$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sparse Modeling in Python
Search
Hacarus Inc.
February 25, 2018
Technology
0
940
Sparse Modeling in Python
Presentation slides at PyCon PH 2018 Lightning Talks
Hacarus Inc.
February 25, 2018
Tweet
Share
More Decks by Hacarus Inc.
See All by Hacarus Inc.
GitLab CI/CD で C#/WPFアプリケーションのテストとインストーラーのビルド・デプロイを自動化する
hacarus
0
1.3k
QA4AIに則ったMLOpsツールの活用
hacarus
0
700
0から協働ロボット外観検査システムを3ヵ月で具現化した軌跡
hacarus
0
250
ワンちゃんの健康を願う皆様に送る 犬心電図AI解析プロダクト紹介_AWS DevDay2022
hacarus
0
200
犬の心電AI解析プロダクト開発奮闘記 _クラウドからハード開発までてんこ盛り
hacarus
0
1.8k
ExplainableAIの概要とAmazon SageMaker Clarifyでの実装例
hacarus
0
1.1k
AWS Step Functions を用いた非同期学習処理の例
hacarus
0
1.3k
Dashでmyダッシュボードを作ろう ーpytrendsで見るコロナの感染拡大時期ー
hacarus
0
1.4k
Interpretable Machine Learning: モデル非依存な解釈手法の紹介
hacarus
0
1.1k
Other Decks in Technology
See All in Technology
ChatGPTで論⽂は読めるのか
spatial_ai_network
9
28k
[デモです] NotebookLM で作ったスライドの例
kongmingstrap
0
140
因果AIへの招待
sshimizu2006
0
980
Edge AI Performance on Zephyr Pico vs. Pico 2
iotengineer22
0
150
RAG/Agent開発のアップデートまとめ
taka0709
0
180
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/09 - 2025/11
oracle4engineer
PRO
0
120
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
490
Challenging Hardware Contests with Zephyr and Lessons Learned
iotengineer22
0
210
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
130
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
1.3k
エンジニアリングマネージャー はじめての目標設定と評価
halkt
0
280
Featured
See All Featured
Fireside Chat
paigeccino
41
3.7k
Become a Pro
speakerdeck
PRO
31
5.7k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
4 Signs Your Business is Dying
shpigford
186
22k
Statistics for Hackers
jakevdp
799
230k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Transcript
Sparse Modeling in Python Feb 25th, 2018 PyCon PH 2018
@tksmd
,ZPUP IUUQTXXXGMJDLSDPNQIPUPTQFESPT[
8IBUJTz4QBSTF.PEFMJOHz • .FUIPE UP BOBMZ[F EBUBXJUIl4QBSTJUZz • 7BSJPVT EJTDVTTJPOT TUBSUFEBSPVOE
JOBDBEFNJB • *NBHFQSPDFTTJOHJTPOFPGUIFIPU BQQMJDBUJPOT
"EWBOUBHFT • 4FMFDUJNQPSUBOUGFBUVSFTPGJOQVU • 8PSLXJUI FWFO TNBMMBNPVOUPGEBUB
5 %BNBHFEFUFDUJPOPGXBMMPGCVJMEJOH &YBNQMFPGJNBHFBOBMZTJT
#SJFGFYBNQMFPGGFBUVSFTFMFDUJPO
1PMZOPNJBM3FHSFTTJPO ! = −$%& + $ + Observational Noise
1PMZOPNJBM3FHSFTTJPO -JOFBS3FHSFTTJPO 0WFSGJUUJOH
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPGTJNQMFMJOFBSSFHSFTTJPO
1PMZOPNJBM3FHSFTTJPO -FBTUBCTPMVUFTISJOLBHFBOETFMFDUJPOPQFSBUPS -BTTP
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPG-"440
1PMZOPNJBM3FHSFTTJPO 0SUIPHPOBM.BUDIJOH1VSTVJU 0.1
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPG0.1
1PMZOPNJBM3FHSFTTJPO from sklearn.linear_model import LinearRegression, Lasso, OrthogonalMatchingPursuit from sklearn.preprocessing import
PolynomialFeatures from sklearn.pipeline import make_pipeline poly_preprocess = PolynomialFeatures(poly_dim, include_bias=False) # models linear = LinearRegression() lasso = Lasso(alpha=0.002, max_iter=500000, tol=0.000001) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=5) def fit_and_predict(predictor): model = make_pipeline(poly_preprocess, predictor) model.fit(x.reshape(-1, 1), y) y_predicted = model.predict(x.reshape(-1, 1)) t_predicted = model.predict(t.reshape(-1, 1)) return y_predicted, t_predicted
1PMZOPNJBM3FHSFTTJPO • 4UBSUXJUIMFBTUTRVBSFNFUIPE min 1 2 & − () *
Z PVUQVU X XFJHIU Y JOQVU $PNQVUF X UPTBUJTGZBCPWF
1PMZOPNJBM3FHSFTTJPO • "EESFHVMBUJPOUFSNUPBWPJEPWFSGJUUJOH min 1 2 & − () *
+ , ( - 4VSQSFTT PWFSGJUUJOH CZ BEEJOH DPOTUSBJOU UP XFJHIUX -/PSN -BTTPɾ-/PSN3JEHF
1PMZOPNJBM3FHSFTTJPO • "QQSPBDIUP-/PSN0QUJNJ[BUJPO min 1 2 & − () *
+ , ( - 5IJT JTFTTFOUJBMMZDPNCJOBUJPOBMPQUJNJ[BUJPOQSPCMFN /1IBSE (SFFEZBMHPSJUINUPTPMWFJUMPDBMMZMJLF.BUDIJOH1VSTVJU *)5
4VNNBSZ • *OUSPEVDUJPOPG4QBSTF.PEFMJOHJO1ZUIPO • 4PNFJNQMFNFOUBUJPOJTBMSFBEZBWBJMBCMF JO/VN1Z PSTDJLJUMFBSO • +VQZUFS OPUFCPPLJTBWBJMBCMFCFMPX
• IUUQTHJUJPW/&O
-PDBM6TFS(SPVQJO,ZPUP IUUQTIBOOBSJQZUIPODPOOQBTTDPN SE 'SJEBZ FWFSZNPOUI