Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RDS_AuroraパフォーマンスインサイトのデータをAthenaとQuickSightで見る
Search
hmatsu47
PRO
May 31, 2021
Technology
2
610
RDS_AuroraパフォーマンスインサイトのデータをAthenaとQuickSightで見る
JAWS-UG 名古屋 データ分析を学ぶ 2021/05/31
hmatsu47
PRO
May 31, 2021
Tweet
Share
More Decks by hmatsu47
See All by hmatsu47
IPv6 VPC の実装パターンをいくつか
hmatsu47
PRO
0
8
光ファイバーと IPv6 絡みの話
hmatsu47
PRO
0
19
AWS で試して学ぶ IPv6
hmatsu47
PRO
0
18
今年の MySQL/HeatWave ネタ登壇振り返り
hmatsu47
PRO
0
16
今年の DB ネタ登壇振り返り
hmatsu47
PRO
0
14
RDS/Aurora アップデート 2025
hmatsu47
PRO
0
23
YAPC::Fukuoka 2025 現地ハイブリッド参加の旅
hmatsu47
PRO
0
11
今年の FESTA で初当日スタッフ+登壇してきました
hmatsu47
PRO
0
19
攻略!Aurora DSQL の OCC(楽観的同時実行制御)
hmatsu47
PRO
0
9
Other Decks in Technology
See All in Technology
全員が「作り手」になる。職能の壁を溶かすプロトタイプ開発。
hokuo
1
670
Meshy Proプラン課金した
henjin0
0
170
SMTP完全に理解した ✉️
yamatai1212
0
180
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
Deno・Bunの標準機能やElysiaJSを使ったWebSocketサーバー実装 / ラーメン屋を貸し切ってLT会! IoTLT 2026新年会
you
PRO
0
220
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
120
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
140
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
110
Amazon Bedrock AgentCore 認証・認可入門
hironobuiga
2
480
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
1
860
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1371
200k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
55
49k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
88
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
46
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
We Have a Design System, Now What?
morganepeng
54
8k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
280
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Docker and Python
trallard
47
3.7k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
Transcript
RDS / Aurora パフォーマンスインサイトの データを Athena と QuickSight で見る JAWS-UG
名古屋 データ分析を学ぶ 2021/05/31 まつひさ(hmatsu47)
自己紹介 松久裕保(@hmatsu47) https://qiita.com/hmatsu47 名古屋で Web インフラのお守り係をしています (ほかに書くことがなくなったので省略) 2
今日の内容 • パフォーマンスインサイトとその問題点のおさらい • API 経由で S3 にデータを書き出してみる ◦ Lambda(Python)で
S3 へ • Glue クローラを使って Athena へ ◦ Athena でクエリを実行してみる • Athena から QuickSight へ ◦ QuickSight でグラフ化してみる 3
パフォーマンスインサイトとは • RDS / Aurora の負荷とその内訳を示すもの ◦ https://docs.aws.amazon.com/ja_jp/AmazonRDS/latest/AuroraUserGuide/USER_ PerfInsights.Overview.html •
カウンターメトリクス ◦ 性能に関係するカウンター値を個別にグラフ表示 • データベースのロード ◦ 負荷の高さと内訳をグラフ表示 4
パフォーマンスインサイトとは • RDS / Aurora の負荷とその内訳を示すもの ◦ https://docs.aws.amazon.com/ja_jp/AmazonRDS/latest/AuroraUserGuide/USER_ PerfInsights.Overview.html •
カウンターメトリクス ◦ 性能に関係するカウンター値を個別にグラフ表示 • データベースのロード ◦ 負荷の高さと内訳をグラフ表示 5
データベースのロード 6
データベースのロード • 合計:単位時間あたり平均コネクション数 • 内訳:待機イベント毎の所要時間 ◦ 上位 9 個(※)+ CPU
時間(緑)で計 10 個 (※)「上位 9 個」は選択期間内における上位 9 個 ◦ 正規化した SQL(文)上位 10 個の待機イベント内訳も表示可能 ▪ SQL(文)正規化 ≠ DB(テーブル)正規化 ▪ 空白・クォート等を揃え、 パラメータを「?」に置き換え • トークン化 7
待機イベント 8 時間が掛かる処理 • ログの書き出し ◦ MySQL の場合バイナリログもある • なんらかのロック・mutex(排他制御の待ち時間)
• データの書き出し • データの読み取り(ストレージから>メモリから) • クライアントの接続
問題点 • 選択期間内の上位 10 個 ≠ 対象時間の上位 10 個の場合 (※)待機イベントの場合は
CPU を含めて 10 個 ◦ 一部の待機イベント・SQL(文)が漏れる ◦ 合計値が本来より低くなる ▪ 一般的なワークロードでは SQL(文)が数十種類以上になるはず • 待機別よりも SQL 別のスライスのほうが実際の合計値から乖離しやすい 9
対策 : API 経由で書き出したものを分析する • API で値を取得する方法 ◦ https://docs.aws.amazon.com/ja_jp/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights. API.html
• 今回は Lambda Python で Boto3 低レベルクライアント (PI)を使って S3 に(正規化した)SQL(文)を転送 ◦ https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/pi.html ◦ S3 に転送したデータを Glue 経由で Athena から参照 ▪ さらに QuickSight でグラフ化 10
11 ① S3 転記用の Lambda 関数を作成・実行
12 https://github.com/hmatsu47/performance_insights_to_s3 (今回は lambda_function_events.py のコードを使用) https://qiita.com/hmatsu47/items/9814d5c69c136c185c41 ① S3 転記用の Lambda
関数を作成・実行
13 ② S3 に転記されたデータを確認
14 ③ Athena でワークグループを作成し、データソースを接続
15 ④ Glue クローラを追加・実行
16 ④ Glue クローラを追加・実行
17 ⑤ Athena でクエリを実行
18 ⑥ QuickSight で Athena をソースとするデータセットを作成
19 ⑦ QuickSight でデータセットを編集
20 ⑦ QuickSight でデータセットを編集(日付フィールドが文字列のままだと都合が悪いので編集して日付形式へ)
21 ⑦ QuickSight でデータセットを編集(必要な計算フィールドを追加)
22 ⑧ QuickSight でデータセットをグラフ化(ビジュアルタイプを選びフィールドを割り当て表示形式を調整)
23 ⑧ QuickSight でデータセットをグラフ化(グループ化フィールド変更)
24 ⑧ QuickSight でデータセットをグラフ化(別グラフ追加)
まとめ • API で書き出したデータを使うと細部を可視化可能 ◦ RDS のマネジメントコンソールでは表示できない部分も • ただし限界はある ◦
負荷が高い SQL(文)の抽出とチューニングにはある程度使える ◦ 遅い原因が不明な SQL(文)では待機イベントの抽出が必要だ が、SQL(文)を特定してその待機イベントを調査…のような使 い方がしづらい ▪ 多くのケースで秒単位のデータが必要だが、書き出しの負担が大きい ◦ API にはレートリミットがある 25