Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sparse Modeling in Python
Search
Hacarus Inc.
February 25, 2018
Technology
0
930
Sparse Modeling in Python
Presentation slides at PyCon PH 2018 Lightning Talks
Hacarus Inc.
February 25, 2018
Tweet
Share
More Decks by Hacarus Inc.
See All by Hacarus Inc.
GitLab CI/CD で C#/WPFアプリケーションのテストとインストーラーのビルド・デプロイを自動化する
hacarus
0
1.2k
QA4AIに則ったMLOpsツールの活用
hacarus
0
690
0から協働ロボット外観検査システムを3ヵ月で具現化した軌跡
hacarus
0
240
ワンちゃんの健康を願う皆様に送る 犬心電図AI解析プロダクト紹介_AWS DevDay2022
hacarus
0
190
犬の心電AI解析プロダクト開発奮闘記 _クラウドからハード開発までてんこ盛り
hacarus
0
1.7k
ExplainableAIの概要とAmazon SageMaker Clarifyでの実装例
hacarus
0
980
AWS Step Functions を用いた非同期学習処理の例
hacarus
0
1.2k
Dashでmyダッシュボードを作ろう ーpytrendsで見るコロナの感染拡大時期ー
hacarus
0
1.4k
Interpretable Machine Learning: モデル非依存な解釈手法の紹介
hacarus
0
1.1k
Other Decks in Technology
See All in Technology
下手な強制、ダメ!絶対! 「ガードレール」を「檻」にさせない"ガバナンス"の取り方とは?
tsukaman
2
450
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
180
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
850
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
2
450
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
260
Rustから学ぶ 非同期処理の仕組み
skanehira
1
140
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
260
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
140
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
480
研究開発と製品開発、両利きのロボティクス
youtalk
1
530
品質視点から考える組織デザイン/Organizational Design from Quality
mii3king
0
200
複数サービスを支えるマルチテナント型Batch MLプラットフォーム
lycorptech_jp
PRO
1
380
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Code Reviewing Like a Champion
maltzj
525
40k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Practical Orchestrator
shlominoach
190
11k
Designing for humans not robots
tammielis
253
25k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Site-Speed That Sticks
csswizardry
10
820
Transcript
Sparse Modeling in Python Feb 25th, 2018 PyCon PH 2018
@tksmd
,ZPUP IUUQTXXXGMJDLSDPNQIPUPTQFESPT[
8IBUJTz4QBSTF.PEFMJOHz • .FUIPE UP BOBMZ[F EBUBXJUIl4QBSTJUZz • 7BSJPVT EJTDVTTJPOT TUBSUFEBSPVOE
JOBDBEFNJB • *NBHFQSPDFTTJOHJTPOFPGUIFIPU BQQMJDBUJPOT
"EWBOUBHFT • 4FMFDUJNQPSUBOUGFBUVSFTPGJOQVU • 8PSLXJUI FWFO TNBMMBNPVOUPGEBUB
5 %BNBHFEFUFDUJPOPGXBMMPGCVJMEJOH &YBNQMFPGJNBHFBOBMZTJT
#SJFGFYBNQMFPGGFBUVSFTFMFDUJPO
1PMZOPNJBM3FHSFTTJPO ! = −$%& + $ + Observational Noise
1PMZOPNJBM3FHSFTTJPO -JOFBS3FHSFTTJPO 0WFSGJUUJOH
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPGTJNQMFMJOFBSSFHSFTTJPO
1PMZOPNJBM3FHSFTTJPO -FBTUBCTPMVUFTISJOLBHFBOETFMFDUJPOPQFSBUPS -BTTP
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPG-"440
1PMZOPNJBM3FHSFTTJPO 0SUIPHPOBM.BUDIJOH1VSTVJU 0.1
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPG0.1
1PMZOPNJBM3FHSFTTJPO from sklearn.linear_model import LinearRegression, Lasso, OrthogonalMatchingPursuit from sklearn.preprocessing import
PolynomialFeatures from sklearn.pipeline import make_pipeline poly_preprocess = PolynomialFeatures(poly_dim, include_bias=False) # models linear = LinearRegression() lasso = Lasso(alpha=0.002, max_iter=500000, tol=0.000001) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=5) def fit_and_predict(predictor): model = make_pipeline(poly_preprocess, predictor) model.fit(x.reshape(-1, 1), y) y_predicted = model.predict(x.reshape(-1, 1)) t_predicted = model.predict(t.reshape(-1, 1)) return y_predicted, t_predicted
1PMZOPNJBM3FHSFTTJPO • 4UBSUXJUIMFBTUTRVBSFNFUIPE min 1 2 & − () *
Z PVUQVU X XFJHIU Y JOQVU $PNQVUF X UPTBUJTGZBCPWF
1PMZOPNJBM3FHSFTTJPO • "EESFHVMBUJPOUFSNUPBWPJEPWFSGJUUJOH min 1 2 & − () *
+ , ( - 4VSQSFTT PWFSGJUUJOH CZ BEEJOH DPOTUSBJOU UP XFJHIUX -/PSN -BTTPɾ-/PSN3JEHF
1PMZOPNJBM3FHSFTTJPO • "QQSPBDIUP-/PSN0QUJNJ[BUJPO min 1 2 & − () *
+ , ( - 5IJT JTFTTFOUJBMMZDPNCJOBUJPOBMPQUJNJ[BUJPOQSPCMFN /1IBSE (SFFEZBMHPSJUINUPTPMWFJUMPDBMMZMJLF.BUDIJOH1VSTVJU *)5
4VNNBSZ • *OUSPEVDUJPOPG4QBSTF.PEFMJOHJO1ZUIPO • 4PNFJNQMFNFOUBUJPOJTBMSFBEZBWBJMBCMF JO/VN1Z PSTDJLJUMFBSO • +VQZUFS OPUFCPPLJTBWBJMBCMFCFMPX
• IUUQTHJUJPW/&O
-PDBM6TFS(SPVQJO,ZPUP IUUQTIBOOBSJQZUIPODPOOQBTTDPN SE 'SJEBZ FWFSZNPOUI