Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sparse Modeling in Python
Search
Hacarus Inc.
February 25, 2018
Technology
0
920
Sparse Modeling in Python
Presentation slides at PyCon PH 2018 Lightning Talks
Hacarus Inc.
February 25, 2018
Tweet
Share
More Decks by Hacarus Inc.
See All by Hacarus Inc.
GitLab CI/CD で C#/WPFアプリケーションのテストとインストーラーのビルド・デプロイを自動化する
hacarus
0
1.2k
QA4AIに則ったMLOpsツールの活用
hacarus
0
670
0から協働ロボット外観検査システムを3ヵ月で具現化した軌跡
hacarus
0
230
ワンちゃんの健康を願う皆様に送る 犬心電図AI解析プロダクト紹介_AWS DevDay2022
hacarus
0
180
犬の心電AI解析プロダクト開発奮闘記 _クラウドからハード開発までてんこ盛り
hacarus
0
1.7k
ExplainableAIの概要とAmazon SageMaker Clarifyでの実装例
hacarus
0
940
AWS Step Functions を用いた非同期学習処理の例
hacarus
0
1.2k
Dashでmyダッシュボードを作ろう ーpytrendsで見るコロナの感染拡大時期ー
hacarus
0
1.4k
Interpretable Machine Learning: モデル非依存な解釈手法の紹介
hacarus
0
1k
Other Decks in Technology
See All in Technology
AWS CDKの仕組み / how-aws-cdk-works
gotok365
10
730
Contributing to Rails? Start with the Gems You Already Use
yahonda
2
120
ビジネス職が分析も担う事業部制組織でのデータ活用の仕組みづくり / Enabling Data Analytics in Business-Led Divisional Organizations
zaimy
1
290
全部AI、全員Cursor、ドキュメント駆動開発 〜DevinやGeminiも添えて〜
rinchsan
0
280
CDK Toolkit Libraryにおけるテストの考え方
smt7174
1
360
AI エージェントと考え直すデータ基盤
na0
17
6.8k
成長し続けるアプリのためのテストと設計の関係、そして意思決定の記録。
sansantech
PRO
0
140
Delta airlines®️ USA Contact Numbers: Complete 2025 Support Guide
airtravelguide
0
350
ロールが細分化された組織でSREは何をするか?
tgidgd
1
160
United™️ Airlines®️ Customer®️ USA Contact Numbers: Complete 2025 Support Guide
flyunitedguide
0
720
開発生産性を測る前にやるべきこと - 組織改善の実践 / Before Measuring Dev Productivity
kaonavi
14
8k
ソフトウェアテストのAI活用_ver1.25
fumisuke
1
510
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Unsuck your backbone
ammeep
671
58k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
How STYLIGHT went responsive
nonsquared
100
5.6k
KATA
mclloyd
30
14k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Making Projects Easy
brettharned
116
6.3k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
GitHub's CSS Performance
jonrohan
1031
460k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
Sparse Modeling in Python Feb 25th, 2018 PyCon PH 2018
@tksmd
,ZPUP IUUQTXXXGMJDLSDPNQIPUPTQFESPT[
8IBUJTz4QBSTF.PEFMJOHz • .FUIPE UP BOBMZ[F EBUBXJUIl4QBSTJUZz • 7BSJPVT EJTDVTTJPOT TUBSUFEBSPVOE
JOBDBEFNJB • *NBHFQSPDFTTJOHJTPOFPGUIFIPU BQQMJDBUJPOT
"EWBOUBHFT • 4FMFDUJNQPSUBOUGFBUVSFTPGJOQVU • 8PSLXJUI FWFO TNBMMBNPVOUPGEBUB
5 %BNBHFEFUFDUJPOPGXBMMPGCVJMEJOH &YBNQMFPGJNBHFBOBMZTJT
#SJFGFYBNQMFPGGFBUVSFTFMFDUJPO
1PMZOPNJBM3FHSFTTJPO ! = −$%& + $ + Observational Noise
1PMZOPNJBM3FHSFTTJPO -JOFBS3FHSFTTJPO 0WFSGJUUJOH
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPGTJNQMFMJOFBSSFHSFTTJPO
1PMZOPNJBM3FHSFTTJPO -FBTUBCTPMVUFTISJOLBHFBOETFMFDUJPOPQFSBUPS -BTTP
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPG-"440
1PMZOPNJBM3FHSFTTJPO 0SUIPHPOBM.BUDIJOH1VSTVJU 0.1
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPG0.1
1PMZOPNJBM3FHSFTTJPO from sklearn.linear_model import LinearRegression, Lasso, OrthogonalMatchingPursuit from sklearn.preprocessing import
PolynomialFeatures from sklearn.pipeline import make_pipeline poly_preprocess = PolynomialFeatures(poly_dim, include_bias=False) # models linear = LinearRegression() lasso = Lasso(alpha=0.002, max_iter=500000, tol=0.000001) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=5) def fit_and_predict(predictor): model = make_pipeline(poly_preprocess, predictor) model.fit(x.reshape(-1, 1), y) y_predicted = model.predict(x.reshape(-1, 1)) t_predicted = model.predict(t.reshape(-1, 1)) return y_predicted, t_predicted
1PMZOPNJBM3FHSFTTJPO • 4UBSUXJUIMFBTUTRVBSFNFUIPE min 1 2 & − () *
Z PVUQVU X XFJHIU Y JOQVU $PNQVUF X UPTBUJTGZBCPWF
1PMZOPNJBM3FHSFTTJPO • "EESFHVMBUJPOUFSNUPBWPJEPWFSGJUUJOH min 1 2 & − () *
+ , ( - 4VSQSFTT PWFSGJUUJOH CZ BEEJOH DPOTUSBJOU UP XFJHIUX -/PSN -BTTPɾ-/PSN3JEHF
1PMZOPNJBM3FHSFTTJPO • "QQSPBDIUP-/PSN0QUJNJ[BUJPO min 1 2 & − () *
+ , ( - 5IJT JTFTTFOUJBMMZDPNCJOBUJPOBMPQUJNJ[BUJPOQSPCMFN /1IBSE (SFFEZBMHPSJUINUPTPMWFJUMPDBMMZMJLF.BUDIJOH1VSTVJU *)5
4VNNBSZ • *OUSPEVDUJPOPG4QBSTF.PEFMJOHJO1ZUIPO • 4PNFJNQMFNFOUBUJPOJTBMSFBEZBWBJMBCMF JO/VN1Z PSTDJLJUMFBSO • +VQZUFS OPUFCPPLJTBWBJMBCMFCFMPX
• IUUQTHJUJPW/&O
-PDBM6TFS(SPVQJO,ZPUP IUUQTIBOOBSJQZUIPODPOOQBTTDPN SE 'SJEBZ FWFSZNPOUI