Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【論文紹介】Modeling Mathematical Notation Semantics ...
Search
Kaito Sugimoto
April 25, 2022
Research
0
190
【論文紹介】Modeling Mathematical Notation Semantics in Academic Papers
研究室の日本語輪読会で発表したスライドです。
内容に問題や不備がある場合は、お手数ですが hellorusk1998 [at] gmail.com までご連絡お願いいたします。
Kaito Sugimoto
April 25, 2022
Tweet
Share
More Decks by Kaito Sugimoto
See All by Kaito Sugimoto
ChatGPTを活用した病院検索体験の改善 〜病院探しをもっと楽しく〜
hellorusk
0
96
【論文紹介】Word Acquisition in Neural Language Models
hellorusk
0
210
【論文紹介】Toward Interpretable Semantic Textual Similarity via Optimal Transport-based Contrastive Sentence Learning
hellorusk
0
230
【論文紹介】Unified Interpretation of Softmax Cross-Entropy and Negative Sampling: With Case Study for Knowledge Graph Embedding
hellorusk
0
420
【論文紹介】Detecting Causal Language Use in Science Findings / Measuring Correlation-to-Causation Exaggeration in Press Releases
hellorusk
0
130
【論文紹介】Efficient Domain Adaptation of Language Models via Adaptive Tokenization
hellorusk
0
380
【論文紹介】SimCSE: Simple Contrastive Learning of Sentence Embeddings
hellorusk
0
850
【論文紹介】Automated Concatenation of Embeddings for Structured Prediction
hellorusk
0
230
【論文紹介】Assessing Phrasal Representation and Composition in Transformers
hellorusk
0
72
Other Decks in Research
See All in Research
The many faces of AI and the role of mathematics
gpeyre
1
1.4k
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
680
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
250
日本語医療LLM評価ベンチマークの構築と性能分析
fta98
3
780
FOSS4G 山陰 Meetup 2024@砂丘 はじめの挨拶
wata909
1
120
ダイナミックプライシング とその実例
skmr2348
3
480
クロスセクター効果研究会 熊本都市交通リノベーション~「車1割削減、渋滞半減、公共交通2倍」の実現へ~
trafficbrain
0
290
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
150
snlp2024_multiheadMoE
takase
0
460
Weekly AI Agents News! 8月号 プロダクト/ニュースのアーカイブ
masatoto
1
210
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
520
Language is primarily a tool for communication rather than thought
ryou0634
4
790
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Unsuck your backbone
ammeep
669
57k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Making the Leap to Tech Lead
cromwellryan
133
9k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
290
Transcript
Modeling Mathematical Notation Semantics in Academic Papers Jo et al.,
EMNLP 2021 Findings Kaito Sugimoto Aizawa Lab. M2 2022/04/19 1 / 20
紹介する論文 EMNLP 2021 Findings 2 / 20
概要 • 学術的な文献に出てくる数学記号の意味を, 今の NLP モデルがど の程度うまく学習できるかを調べる研究 • 特に「記号の周囲のテキストから記号を予測する」タスクに フォーカスし,
モデルのパフォーマンスを調べる • さらに, 数学記号の予測問題に特化したモデル(具体的には, 記号 穴埋めで fine-tuning したモデル)を提案 • 提案モデルは既存モデルに比べて, 数学記号の予測で良い性能を 発揮したが, 未知のトークンの予測が難しい, 数学記号の構造を 把握できていない, という問題点も明らかになった 3 / 20
背景 • 数学記号とその意味(を表すテキスト)は密接な関係にある • Wolska and Grigore (2010) 1 によれば,
7 割の記号が, その記号が導入され た段落と同じ段落で定義されているそうである • うまく訓練された言語モデルであれば, コンテキストから適切な記号を 選べるはず • 数学記号にまつわる問題を NLP 的アプローチで扱う研究も既に 多数ある • logic reasoning を解かせる 2, 数学の分野ごとに特有の等式を出力させる 3, 入力の数式に対してその定義を検知する 4 など 1Wolska and Grigore, Symbol Declarations in Mathematical Writing 2Rabe et al., Mathematical reasoning via self-supervised skip-tree training (ICLR 2020) 3Yasunaga and Lafferty, A joint topic and mathematical equation model for scientific texts (AAAI 2019) 4Kang et al., Document-level definition detection in scholarly documents: Existing models, error analyses, and future directions. (SDP 2020) 4 / 20
背景 著者らはなぜ「記号の周囲のテキストから記号を予測する」タスクに 注目したか → アプリケーション上重要だから 1 Notation auto-suggestions: たとえばディープラーニングでは学 習率を
𝛼 と表すことが多いように, 慣習的に同じ記号を用いる ケースが多くある. 記号提案システムは, そのような慣習をうま く学習し, 適切な記号を自動でサジェストしてくれるシステム 2 Notation consistency checks: 1 つのドキュメントで, ある箇所で は D が差(デルタ)を, 別の箇所ではドキュメントを表していた りすると問題である. 記号一貫性チェックシステムは, そのよう な異なる用法での記号の使用を警告してくれるシステム 5 / 20
タスク • 今回のタスクでは, TeX ファイル中の $ で囲まれた部分のトーク ンを予測することにする • これにより,
数学記号における x なのか, xi なのか, x なのか, と いった違いも情報として扱うことができる 6 / 20
タスク 以下のように設定を単純化する • Notation auto-suggestions 予測すべきトークンの左側にある文 章のみからトークンをどの程度予測できるか?(執筆しながら適 切な記号を選ぶイメージ) • Notation
consistency checks 予測すべきトークンの左側にある 文章と右側にある文章の双方からトークンをどの程度予測でき るか?(既に書いた内容をチェックするイメージ) 7 / 20
タスク auto-suggestions task の例 8 / 20
提案モデル MATHPREDICTOR: BERT を数式穴埋めで fine-tune したモデル 9 / 20
提案モデル • 語彙の追加: 既存の BERT の tokenizer では \overline が
\と over と ##line に分割されてしまうので, LaTeX のマクロを 2,700 トーク ン程度追加 10 / 20
提案モデル • Permutation over notation tokens: 例えば \overline, h という連続
するトークンが正解データの際に, いきなりモデルに全て予測さ せるのではなく, \overline だけマスクしたものや h だけマスクし たものを確率的に入れる. これにより, \overline の後には必ずアルファベット等が来る, と いったトークン間の関係性の学習が期待できる • Notation length constraint: 予測すべきトークン列があまりにも 長いと予測が難しいため, マスクする最大の長さを 10 以下に制限 する 11 / 20
提案モデル • Larger context modeling: BERT のトークン長制限は 512 なので, 論文全体を入力に入れることはできない.
LongFormer のような 改良モデルが提案されているが, 推論時間が遅くなってしまうた め, リアルタイムの執筆支援に適さないと判断. そこで, 基本的には, 予測すべきトークンの周囲数文しか入力と して使わない. それよりも遠い位置にある文の情報を使うモデルとして, まとめ て(CLS から得られる)文ベクトルの平均として入力させるモデ ルを別に作成( FullContext モデル). ただしこのモデルは後で評 価で示すように, うまくいかなかった. 12 / 20
評価結果: 全体 (FT): fine-tuning 13 / 20
評価結果: Context の長さによる差 14 / 20
評価結果: データセットの難易度による差 周囲のテキストに含まれていない未知の数学記号を予測する Challenge set では全然正解できていない → 「ディープラーニングでは学習率を 𝛼 と表すことが多い」という
ような慣習をうまく学習するには課題がありそう 15 / 20
評価結果: 数学記号の種類による差 16 / 20
評価結果: 数学記号の種類による差 17 / 20
評価結果: 評価方法の差 • 今までの評価方法はトークンレベルの予測結果の評価だったが, 数式単位, 文単位で評価するとどうなるかを調べた. • 結果として, original BERT
を除く全てのモデルでスコアが下 がった. • original BERT はより構造的な一貫性を把握する能力があり, それ が追加学習によって損なわれたのかもしれない → 数式の木構造 を取り入れた追加学習を行う方がよさそう 18 / 20
予測例 19 / 20
感想・まとめ • 数字だけでなく, 演算子や TeX のマクロを含めた数式全体で考え た場合の現状の課題がわかって面白かった • 訓練データの量の問題かもしれない(論文によると, 提案モデル
の追加学習にはランダムに 1,000 本の論文データしか使っていな い)ので, 大量の TeX ファイルでスクラッチ学習すると多少は改 善しそう • どの記号がどのような意味で使われることが多いか? みたいな 慣習をテキストから上手くまとめられるとよさそう 20 / 20