Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RDS_AuroraパフォーマンスインサイトのデータをAthenaとQuickSightで見る
Search
hmatsu47
PRO
May 31, 2021
Technology
2
590
RDS_AuroraパフォーマンスインサイトのデータをAthenaとQuickSightで見る
JAWS-UG 名古屋 データ分析を学ぶ 2021/05/31
hmatsu47
PRO
May 31, 2021
Tweet
Share
More Decks by hmatsu47
See All by hmatsu47
RDS/Aurora アップデート 2025
hmatsu47
PRO
0
2
YAPC::Fukuoka 2025 現地ハイブリッド参加の旅
hmatsu47
PRO
0
1
今年の FESTA で初当日スタッフ+登壇してきました
hmatsu47
PRO
0
10
攻略!Aurora DSQL の OCC(楽観的同時実行制御)
hmatsu47
PRO
0
7
PostgreSQL でもできる!GraphRAG
hmatsu47
PRO
0
8
Aurora DSQL のトランザクション(スナップショット分離と OCC)
hmatsu47
PRO
0
12
いろんなところに居る Amazon Q(Developer)を使い分けてみた
hmatsu47
PRO
0
32
「ゲームで体感!Aurora DSQL の OCC(楽観的同時実行制御)」の結果ログから Aurora DSQL の動作を考察する
hmatsu47
PRO
0
9
ゲームで体感!Aurora DSQL の OCC(楽観的同時実行制御)
hmatsu47
PRO
0
53
Other Decks in Technology
See All in Technology
乗りこなせAI駆動開発の波
eltociear
1
1k
eBPFとwaruiBPF
sat
PRO
4
2.5k
小さな判断で育つ、大きな意思決定力 / 20251204 Takahiro Kinjo
shift_evolve
PRO
1
590
Edge AI Performance on Zephyr Pico vs. Pico 2
iotengineer22
0
120
Karate+Database RiderによるAPI自動テスト導入工数をCline+GitLab MCPを使って2割削減を目指す! / 20251206 Kazuki Takahashi
shift_evolve
PRO
1
640
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
220
世界最速級 memcached 互換サーバー作った
yasukata
0
330
20251209_WAKECareer_生成AIを活用した設計・開発プロセス
syobochim
5
1.4k
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
420
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
280
Debugging Edge AI on Zephyr and Lessons Learned
iotengineer22
0
140
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
720
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
The Cult of Friendly URLs
andyhume
79
6.7k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Designing for Performance
lara
610
69k
Building Adaptive Systems
keathley
44
2.9k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
It's Worth the Effort
3n
187
29k
BBQ
matthewcrist
89
9.9k
Transcript
RDS / Aurora パフォーマンスインサイトの データを Athena と QuickSight で見る JAWS-UG
名古屋 データ分析を学ぶ 2021/05/31 まつひさ(hmatsu47)
自己紹介 松久裕保(@hmatsu47) https://qiita.com/hmatsu47 名古屋で Web インフラのお守り係をしています (ほかに書くことがなくなったので省略) 2
今日の内容 • パフォーマンスインサイトとその問題点のおさらい • API 経由で S3 にデータを書き出してみる ◦ Lambda(Python)で
S3 へ • Glue クローラを使って Athena へ ◦ Athena でクエリを実行してみる • Athena から QuickSight へ ◦ QuickSight でグラフ化してみる 3
パフォーマンスインサイトとは • RDS / Aurora の負荷とその内訳を示すもの ◦ https://docs.aws.amazon.com/ja_jp/AmazonRDS/latest/AuroraUserGuide/USER_ PerfInsights.Overview.html •
カウンターメトリクス ◦ 性能に関係するカウンター値を個別にグラフ表示 • データベースのロード ◦ 負荷の高さと内訳をグラフ表示 4
パフォーマンスインサイトとは • RDS / Aurora の負荷とその内訳を示すもの ◦ https://docs.aws.amazon.com/ja_jp/AmazonRDS/latest/AuroraUserGuide/USER_ PerfInsights.Overview.html •
カウンターメトリクス ◦ 性能に関係するカウンター値を個別にグラフ表示 • データベースのロード ◦ 負荷の高さと内訳をグラフ表示 5
データベースのロード 6
データベースのロード • 合計:単位時間あたり平均コネクション数 • 内訳:待機イベント毎の所要時間 ◦ 上位 9 個(※)+ CPU
時間(緑)で計 10 個 (※)「上位 9 個」は選択期間内における上位 9 個 ◦ 正規化した SQL(文)上位 10 個の待機イベント内訳も表示可能 ▪ SQL(文)正規化 ≠ DB(テーブル)正規化 ▪ 空白・クォート等を揃え、 パラメータを「?」に置き換え • トークン化 7
待機イベント 8 時間が掛かる処理 • ログの書き出し ◦ MySQL の場合バイナリログもある • なんらかのロック・mutex(排他制御の待ち時間)
• データの書き出し • データの読み取り(ストレージから>メモリから) • クライアントの接続
問題点 • 選択期間内の上位 10 個 ≠ 対象時間の上位 10 個の場合 (※)待機イベントの場合は
CPU を含めて 10 個 ◦ 一部の待機イベント・SQL(文)が漏れる ◦ 合計値が本来より低くなる ▪ 一般的なワークロードでは SQL(文)が数十種類以上になるはず • 待機別よりも SQL 別のスライスのほうが実際の合計値から乖離しやすい 9
対策 : API 経由で書き出したものを分析する • API で値を取得する方法 ◦ https://docs.aws.amazon.com/ja_jp/AmazonRDS/latest/AuroraUserGuide/USER_PerfInsights. API.html
• 今回は Lambda Python で Boto3 低レベルクライアント (PI)を使って S3 に(正規化した)SQL(文)を転送 ◦ https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/pi.html ◦ S3 に転送したデータを Glue 経由で Athena から参照 ▪ さらに QuickSight でグラフ化 10
11 ① S3 転記用の Lambda 関数を作成・実行
12 https://github.com/hmatsu47/performance_insights_to_s3 (今回は lambda_function_events.py のコードを使用) https://qiita.com/hmatsu47/items/9814d5c69c136c185c41 ① S3 転記用の Lambda
関数を作成・実行
13 ② S3 に転記されたデータを確認
14 ③ Athena でワークグループを作成し、データソースを接続
15 ④ Glue クローラを追加・実行
16 ④ Glue クローラを追加・実行
17 ⑤ Athena でクエリを実行
18 ⑥ QuickSight で Athena をソースとするデータセットを作成
19 ⑦ QuickSight でデータセットを編集
20 ⑦ QuickSight でデータセットを編集(日付フィールドが文字列のままだと都合が悪いので編集して日付形式へ)
21 ⑦ QuickSight でデータセットを編集(必要な計算フィールドを追加)
22 ⑧ QuickSight でデータセットをグラフ化(ビジュアルタイプを選びフィールドを割り当て表示形式を調整)
23 ⑧ QuickSight でデータセットをグラフ化(グループ化フィールド変更)
24 ⑧ QuickSight でデータセットをグラフ化(別グラフ追加)
まとめ • API で書き出したデータを使うと細部を可視化可能 ◦ RDS のマネジメントコンソールでは表示できない部分も • ただし限界はある ◦
負荷が高い SQL(文)の抽出とチューニングにはある程度使える ◦ 遅い原因が不明な SQL(文)では待機イベントの抽出が必要だ が、SQL(文)を特定してその待機イベントを調査…のような使 い方がしづらい ▪ 多くのケースで秒単位のデータが必要だが、書き出しの負担が大きい ◦ API にはレートリミットがある 25