Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2018冬開発合宿
Search
Syo Igarashi
January 08, 2018
Technology
0
1.1k
2018冬開発合宿
Syo Igarashi
January 08, 2018
Tweet
Share
More Decks by Syo Igarashi
See All by Syo Igarashi
2020冬開発合宿
igara
0
180
2019冬開発合宿
igara
0
79
2018夏開発合宿
igara
0
130
2017夏開発合宿
igara
0
170
Bariiiii
igara
0
100
My Chrome Plugin
igara
0
120
2017冬合宿
igara
0
140
Other Decks in Technology
See All in Technology
Ретроспективный взгляд на Vue 3. Даша Сабурова, Vue-разработчик Lamoda Tech
lamodatech
0
1.2k
メルカリにおけるデータアナリティクス AI エージェント「Socrates」と ADK 活用事例
na0
16
8.9k
「どこにある?」の解決。生成AI(RAG)で効率化するガバメントクラウド運用
toru_kubota
2
290
生成AIをテストプロセスに活用し"よう"としている話 #jasstnano
makky_tyuyan
0
120
QAはソフトウェアエンジニアリングを学んで実践するのが大事なの
ymty
1
320
dbt Cloudの新機能を紹介!データエンジニアリングの民主化:GUIで操作、SQLで管理する新時代のdbt Cloud
sagara
0
190
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.6k
技術職じゃない私がVibe Codingで感じた、AGIが身近になる未来
blueb
0
120
本部長の代わりに提案書レビュー! KDDI営業が毎日使うAIエージェント「A-BOSS」開発秘話
minorun365
PRO
11
1.4k
Oracle Cloud Infrastructureデータベース・クラウド:各バージョンのサポート期間
oracle4engineer
PRO
49
33k
OCI Oracle Database Services新機能アップデート(2025/03-2025/05)
oracle4engineer
PRO
1
110
20250612_GitHubを使いこなすためにソニーの開発現場が取り組んでいるプラクティス.pdf
osakiy8
1
630
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Site-Speed That Sticks
csswizardry
10
620
Making Projects Easy
brettharned
116
6.2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
The Invisible Side of Design
smashingmag
299
50k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Speed Design
sergeychernyshev
30
990
Code Review Best Practice
trishagee
68
18k
Visualization
eitanlees
146
16k
Transcript
2018 冬開発合宿 適当に画像収集して 自前の学習データで画像認識 五十嵐 翔
アジェンダ ・モチベーション ・コンテンツ ・デモタイム ・まとめ ↑↑↑↑↑↑↑↑↑↑ 発表としてはここまで ↑↑↑↑↑↑↑↑↑↑ ・技術ネタ集
モチベーション
・世間の人間がやたらとAIや機械学習など エンジニアだったら作ってくれるんでしょ? という風向きをモロに食らってて 最低限の実装と知見を高めたくなってきた。 ・個人的作業をもっと自動化していくための仕組みとしても 取り入れたい分野だと感じたから。
コンテンツ
タイトルにも記載されている 学習データをどう作成したのかというと https://github.com/igara/image_shiki こちらで画像収集および学習 細かい内容についてはちょっと技術ネタに記載
作成した学習データで遊んでみる Webアプリとしてこちら https://github.com/igara/image-shiki-web-app https://syonet.work こちらちょっと作成が間に合わなかったので 夏に持ち越して作成したいなぁと思います。 なので今回の発表は バッチ形式での画像認識結果をお楽しみください。
とりあえず適当に画像を集めて 4つの分類の学習データを作成してみたので 遊んでみよう
ちょっと手書きトレースした画像や コラ画像で実際に試してみる デモタイム
忍者 ピカチュウ ピカチュウ ライチュウ 忍者 忍者 あとは人物でやってみたり
まとめ
絵が下手でも色や外見が捕らえられていたら 意外と認識してくれてそう まるっきり該当しない画像と比較する場合があるので ノイズとしての画像を集めてやることも大事だと思った
は っ ぴ ょ う お し ま い
技術ネタ
すみません メモ書き程度にまとめます。
•画像収集にHeadless Chrome使用して集めてみた https://github.com/igara/image_shiki 合宿前に準備して作成していたものを使ってみた 方法としてQiitaに書いてたのでこちらをみると良いかも https://qiita.com/igara/items/e25a5556654e38051559
A •画像認識で行なったこと CNN(Convolution Neural Network 畳み込みニューラルネットワーク) による学習で画像の識別を行なった。 https://github.com/igara/image_shiki/blob/1396197fa28d9657869df1945dba6 cfdc38ca65c/save_model.py#L44-L112 A A
すごく要約して言うと集めた画像を無理やり 正方形に縮小し、4 * 4で分割して枚数分 比較して類似性を見ていくようなやり方
•画像認識で行なったこと PythonのライブラリであるKerasを使用してみた。 TensorFlow、Theanoのラッパーライブラリらしい マシンはGPU積んでないmacbookで実施したので 1分類あたりの画像枚数390枚(加工なし)の4分類の 学習済みデータを作成するのに20分弱かかった。 画像全てで約20MB、学習済みデータは350MBも するのでマシンの性能が欲しくなった。
•なんでdocker使ってるのにvagrantも使用しているのか 某格安VPSのホストOSがUbuntuであったから揃えたかった。 ホスト⇔ゲストのdocker-sync問題 (ファイルシステム的な問題?)
•これ便利と思ったdocker image https://github.com/SteveLTN/https-portal local・prod環境でオレオレ・Let's Encrypt 証明書を ふりわけて作成してくれるだけでなく nginxも構築してくれるdocker image 設定周りも概ねdocker-compose.ymlに完結できるのでよい
•RustでPython書く不思議なコード をやろうとしたけど挫折した https://github.com/dgrunwald/rust-cpython Rustから認識結果を拾いたかったけど pipでインストールしたPythonライブラリを使用できなかった。 今回作成したdocker-composeの設定でrust-cpythonを githubに記載しているサンプルのPythonのバージョン表示するのはできた。 言語バインディング(言語束縛)やりたかった。
•Rustというよりiron いろいろ挫折した ironとはRustのWebサーバサイドのライブラリ iron1つで解決できないことが多い問題に直面する。 ironコミュニティで別で提供されているrouterであったりmountとかを 導入してURLのルーティングまではうまくいっていた。
•Rustというよりiron いろいろ挫折した リクエストパラメータを取得するためのライブラリparamsを入れてみて 確かにPOSTやGETの時のリクエストデータは取れることを確認できた。 画像のアップロードを試みた時に一時的に保存される/tmp/の画像のパス 返してくれるけど実際には画像データが残っていない問題にあたり積んだ。
•静的ファイルのビルドツールとしてParcel使ってみた 共通部分(common,vender)を作る機構がないようにみえて ビルドで指定しているエントリーポイント(index.html ...etc)のなかで vendor、vendorを参照して作る実装部分のファイルと分けてたりすると 静的ファイルの中で案外重複しない感じにモジュール固めてくれる。
•静的ファイルのビルドツールとしてParcel使ってみた ビルドの出力されたファイルをよしなに呼びやすくなりそうな 謎ビルドツールを作る。 https://github.com/igara/image-shiki-web-app/blob/db8f10e4723052825e17a 4874f0960140bc3936a/nodejs/create_parcel_json.js Parcelで出力されたファイル名がハッシュなものなので ビルド前のファイル名とハッシュなファイル名をマップにするような JSONを作成するスクリプトを書いた。 ビルドツール使うならある程度自分でも作る技量持とうって最近思う。
•Mithril.jsはじめてみた ものすごい雑な感想として Reactぽくも書けながらStream http://mithril-ja.js.org/stream.html による双方向的なバインディングが可能なので 雑に作れそうな感じよかった。
お し ま い