Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sparse Modeling in Python
Search
Hacarus Inc.
February 25, 2018
Technology
0
920
Sparse Modeling in Python
Presentation slides at PyCon PH 2018 Lightning Talks
Hacarus Inc.
February 25, 2018
Tweet
Share
More Decks by Hacarus Inc.
See All by Hacarus Inc.
GitLab CI/CD で C#/WPFアプリケーションのテストとインストーラーのビルド・デプロイを自動化する
hacarus
0
1.1k
QA4AIに則ったMLOpsツールの活用
hacarus
0
670
0から協働ロボット外観検査システムを3ヵ月で具現化した軌跡
hacarus
0
230
ワンちゃんの健康を願う皆様に送る 犬心電図AI解析プロダクト紹介_AWS DevDay2022
hacarus
0
180
犬の心電AI解析プロダクト開発奮闘記 _クラウドからハード開発までてんこ盛り
hacarus
0
1.7k
ExplainableAIの概要とAmazon SageMaker Clarifyでの実装例
hacarus
0
930
AWS Step Functions を用いた非同期学習処理の例
hacarus
0
1.2k
Dashでmyダッシュボードを作ろう ーpytrendsで見るコロナの感染拡大時期ー
hacarus
0
1.4k
Interpretable Machine Learning: モデル非依存な解釈手法の紹介
hacarus
0
1k
Other Decks in Technology
See All in Technology
エンジニア向け技術スタック情報
kauche
1
250
Yamla: Rustでつくるリアルタイム性を追求した機械学習基盤 / Yamla: A Rust-Based Machine Learning Platform Pursuing Real-Time Capabilities
lycorptech_jp
PRO
3
120
rubygem開発で鍛える設計力
joker1007
2
200
Microsoft Build 2025 技術/製品動向 for Microsoft Startup Tech Community
torumakabe
2
270
AIエージェント最前線! Amazon Bedrock、Amazon Q、そしてMCPを使いこなそう
minorun365
PRO
14
5.1k
VISITS_AIIoTビジネス共創ラボ登壇資料.pdf
iotcomjpadmin
0
160
“社内”だけで完結していた私が、AWS Community Builder になるまで
nagisa53
1
380
AIの最新技術&テーマをつまんで紹介&フリートークするシリーズ #1 量子機械学習の入門
tkhresk
0
140
A2Aのクライアントを自作する
rynsuke
1
170
_第3回__AIxIoTビジネス共創ラボ紹介資料_20250617.pdf
iotcomjpadmin
0
150
LinkX_GitHubを基点にした_AI時代のプロジェクトマネジメント.pdf
iotcomjpadmin
0
170
SalesforceArchitectGroupOsaka#20_CNX'25_Report
atomica7sei
0
170
Featured
See All Featured
Designing for Performance
lara
609
69k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
A Modern Web Designer's Workflow
chriscoyier
694
190k
Faster Mobile Websites
deanohume
307
31k
Building an army of robots
kneath
306
45k
Why You Should Never Use an ORM
jnunemaker
PRO
57
9.4k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Designing for humans not robots
tammielis
253
25k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
930
KATA
mclloyd
29
14k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Transcript
Sparse Modeling in Python Feb 25th, 2018 PyCon PH 2018
@tksmd
,ZPUP IUUQTXXXGMJDLSDPNQIPUPTQFESPT[
8IBUJTz4QBSTF.PEFMJOHz • .FUIPE UP BOBMZ[F EBUBXJUIl4QBSTJUZz • 7BSJPVT EJTDVTTJPOT TUBSUFEBSPVOE
JOBDBEFNJB • *NBHFQSPDFTTJOHJTPOFPGUIFIPU BQQMJDBUJPOT
"EWBOUBHFT • 4FMFDUJNQPSUBOUGFBUVSFTPGJOQVU • 8PSLXJUI FWFO TNBMMBNPVOUPGEBUB
5 %BNBHFEFUFDUJPOPGXBMMPGCVJMEJOH &YBNQMFPGJNBHFBOBMZTJT
#SJFGFYBNQMFPGGFBUVSFTFMFDUJPO
1PMZOPNJBM3FHSFTTJPO ! = −$%& + $ + Observational Noise
1PMZOPNJBM3FHSFTTJPO -JOFBS3FHSFTTJPO 0WFSGJUUJOH
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPGTJNQMFMJOFBSSFHSFTTJPO
1PMZOPNJBM3FHSFTTJPO -FBTUBCTPMVUFTISJOLBHFBOETFMFDUJPOPQFSBUPS -BTTP
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPG-"440
1PMZOPNJBM3FHSFTTJPO 0SUIPHPOBM.BUDIJOH1VSTVJU 0.1
1PMZOPNJBM3FHSFTTJPO $PFGGJDJFOUPG0.1
1PMZOPNJBM3FHSFTTJPO from sklearn.linear_model import LinearRegression, Lasso, OrthogonalMatchingPursuit from sklearn.preprocessing import
PolynomialFeatures from sklearn.pipeline import make_pipeline poly_preprocess = PolynomialFeatures(poly_dim, include_bias=False) # models linear = LinearRegression() lasso = Lasso(alpha=0.002, max_iter=500000, tol=0.000001) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=5) def fit_and_predict(predictor): model = make_pipeline(poly_preprocess, predictor) model.fit(x.reshape(-1, 1), y) y_predicted = model.predict(x.reshape(-1, 1)) t_predicted = model.predict(t.reshape(-1, 1)) return y_predicted, t_predicted
1PMZOPNJBM3FHSFTTJPO • 4UBSUXJUIMFBTUTRVBSFNFUIPE min 1 2 & − () *
Z PVUQVU X XFJHIU Y JOQVU $PNQVUF X UPTBUJTGZBCPWF
1PMZOPNJBM3FHSFTTJPO • "EESFHVMBUJPOUFSNUPBWPJEPWFSGJUUJOH min 1 2 & − () *
+ , ( - 4VSQSFTT PWFSGJUUJOH CZ BEEJOH DPOTUSBJOU UP XFJHIUX -/PSN -BTTPɾ-/PSN3JEHF
1PMZOPNJBM3FHSFTTJPO • "QQSPBDIUP-/PSN0QUJNJ[BUJPO min 1 2 & − () *
+ , ( - 5IJT JTFTTFOUJBMMZDPNCJOBUJPOBMPQUJNJ[BUJPOQSPCMFN /1IBSE (SFFEZBMHPSJUINUPTPMWFJUMPDBMMZMJLF.BUDIJOH1VSTVJU *)5
4VNNBSZ • *OUSPEVDUJPOPG4QBSTF.PEFMJOHJO1ZUIPO • 4PNFJNQMFNFOUBUJPOJTBMSFBEZBWBJMBCMF JO/VN1Z PSTDJLJUMFBSO • +VQZUFS OPUFCPPLJTBWBJMBCMFCFMPX
• IUUQTHJUJPW/&O
-PDBM6TFS(SPVQJO,ZPUP IUUQTIBOOBSJQZUIPODPOOQBTTDPN SE 'SJEBZ FWFSZNPOUI