Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【論文紹介】Discourse-Aware Unsupervised Summarizatio...
Search
Kaito Sugimoto
March 08, 2021
Research
0
75
【論文紹介】Discourse-Aware Unsupervised Summarization of Long Scientific Documents
研究室の日本語輪読会で発表したスライドです。
内容に問題や不備がある場合は、お手数ですが hellorusk1998 [at] gmail.com までご連絡お願いいたします。
Kaito Sugimoto
March 08, 2021
Tweet
Share
More Decks by Kaito Sugimoto
See All by Kaito Sugimoto
ChatGPTを活用した病院検索体験の改善 〜病院探しをもっと楽しく〜
hellorusk
0
94
【論文紹介】Word Acquisition in Neural Language Models
hellorusk
0
200
【論文紹介】Toward Interpretable Semantic Textual Similarity via Optimal Transport-based Contrastive Sentence Learning
hellorusk
0
230
【論文紹介】Unified Interpretation of Softmax Cross-Entropy and Negative Sampling: With Case Study for Knowledge Graph Embedding
hellorusk
0
410
【論文紹介】Modeling Mathematical Notation Semantics in Academic Papers
hellorusk
0
180
【論文紹介】Detecting Causal Language Use in Science Findings / Measuring Correlation-to-Causation Exaggeration in Press Releases
hellorusk
0
120
【論文紹介】Efficient Domain Adaptation of Language Models via Adaptive Tokenization
hellorusk
0
370
【論文紹介】SimCSE: Simple Contrastive Learning of Sentence Embeddings
hellorusk
0
830
【論文紹介】Automated Concatenation of Embeddings for Structured Prediction
hellorusk
0
220
Other Decks in Research
See All in Research
12
0325
0
190
外積やロドリゲスの回転公式を利用した点群の回転
kentaitakura
1
650
Weekly AI Agents News! 8月号 論文のアーカイブ
masatoto
1
180
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
120
Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices
masakat0
0
220
システムから変える 自分と世界を変えるシステムチェンジの方法論 / Systems Change Approaches
dmattsun
3
860
Whoisの闇
hirachan
3
140
FOSS4G 山陰 Meetup 2024@砂丘 はじめの挨拶
wata909
1
110
Introducing Research Units of Matsuo-Iwasawa Laboratory
matsuolab
0
920
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
5
650
第79回 産総研人工知能セミナー 発表資料
agiats
2
160
20240918 交通くまもとーく 未来の鉄道網編(太田恒平)
trafficbrain
0
220
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Gamification - CAS2011
davidbonilla
80
5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Into the Great Unknown - MozCon
thekraken
32
1.5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
840
Building a Scalable Design System with Sketch
lauravandoore
459
33k
Designing the Hi-DPI Web
ddemaree
280
34k
How to Think Like a Performance Engineer
csswizardry
20
1.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
329
21k
Site-Speed That Sticks
csswizardry
0
24
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Building Your Own Lightsaber
phodgson
103
6.1k
Transcript
Discourse-Aware Unsupervised Summarization of Long Scientific Documents Dong et al.,
EACL 2021 杉本 海人 Aizawa Lab. B4 2021/03/08 1 / 25
紹介する論文 • EACL 2021 • https://arxiv.org/abs/2005.00513 2 / 25
読んだ理由 • 学術論文の要約に最近関心を持っている • 学術論文の NLP では abstract を一種の要約とみなして他のタス クに活用することが多いが,
情報の圧縮形式として必ずしも最適 とは限らないかもしれない (論文の分野によっても異なるかもしれない) 3 / 25
どんな論文? • 学術論文向けの, 論文のセクション構造を考慮した教師無し抽出 型要約を提案 • 背景には Graph-based summarization model
というテーマがある 4 / 25
学術論文における教師無し抽出型要約の意義・魅力 • 近年の言語モデルの進化により非抽出型(生成型)要約の研究も 進んでいるが, このタイプだと事実とは異なる要約を生成してし まう可能性もある. 抽出型では本文を抜き出すだけなのでそのような心配がない. • ニュース要約などの汎用的なトピックと異なり, 学術論文は
domain-specific であり, 抽出型要約のための訓練データを用意す るのが難しい (abstract を ground-truth として, それに対して ROUGE が最も高 くなるような抽出型要約を ORACLE とみなすことが多い) 5 / 25
Graph-based summarization model TextRank / LexRank (2004) (Graph-based method のさきがけ)
↓ PACSUM (ACL 2019) (Graph-based method の再訪) ↓ HIPORANK (本研究) (学術論文向けの Graph-based method) 6 / 25
TextRank (2004) Google 検索の PageRank など, コンテンツの重要度を決める Graph-based ranking algorithms
を, 文章の要約に活用したもの コンセプトとしては「投票」 グラフ上のある頂点について, その点に向かっている辺が多ければ多 いほど, より多くの票が投票されており「重要」だとみなされ, かつ 「重要」な点からの投票の方がより重視される 7 / 25
TextRank (2004) 画像は Wikipedia の PageRank の記事から 8 / 25
TextRank (2004) PageRank における, i 番目の頂点のスコアを計算する式 j が i 番目の頂点へ入力する辺を持つ頂点
d は 0 から 1 の間を取る変数で, リンクを経由してあるサイトにたど り着く確率を表す(逆に 1 − d は直接あるサイトにたどり着く確率). PageRank では d = 0.85 としている. 適当な初期値を与えて収束するまで計算を繰り返す 9 / 25
TextRank (2004) TextRank では? • 要約させたいドキュメントに対し, それぞれの文を頂点, 文の類 似度を辺の重みとする, 重み付き無向グラフを考え,
PageRank と 同様に各頂点の重要度を計算する. 最も重要度の高い数文が Extractive Summarization となる. • 文の類似度は色々考えられる. • TextRank では以下の式. • LexRank (2004) では代わりに tf-idf を用いた 10 / 25
TextRank (2004) PageRank と若干異なる点 • 無向グラフなので, 各辺は入力辺でもあり出力辺でもある • 重要度を計算する際, 辺の重みによる加重平均を使ったものに
なる 11 / 25
TextRank (2004) 12 / 25
PACSUM (ACL 2019) Position-Augmented Centrality based Summarization 以下の 2 種類の観点で
Graph-based model の手法を修正 1 文章間の類似度計算に BERT を用いる 2 辺の重みを方向によって変える ニュース記事要約において効果を検証 13 / 25
PACSUM (ACL 2019) 文章間の類似度計算に BERT を用いる 事前学習済みの BERT に, (Word2Vec
のような要領で)隣接した前後 の文章を正例, 残りを負例とした学習により fine-tuning を行う. 14 / 25
PACSUM (ACL 2019) 辺の重みを方向によって変える ドキュメントの中には, 要約に寄与する central な文章とそうでない marginal な文章がある(修辞構造理論)
ニュース記事要約では LEAD-3 が強い baseline になることからも分か るように, 前の方にある文章が central である傾向にある → ある文章の組 A, B(B は A よりドキュメントの後の方にある)があ るとき, A->B よりも B->A の辺の重みを大きくした方が良いという 仮説 15 / 25
PACSUM (ACL 2019) 16 / 25
PACSUM (ACL 2019) 17 / 25
HIPORANK (EACL 2021) Hierarchical and Positional Ranking model PACSUM で考案された「文章間の位置により辺の重みを変える」とい
うアイデアをさらに強化し, 学術論文のようなセクション構造を組み 込む. ポイントは以下の通り 1 同じセクションにおいては文章と文章の類似度を計算する (sentence-sentence edges) のに対し, 異なるセクションにおいては 文章とセクションの類似度 (section-sentence edges) のみ計算する 2 sentence-sentence edges においては, 最初と最後の方にある文章 に向かう辺の重みを大きくする section-sentence edges においては, 最初と最後の方にあるセク ションに対する辺の重みを大きくする 18 / 25
HIPORANK (EACL 2021) 19 / 25
HIPORANK (EACL 2021) sentence-sentence edges(I 番目のセクションの文章 i と文章 j) section-sentence
edges (I 番目のセクションの文章 i と J 番目のセク ション) 各文の最終的な重要度は, sentence-sentence edges と section-sentence edges の重み付き平均になる(この重みはハイパーパラメータ) 20 / 25
HIPORANK (EACL 2021) 21 / 25
HIPORANK (EACL 2021) PACSUM では「前の方にある文章の方が central」という inductive bias が導入されているので, 結果的に文章のはじめの方に偏った要約が生
成されるが, HIPORANK では階層的に前の方と後ろの方が選択される のでバランスが良い 22 / 25
HIPORANK (EACL 2021) 23 / 25
HIPORANK (EACL 2021) その文章が abstract の中身を含んでいるか (content-coverage) その文章が abstract の中身にないものだとしても、goal-oriented
な ユーザーにとって重要かどうか (importance) 24 / 25
感想 • 学術論文のセクション構造をうまく利用していて面白い • ハイパラが多いので調整が難しそう • shorter summary や longer
summary にも使えるかどうか? • Abstract と比較した時, 生成された文章の Quality はどうなのか? • Abstract と比較した時, 埋め込みにより適しているのはどちらな のか? 25 / 25