Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sparse Modeling in Python
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Hacarus Inc.
February 25, 2018
Technology
0
950
Sparse Modeling in Python
Presentation slides at PyCon PH 2018 Lightning Talks
Hacarus Inc.
February 25, 2018
Tweet
Share
More Decks by Hacarus Inc.
See All by Hacarus Inc.
GitLab CI/CD で C#/WPFアプリケーションのテストとインストーラーのビルド・デプロイを自動化する
hacarus
0
1.3k
QA4AIに則ったMLOpsツールの活用
hacarus
0
710
0から協働ロボット外観検査システムを3ヵ月で具現化した軌跡
hacarus
0
260
ワンちゃんの健康を願う皆様に送る 犬心電図AI解析プロダクト紹介_AWS DevDay2022
hacarus
0
200
犬の心電AI解析プロダクト開発奮闘記 _クラウドからハード開発までてんこ盛り
hacarus
0
1.8k
ExplainableAIの概要とAmazon SageMaker Clarifyでの実装例
hacarus
0
1.1k
AWS Step Functions を用いた非同期学習処理の例
hacarus
0
1.4k
Dashでmyダッシュボードを作ろう ーpytrendsで見るコロナの感染拡大時期ー
hacarus
0
1.5k
Interpretable Machine Learning: モデル非依存な解釈手法の紹介
hacarus
0
1.1k
Other Decks in Technology
See All in Technology
MCPでつなぐElasticsearchとLLM - 深夜の障害対応を楽にしたい / Bridging Elasticsearch and LLMs with MCP
sashimimochi
0
140
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
2
130
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.5k
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
390
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.3k
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
11
4.6k
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
67k
Digitization部 紹介資料
sansan33
PRO
1
6.8k
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
3
1.2k
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
140
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
210
Featured
See All Featured
Un-Boring Meetings
codingconduct
0
200
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
55
Between Models and Reality
mayunak
1
180
Ethics towards AI in product and experience design
skipperchong
2
190
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
300
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
KATA
mclloyd
PRO
34
15k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.5k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
62
Agile that works and the tools we love
rasmusluckow
331
21k
How to make the Groovebox
asonas
2
1.9k
4 Signs Your Business is Dying
shpigford
187
22k
Transcript
Sparse Modeling in Python Feb 25th, 2018 PyCon PH 2018
@tksmd
,ZPUP IUUQTXXXGMJDLSDPNQIPUPTQFESPT[
8IBUJTz4QBSTF.PEFMJOHz • .FUIPE UP BOBMZ[F EBUBXJUIl4QBSTJUZz • 7BSJPVT EJTDVTTJPOT TUBSUFEBSPVOE
JOBDBEFNJB • *NBHFQSPDFTTJOHJTPOFPGUIFIPU BQQMJDBUJPOT
"EWBOUBHFT • 4FMFDUJNQPSUBOUGFBUVSFTPGJOQVU • 8PSLXJUI FWFO TNBMMBNPVOUPGEBUB
5 %BNBHFEFUFDUJPOPGXBMMPGCVJMEJOH &YBNQMFPGJNBHFBOBMZTJT
#SJFGFYBNQMFPGGFBUVSFTFMFDUJPO
1PMZOPNJBM3FHSFTTJPO ! = −$%& + $ + Observational Noise
1PMZOPNJBM3FHSFTTJPO -JOFBS3FHSFTTJPO 0WFSGJUUJOH
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPGTJNQMFMJOFBSSFHSFTTJPO
1PMZOPNJBM3FHSFTTJPO -FBTUBCTPMVUFTISJOLBHFBOETFMFDUJPOPQFSBUPS -BTTP
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPG-"440
1PMZOPNJBM3FHSFTTJPO 0SUIPHPOBM.BUDIJOH1VSTVJU 0.1
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPG0.1
1PMZOPNJBM3FHSFTTJPO from sklearn.linear_model import LinearRegression, Lasso, OrthogonalMatchingPursuit from sklearn.preprocessing import
PolynomialFeatures from sklearn.pipeline import make_pipeline poly_preprocess = PolynomialFeatures(poly_dim, include_bias=False) # models linear = LinearRegression() lasso = Lasso(alpha=0.002, max_iter=500000, tol=0.000001) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=5) def fit_and_predict(predictor): model = make_pipeline(poly_preprocess, predictor) model.fit(x.reshape(-1, 1), y) y_predicted = model.predict(x.reshape(-1, 1)) t_predicted = model.predict(t.reshape(-1, 1)) return y_predicted, t_predicted
1PMZOPNJBM3FHSFTTJPO • 4UBSUXJUIMFBTUTRVBSFNFUIPE min 1 2 & − () *
Z PVUQVU X XFJHIU Y JOQVU $PNQVUF X UPTBUJTGZBCPWF
1PMZOPNJBM3FHSFTTJPO • "EESFHVMBUJPOUFSNUPBWPJEPWFSGJUUJOH min 1 2 & − () *
+ , ( - 4VSQSFTT PWFSGJUUJOH CZ BEEJOH DPOTUSBJOU UP XFJHIUX -/PSN -BTTPɾ-/PSN3JEHF
1PMZOPNJBM3FHSFTTJPO • "QQSPBDIUP-/PSN0QUJNJ[BUJPO min 1 2 & − () *
+ , ( - 5IJT JTFTTFOUJBMMZDPNCJOBUJPOBMPQUJNJ[BUJPOQSPCMFN /1IBSE (SFFEZBMHPSJUINUPTPMWFJUMPDBMMZMJLF.BUDIJOH1VSTVJU *)5
4VNNBSZ • *OUSPEVDUJPOPG4QBSTF.PEFMJOHJO1ZUIPO • 4PNFJNQMFNFOUBUJPOJTBMSFBEZBWBJMBCMF JO/VN1Z PSTDJLJUMFBSO • +VQZUFS OPUFCPPLJTBWBJMBCMFCFMPX
• IUUQTHJUJPW/&O
-PDBM6TFS(SPVQJO,ZPUP IUUQTIBOOBSJQZUIPODPOOQBTTDPN SE 'SJEBZ FWFSZNPOUI