Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
偏光で理解する重ね合わせ状態
Search
gyu-don
May 28, 2018
Technology
0
1.6k
偏光で理解する重ね合わせ状態
OpenQL LT会の15分LTで発表させていただきました。量子コンピュータの基本である重ね合わせ状態を、古典光学の偏光を使って理解しよう、という試みです。
gyu-don
May 28, 2018
Tweet
Share
More Decks by gyu-don
See All by gyu-don
フロントエンド初心者がサクッとReactに入門する
gyudon
0
250
任意の2 qubitユニタリのゲートでの実装〜KAK分解を使って〜
gyudon
0
910
【Blueqat Summit】Re:ゼロから始める量子プログラミング
gyudon
0
710
Shorのアルゴリズム
gyudon
23
8.5k
Blueqat♥量子化学
gyudon
0
1.3k
arXivQurationのご紹介
gyudon
0
200
Other Decks in Technology
See All in Technology
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
370
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
6
1.8k
NOT A HOTEL SOFTWARE DECK (2025/11/06)
notahotel
0
3.1k
ソフトウェア品質を支える テストとレビュー再考 / 吉澤 智美さん
findy_eventslides
0
220
最近読んで良かった本 / Yokohama North Meetup #10
mktakuya
0
890
MCP サーバーの基礎から実践レベルの知識まで
azukiazusa1
18
8.8k
書籍『実践 Apache Iceberg』の歩き方
ishikawa_satoru
0
480
CLIPでマルチモーダル画像検索 →とても良い
wm3
2
800
文字列操作の達人になる ~ Kotlinの文字列の便利な世界 ~ - Kotlin fest 2025
tomorrowkey
2
500
AIとの協業で実現!レガシーコードをKotlinらしく生まれ変わらせる実践ガイド
zozotech
PRO
2
340
Copilotの精度を上げる!カスタムプロンプト入門.pdf
ismk
4
850
プロダクトエンジニアとしてのマインドセットの育み方 / How to improve product engineer mindset
saka2jp
1
180
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
8
730
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
950
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Navigating Team Friction
lara
190
15k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Visualization
eitanlees
150
16k
KATA
mclloyd
PRO
32
15k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Optimizing for Happiness
mojombo
379
70k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Transcript
偏光で理解する重ね合わせ状態 Qiita/GitHub: gyu-don OpenQL 量子コンピューターについて語ろうLT大会 2018/05/28
みなさん、重ね合わせ状態って、理解してますか? 2
∣0⟩ + ∣1⟩ ∣0⟩ − ∣1⟩ 位相が違うってどういうこと? 3
∣0⟩と∣1⟩の重ね合わせ状態 ∣0⟩か∣1⟩かどちらか分からない状態 この2つの違いは? 4
本発表のターゲット層 こんな人。 見たことある → α 0 + β 1 重ね合わせ
→ なんとなく理解してるつもり 位相 → 実はよく分かってない 本発表の目的 光の偏光(古典光学)をテーマに、重ね合わせを理解する ∣ ⟩ ∣ ⟩ 5
横波と偏光 出典: https://byjus.com/physics/characteristics-of-em-waves/ 電場(青い方)の方向を「偏光」と呼ぶ決まりになってる。 6
電場 = E e (E e + E e )
ただし、(E e ) + (E e ) = 1 行列で書き直すと、 = E e ↑ ↑ 波っぽい部分 偏光成分 波っぽい部分は忘れて、偏光成分のみを書くことにする。 E⃗ 0 i(kz−ωt) x iϕx x⃗ y iϕy y ⃗ x ϕx 2 y ϕy 2 E⃗ 0 i(kz−ωt) ( E e x iϕx E e y iϕy ) 7
偏光とケット記法 xとy ⇒ 水平(Horizontal)偏光と垂直(Vertical)偏光。 なので、わかりやすく名前をつけてみる。 ∣H⟩ = , ∣V ⟩
= そしたら = E e ∣H⟩ + E e ∣V ⟩ ( E e x iϕx E e y iϕy ) ( 1 0 ) ( 0 1 ) ( E e x iϕx E e y iϕy ) x iϕx y iϕy 8
偏光とケット記法 xとy ⇒ 水平(Horizontal)偏光と垂直(Vertical)偏光。 なので、わかりやすく名前をつけてみる。 ∣0⟩ = , ∣1⟩ =
そしたら = E e ∣0⟩ + E e ∣1⟩ ( E e x iϕx E e y iϕy ) ( 1 0 ) ( 0 1 ) ( E e x iϕx E e y iϕy ) x iϕx y iϕy 9
偏光板 特定の方向の偏光のみを通す板 出典: 旭化成 http://www.asahi-kasei.co.jp/ake- mate/wgf/jp/dl/pdf/170401_WGF_introduction.pdf 10
偏光板 特定の方向の偏光のみを通す板 出典: Wikipedia 11
出典: うさぎ屋 https://store.shopping.yahoo.co.jp/usagi-shop/pl- 001.html 12
出典: うさぎ屋 https://store.shopping.yahoo.co.jp/usagi-shop/pl- 001.html 13
出典: うさぎ屋 https://store.shopping.yahoo.co.jp/usagi-shop/pl- 001.html 14
ここで問題です 直交している偏光板の間に、斜め向けにした偏光板を入れると? 15
16
17
偏光はベクトル! 18
3枚の偏光板問題をベクトルで理解 1枚目: 横偏光の光のみを通す 2枚目: 横偏光の光のうち、斜め成分の光のみを通す 3枚目: 斜め偏光の光のうち、縦成分の光のみを通す 19
3枚の偏光板 ベクトル表記 1枚目通過後: 2枚目通過後: 3枚目通過後: ( 1 0 ) 2 1
( 1 1 ) 2 1 ( 0 1 ) 20
3枚の偏光板 ブラケット記法 1枚目通過後: ∣H⟩ 2枚目通過後: (∣H⟩ + ∣V ⟩) 3枚目通過後: ∣V
⟩ 2 1 2 1 21
ここまでのまとめ 光の電場成分の方向 = 偏光 偏光はベクトルで表すことができる 3枚の偏光板を通すと? 偏光をベクトルとして考えることで理解できる ベクトルの成分分解 22
位相について 23
∣H⟩と∣V ⟩ 24
∣H⟩ + ∣V ⟩ ∣H⟩ − ∣V ⟩ √ 2
1 √2 1 √ 2 1 √2 1 25
ちなみに、 位相差は複素数でもいいんです i = e の数式、覚えていますか? 位相がiずれる: cos→sin, sin→cos になる。
i 2 π 26
∣H⟩ + ∣V ⟩ ∣H⟩ − ∣V ⟩ √ 2
1 √2 i √ 2 1 √2 i 27
ここまでのまとめ 偏光はベクトルで表すことができる 斜め偏光は縦偏光と横偏光の重ね合わせ状態 円偏光も縦偏光と横偏光の重ね合わせ状態 これらは位相によって変わる 28
(∣H⟩+∣V ⟩) ∣H⟩か∣V ⟩か、どちらか分からない状態 この2つは物理的に同じ意味か? √ 2 1 29
(∣H⟩+∣V ⟩) 斜め向けの偏光板を100%通る ∣H⟩も∣V ⟩も斜め向けの偏光板で一部減衰する ⇒∣H⟩か∣V ⟩かどちらか分からない状態は減衰する √ 2 1
30
∣H⟩か∣V ⟩かどちらか分からない状態 実は、α∣H⟩ + β∣V ⟩の式では書き表せない 31
密度行列 ∣Ψ⟩ = α∣H⟩ + β∣V ⟩ ⇓ 行列表記: ∣Ψ⟩⟨Ψ∣
= (α∣H⟩ + β∣V ⟩)(α ⟨H∣ + β ⟨V ∣) ∗ ∗ = α ∣H⟩⟨H∣ + αβ ∣H⟩⟨V ∣ + α β∣V ⟩⟨H∣ + β ∣V ⟩⟨V ∣ 2 ∗ ∗ 2 ( ∣α∣2 α β ∗ αβ∗ ∣β∣2 ) 32
密度行列 (∣H⟩ + ∣V ⟩) ⇓ (∣H⟩⟨H∣ + ∣H⟩⟨V ∣
+ ∣V ⟩⟨H∣ + ∣V ⟩⟨V ∣)/2 = √ 2 1 ( 1/2 1/2 1/2 1/2 ) 33
密度行列 ∣H⟩か∣V ⟩か分からないが、どちらである確率も1/2 ⇓ ∣H⟩⟨H∣ + ∣V ⟩⟨V ∣ =
2 1 2 1 ( 1/2 0 0 1/2 ) 34
(∣H⟩+∣V ⟩) 密度行列: ∣H⟩か∣V ⟩か、どちらか分からない状態 密度行列: 違う密度行列に!! √ 2 1
( 1/2 1/2 1/2 1/2 ) ( 1/2 0 0 1/2 ) 35
まとめ 縦偏光と横偏光で重ね合わせを理解した 「重ね合わせ状態」はベクトル! 位相によって斜め偏光になったり円偏光になったり! 「縦と横の重ね合わせ」と「縦か横か分からない状態」 偏光板を通してみたら異なる物理現象が起こる! 「密度行列」で表してみたら異なる行列になる! 物理的に異なる状態であり、数式の上でも区別ができる 36