩の重ね合わせ状態 ∣0⟩か∣1⟩かどちらか分からない状態 この2つの違いは? 4
本発表のターゲット層 こんな人。 見たことある → α 0 + β 1 重ね合わせ
→ なんとなく理解してるつもり 位相 → 実はよく分かってない 本発表の目的 光の偏光(古典光学)をテーマに、重ね合わせを理解する ∣ ⟩ ∣ ⟩ 5
横波と偏光 出典: https://byjus.com/physics/characteristics-of-em-waves/ 電場(青い方)の方向を「偏光」と呼ぶ決まりになってる。 6
電場 = E e (E e + E e )
ただし、(E e ) + (E e ) = 1 行列で書き直すと、 = E e ↑ ↑ 波っぽい部分 偏光成分 波っぽい部分は忘れて、偏光成分のみを書くことにする。 E⃗ 0 i(kz−ωt) x iϕx x⃗ y iϕy y ⃗ x ϕx 2 y ϕy 2 E⃗ 0 i(kz−ωt) ( E e x iϕx E e y iϕy ) 7
偏光とケット記法 xとy ⇒ 水平(Horizontal)偏光と垂直(Vertical)偏光。 なので、わかりやすく名前をつけてみる。 ∣H⟩ = , ∣V ⟩
= そしたら = E e ∣H⟩ + E e ∣V ⟩ ( E e x iϕx E e y iϕy ) ( 1 0 ) ( 0 1 ) ( E e x iϕx E e y iϕy ) x iϕx y iϕy 8
偏光とケット記法 xとy ⇒ 水平(Horizontal)偏光と垂直(Vertical)偏光。 なので、わかりやすく名前をつけてみる。 ∣0⟩ = , ∣1⟩ =
そしたら = E e ∣0⟩ + E e ∣1⟩ ( E e x iϕx E e y iϕy ) ( 1 0 ) ( 0 1 ) ( E e x iϕx E e y iϕy ) x iϕx y iϕy 9
偏光板 特定の方向の偏光のみを通す板 出典: 旭化成 http://www.asahi-kasei.co.jp/ake- mate/wgf/jp/dl/pdf/170401_WGF_introduction.pdf 10
偏光板 特定の方向の偏光のみを通す板 出典: Wikipedia 11
出典: うさぎ屋 https://store.shopping.yahoo.co.jp/usagi-shop/pl- 001.html 12
出典: うさぎ屋 https://store.shopping.yahoo.co.jp/usagi-shop/pl- 001.html 13
出典: うさぎ屋 https://store.shopping.yahoo.co.jp/usagi-shop/pl- 001.html 14
ここで問題です 直交している偏光板の間に、斜め向けにした偏光板を入れると? 15
16
17
偏光はベクトル! 18
3枚の偏光板問題をベクトルで理解 1枚目: 横偏光の光のみを通す 2枚目: 横偏光の光のうち、斜め成分の光のみを通す 3枚目: 斜め偏光の光のうち、縦成分の光のみを通す 19
3枚の偏光板 ベクトル表記 1枚目通過後: 2枚目通過後: 3枚目通過後: ( 1 0 ) 2 1
( 1 1 ) 2 1 ( 0 1 ) 20
3枚の偏光板 ブラケット記法 1枚目通過後: ∣H⟩ 2枚目通過後: (∣H⟩ + ∣V ⟩) 3枚目通過後: ∣V
⟩ 2 1 2 1 21
ここまでのまとめ 光の電場成分の方向 = 偏光 偏光はベクトルで表すことができる 3枚の偏光板を通すと? 偏光をベクトルとして考えることで理解できる ベクトルの成分分解 22
位相について 23
∣H⟩と∣V ⟩ 24
∣H⟩ + ∣V ⟩ ∣H⟩ − ∣V ⟩ √ 2
1 √2 1 √ 2 1 √2 1 25
ちなみに、 位相差は複素数でもいいんです i = e の数式、覚えていますか? 位相がiずれる: cos→sin, sin→cos になる。
i 2 π 26
∣H⟩ + ∣V ⟩ ∣H⟩ − ∣V ⟩ √ 2
1 √2 i √ 2 1 √2 i 27
ここまでのまとめ 偏光はベクトルで表すことができる 斜め偏光は縦偏光と横偏光の重ね合わせ状態 円偏光も縦偏光と横偏光の重ね合わせ状態 これらは位相によって変わる 28
(∣H⟩+∣V ⟩) ∣H⟩か∣V ⟩か、どちらか分からない状態 この2つは物理的に同じ意味か? √ 2 1 29
(∣H⟩+∣V ⟩) 斜め向けの偏光板を100%通る ∣H⟩も∣V ⟩も斜め向けの偏光板で一部減衰する ⇒∣H⟩か∣V ⟩かどちらか分からない状態は減衰する √ 2 1
30
∣H⟩か∣V ⟩かどちらか分からない状態 実は、α∣H⟩ + β∣V ⟩の式では書き表せない 31
密度行列 ∣Ψ⟩ = α∣H⟩ + β∣V ⟩ ⇓ 行列表記: ∣Ψ⟩⟨Ψ∣
= (α∣H⟩ + β∣V ⟩)(α ⟨H∣ + β ⟨V ∣) ∗ ∗ = α ∣H⟩⟨H∣ + αβ ∣H⟩⟨V ∣ + α β∣V ⟩⟨H∣ + β ∣V ⟩⟨V ∣ 2 ∗ ∗ 2 ( ∣α∣2 α β ∗ αβ∗ ∣β∣2 ) 32
密度行列 (∣H⟩ + ∣V ⟩) ⇓ (∣H⟩⟨H∣ + ∣H⟩⟨V ∣
+ ∣V ⟩⟨H∣ + ∣V ⟩⟨V ∣)/2 = √ 2 1 ( 1/2 1/2 1/2 1/2 ) 33
密度行列 ∣H⟩か∣V ⟩か分からないが、どちらである確率も1/2 ⇓ ∣H⟩⟨H∣ + ∣V ⟩⟨V ∣ =
2 1 2 1 ( 1/2 0 0 1/2 ) 34
(∣H⟩+∣V ⟩) 密度行列: ∣H⟩か∣V ⟩か、どちらか分からない状態 密度行列: 違う密度行列に!! √ 2 1
( 1/2 1/2 1/2 1/2 ) ( 1/2 0 0 1/2 ) 35
まとめ 縦偏光と横偏光で重ね合わせを理解した 「重ね合わせ状態」はベクトル! 位相によって斜め偏光になったり円偏光になったり! 「縦と横の重ね合わせ」と「縦か横か分からない状態」 偏光板を通してみたら異なる物理現象が起こる! 「密度行列」で表してみたら異なる行列になる! 物理的に異なる状態であり、数式の上でも区別ができる 36