Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【論文紹介】OAG-BERT: Pre-train Heterogeneous Entity-...
Search
Kaito Sugimoto
May 24, 2021
Research
0
230
【論文紹介】OAG-BERT: Pre-train Heterogeneous Entity-augmented Academic Language Models
研究室の日本語輪読会で発表したスライドです。
内容に問題や不備がある場合は、お手数ですが hellorusk1998 [at] gmail.com までご連絡お願いいたします。
Kaito Sugimoto
May 24, 2021
Tweet
Share
More Decks by Kaito Sugimoto
See All by Kaito Sugimoto
ChatGPTを活用した病院検索体験の改善 〜病院探しをもっと楽しく〜
hellorusk
0
140
【論文紹介】Word Acquisition in Neural Language Models
hellorusk
0
320
【論文紹介】Toward Interpretable Semantic Textual Similarity via Optimal Transport-based Contrastive Sentence Learning
hellorusk
0
280
【論文紹介】Unified Interpretation of Softmax Cross-Entropy and Negative Sampling: With Case Study for Knowledge Graph Embedding
hellorusk
0
540
【論文紹介】Modeling Mathematical Notation Semantics in Academic Papers
hellorusk
0
310
【論文紹介】Detecting Causal Language Use in Science Findings / Measuring Correlation-to-Causation Exaggeration in Press Releases
hellorusk
0
170
【論文紹介】Efficient Domain Adaptation of Language Models via Adaptive Tokenization
hellorusk
0
490
【論文紹介】SimCSE: Simple Contrastive Learning of Sentence Embeddings
hellorusk
0
1.1k
【論文紹介】Automated Concatenation of Embeddings for Structured Prediction
hellorusk
0
300
Other Decks in Research
See All in Research
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.6k
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
330
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
390
説明可能な機械学習と数理最適化
kelicht
2
770
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
210
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
350
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
590
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
910
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
100
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
250
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
77
5.2k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
34
WENDY [Excerpt]
tessaabrams
8
35k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Designing for Timeless Needs
cassininazir
0
93
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.7k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
190
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Optimizing for Happiness
mojombo
379
70k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
OAG-BERT: Pre-train Heterogeneous Entity-augmented Academic Language Models Liu et al.
Kaito Sugimoto Aizawa Lab. M1 2021/05/24 1 / 16
どんな論文? • ドメイン知識を考慮した学術論文事前学習モデルを提案 • Open Academic Graph (OAG) を活用して, 論文のテキストだけで
なく Author, Field of Study, Venue, Affiliation などの Entity 情報を同 時に学習する • Entity 情報が重要になる各種タスクにおいて, SciBERT のスコア を上回る 2 / 16
Academic Graph とは • 論文, 著者, Venue (会議 or ジャーナル)
などの Entity と, authorship (論文-著者 間), paper-publish-in-venue (論文-Venue 間), co-authorship (著者-著者 間) などの Relation から構成されるグ ラフ 3 / 16
Academic Graph の例 • AMiner (KDD ’08) • Microsoft Academic
Graph (MAG) (WWW ’15) • Open Academic Graph (OAG) (KDD ’19) • AMiner を開発した Tsinghua University(精華大学) と MAG を開発した Microsoft の共同研究プロジェクト • https://www.microsoft.com/en-us/research/project/ open-academic-graph/ 4 / 16
OAG 5 / 16
OAG-BERT • 論文に関係する様々な Entity 情報も含めて学習を行う • 以下の 2 つのステップに分かれる •
First Stage: Pre-train the vanilla OAG-BERT. • Second Stage: Enrich OAG-BERT with entity knowledge. 6 / 16
First Stage: Pre-train the vanilla OAG-BERT vanilla version (Entity 情報を含めない,
SciBERT と同じテキストだけの 学習) の OAG-BERT を作成する AMiner に含まれる論文 PDF および PubMed XML の合計 500 万本の論 文テキストを学習に使う SciBERT との違いは? • SciBERT は Semantic Scholar から CS+BioMed 分野の計 114 万本 の論文で事前学習していた. • SciBERT は本文テキストを使うのに対し, OAG-BERT は本文のタ イトルと要旨の間に著者名も挿入する → この時点で著者の vocabularary が多い 7 / 16
Second Stage: Enrich OAG-BERT with entity knowledge 8 / 16
Second Stage: Enrich OAG-BERT with entity knowledge Entity-aware 2D-positional encoding
• Entity 間の区別と, Entity 内の語順の識別のために行う Span-aware entity masking • ERNIE や SpanBERT などの既存の Entity を考慮するモデルと同 様, いくつかの連続した token を MASK して予測させる • MASK する span の長さは幾何分布からサンプル (SpanBERT で効 果的だったから (? )) 9 / 16
Second Stage: Enrich OAG-BERT with entity knowledge 学習 • 少なくとも
3 本は論文を出している著者の論文からランダムに選 び, 1 億 2000 万本の論文を, Author, Fields of Study, Venue, Affiliation とともに学習で使う • vanilla version の学習と異なり, この段階では Text 部分 は title + abstract しか用いない 10 / 16
実験 評価タスク • Zero-shot Inference • Supervised Classification • Name
Disambiguation • Link Prediction • NLP Tasks 11 / 16
Zero-shot Inference prompt とは... 出力部の前に "Field of study:" のようなトークンを出力すること 12
/ 16
他のタスク Supervised Classification → モデルの重みそのままの freeze 設定では OAG-BERT が SciBERT
を全般的に上回るが, 訓練データで fine-tuning すると SciBERT がほぼ 互角になる author 情報を加えると affiliation 分類に役立つ(割と当たり前), field of study 情報は venue 分類に役立つが affiliation 分類にはあまり役立た ない, などの傾向も見られる 13 / 16
他のタスク Name Disambiguation (同じ著者の名前の論文を, 同じ人ごとにクラス タさせるタスク) → SciBERT を上回る (F1
で 0.05 ポイント程度) Link Prediction (Paper-Field, Paper-Venue リンク) heterogeneous graph transformer (HGT) において文字を encode する部 分を元の XLNet から OAG-BERT に置き換えるとスコアが高くなる (SciBERT で置き換えた場合よりも高い) 14 / 16
NLP tasks 15 / 16
まとめ・感想 • 特殊な方法で事前学習しても NLP tasks のパフォーマンスにあま り影響を受けないというのが面白い • わざわざ vanilla
バージョンで著者含めて tokenize したことから 考えるに、vocabulary の情報がかなり重要そう? • CS, BioMed 以外の分野の論文で事前学習して違いを調べたりし てほしいが, 世の中の研究者にそういうモチベーションがあまり ないのかもしれない 16 / 16