$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第118回 雲勉【オンライン】AWS・Google Cloud 生成AI特集
Search
iret.kumoben
November 02, 2023
Technology
0
150
第118回 雲勉【オンライン】AWS・Google Cloud 生成AI特集
下記、勉強会での資料です。
https://youtu.be/msXem-glHpo
iret.kumoben
November 02, 2023
Tweet
Share
More Decks by iret.kumoben
See All by iret.kumoben
第181回 雲勉 WEB制作者のちょっとした面倒をAWSで解決!Amazon S3とAWS Lambda活用術
iret
0
28
第180回 雲勉 Abuse report の調査・確認方法について
iret
0
57
第179回 雲勉 AI を活用したサポートデスク業務の改善
iret
0
62
第178回 雲勉 Amazon EKSをオンプレで! Amazon EKS Anywhere 実践構築ガイド
iret
1
56
第177回 雲勉 IdP 移行を楽に!Amazon Cognito でアプリへの影響をゼロにするアイデア
iret
0
61
第176回 雲勉 VPC 間サービス接続を考える!Private Service Connect 入門
iret
0
51
第175回 雲勉 Amazon ECS入門:コンテナ実行の基本を学ぶ
iret
0
80
第174回 雲勉 Google Agentspace × ADK Vertex AI Agent Engineにデプロイしたエージェントを呼び出す
iret
0
130
第173回 雲勉 ノーコードで生成 AI アプリを構築!Google Cloud AI Applications(旧 Vertex AI Agent Builder)入門
iret
0
98
Other Decks in Technology
See All in Technology
さくらのクラウド開発ふりかえり2025
kazeburo
2
850
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
120
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
430
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
190
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
490
Identity Management for Agentic AI 解説
fujie
0
450
LayerX QA Night#1
koyaman2
0
250
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.2k
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
220
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9.9k
[Neurogica] 採用ポジション/ Recruitment Position
neurogica
1
110
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
400
Featured
See All Featured
Scaling GitHub
holman
464
140k
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
170
Crafting Experiences
bethany
0
22
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
32
Embracing the Ebb and Flow
colly
88
4.9k
Reality Check: Gamification 10 Years Later
codingconduct
0
1.9k
Side Projects
sachag
455
43k
First, design no harm
axbom
PRO
1
1.1k
Docker and Python
trallard
47
3.7k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
89
Transcript
第118回 雲勉【オンライン】 AWS・Google Cloud ⽣成AI特集
本日やること 2 • 自己紹介 • AWS ◦ LINE API/Amazon Bedrock/Claude2を組み合わせたLINE
bot • Google Cloud ◦ LINE API/Vertex AI/PaLM2を組み合わせたLINE bot • まとめ
自己紹介 3 Amazon ベストセラー獲得 Kento.Yamada (github,Twitter,zenn,Qiita@ymd65536) 経歴 • 2022年10月~現在 アイレット株式会社
◦ クラウドインテグレーション事業部 MSP開発セクション(東京配属) • (2016年~2022年9月)某通信キャリアの子会社 ◦ ITスペシャリスト(エンジニア)
4 AWSの場合
5 デモ
利用技術 • LINE API ◦ Messaging API • AWS ◦
AWS Lambda ◦ Amazon Bedrock(Claude2を利用) 6
AWS Cloud 全体構成 7 .zipアップロード、レイヤー作成 1.Webhookによる接続 4.LINEアプリ上で結果を閲覧 2. モデルClaude2のAPIを実行 3.結果を取得
AWS Lambda Amazon Bedrock
LINE Messaging API 👈詳しく知りたい人はこちら 8 https://www.youtube.com/watch?v=KiuLRTSuTzg LINEのメッセージ機能をAPIとして提供するサービス
Amazon Bedrockとは 9 基盤モデルを使用して生成系 AI アプリケーションを 構築およびスケーリングする最も簡単な方法。 主な特徴 • 大手
AI 企業が提供する高性能な基盤モデルを 単一の API で選択できるフルマネージド型サービス • サーバレス 参考:https://aws.amazon.com/jp/bedrock/ Amazon Bedrock
実装方法 • AWS SDK for Python(boto3)を使って実装 Lambdaがデフォルトで提供しているboto3には bedrockのAPIを操作する実装が存在しない。(2023年10月23日現在) →bedrockのAPIに対応したboto3のLambdaレイヤーを作成する 10
補足:Lambdaのboto3のバージョンを確認する方法 11 実行! Amazon Bedrockは1.28.57でサポート 1.27.1では動作しない 参考: https://github.com/boto/boto3/blob/develop/.changes /1.28.57.json
補足:Lambdaのレイヤーを作成する 12 boto3 1.28.58をインポート
IAMポリシーを作成 13 権限は最小にする! CloudWatch Logsのポリシー
Lambdaで実行するPythonスクリプトの仕様 14 event_type is Message message _type is text Start
message _type is image message _type is sticker End Bedrock APIの実行 画像には対応していな い旨を表示 スタンプには対応して いない旨を表示 実行結果を取得 True True True False message_typeを返す True False False False
ここまでのまとめ • Amazon Bedrockを使うとサーバレスにAIをアプリケーションに実装できる • AWS SDK for PythonからAPIを実行する •
LambdaでAPIを実行する時はレイヤーを組む必要がある ※現時点ではLambdaに実装されているバージョンが1.27.1であり、bedrockの APIに対応していない 15
16 Google Cloudの場合
17 デモ
利用技術 • LINE API ◦ Messaging API • Google Cloud
◦ Cloud Run ◦ Artifact Registry ◦ Vertex AI(PaLM2を利用) 18
全体構成 19 Artifact Registry Cloud Run Vertex AI イメージをpush 2.コンテナイメージをpull
1.Webhookによる接続 5.LINEアプリ上で結果を閲覧 3. chat-bisonのAPIを実行 4.結果を取得
Cloud Runとは コンテナを実行できるマネージドサービス 特徴 • サーバレスコンピューティング • 受信リクエストに合わせて、コンテナが自動的にスケール 今回はジョブではなく、サービスとしてコンテナを実行 LINE
Messaging APIのWebhook URLとして利用 20 CloudRunの料金:https://cloud.google.com/run/pricing?hl=ja
Artifact Registryとは 21 次世代の Container Registry 特徴 • パッケージと Docker
コンテナイメージを1 か所で保管し、管理 できる • CloudBuildのアーティファクトを保存する場所として利用できる Caution 現在はContainer Registryではなく、Artifact Registryが推奨されてい ます! 今回はCloud Runに使うコンテナのイメージを保存するために利用 Artifact Registryの料金:https://cloud.google.com/artifact-registry/pricing?hl=ja
Vertex AIとは 22 エンタープライズ対応の生成 AI でイノベーションを加速する 特徴 • さまざまなAIモデルの提供およびトレーニング •
検証にちょうどいいGenerative AI Studio • もちろん、PaLM2も提供
PaLM2とは • Google が開発した最新のLLMであり、PaLMの後継 • 4種類のモデル:Gecko、Otter、Bison、Unicorn • 25 を超える Google
の製品と機能に搭載 23 引用元:PaLM 2 のご紹介 https://japan.googleblog.com/2023/05/palm-2.html
Vertex AI における生成 AI サポートの料金 24 Vertex AI における生成 AI
サポートの料金:https://cloud.google.com/vertex-ai/pricing?hl=ja 1,000文字あたり、$0.0005
実装方法 • Vertex AI SDK for Pythonを使って実装 →SDKからgoogle-cloud-aiplatformのvertexaiをインポート →language_modelsからChatModelをInvoke 25
〜実装のポイント〜 • context を設定 • InputOutputTextPairを設定
Pythonスクリプトの仕様(AWSで実装した時とほぼ同じ) 26 event_type is Message message _type is text Start
End VertexAI APIの実行 実行結果を取得 True True False False
補足:テキストだけでなく画像などの情報もAIでやっていきたいところですが。。 27 プレビュー中のモデルが多いので今回は断念 ↓現在(2023.10.23)利用できるモデル
Google Cloudを使ったLINE botのまとめ • 今回はCloud Runを使ってVertex AIを実行した • Vertex AIを使うと手軽に生成AIが扱える!
• まだまだ知見は少ないけども、可能性は無限大! 28
29 おわり