Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB 101
Search
Nick Jackson
May 07, 2012
Technology
1
110
MongoDB 101
A crash course on MongoDB I gave to attendees at the JISC MRD Hackday organised by DevCSI.
Nick Jackson
May 07, 2012
Tweet
Share
More Decks by Nick Jackson
See All by Nick Jackson
It's all about the data.
jacksonj04
0
73
Development Tools
jacksonj04
0
92
Eating Your Own Dog Food
jacksonj04
0
330
LNCD and The Cloud
jacksonj04
0
110
OAuth 101
jacksonj04
3
360
API Driven Development
jacksonj04
0
210
We Can Haz Ur Datas?!
jacksonj04
0
340
Universal Search at Lincoln
jacksonj04
0
41
Jerome Overview
jacksonj04
0
43
Other Decks in Technology
See All in Technology
AWS テクニカルサポートとエンドカスタマーの中間地点から見えるより良いサポートの活用方法
kazzpapa3
2
500
Snowflake Summit 2025全体振り返り / Snowflake Summit 2025 Overall Review
mtpooh
2
390
初めてのAzure FunctionsをClaude Codeで作ってみた / My first Azure Functions using Claude Code
hideakiaoyagi
1
210
ハノーバーメッセ2025座談会.pdf
iotcomjpadmin
0
160
Windows 11 で AWS Documentation MCP Server 接続実践/practical-aws-documentation-mcp-server-connection-on-windows-11
emiki
0
900
Node-REDのFunctionノードでMCPサーバーの実装を試してみた / Node-RED × MCP 勉強会 vol.1
you
PRO
0
110
標準技術と独自システムで作る「つらくない」SaaS アカウント管理 / Effortless SaaS Account Management with Standard Technologies & Custom Systems
yuyatakeyama
3
1.2k
変化する開発、進化する体系時代に適応するソフトウェアエンジニアの知識と考え方(JaSST'25 Kansai)
mizunori
1
200
Snowflake Summit 2025 データエンジニアリング関連新機能紹介 / Snowflake Summit 2025 What's New about Data Engineering
tiltmax3
0
300
「Chatwork」の認証基盤の移行とログ活用によるプロダクト改善
kubell_hr
1
110
20250623 Findy Lunch LT Brown
3150
0
840
25分で解説する「最小権限の原則」を実現するための AWS「ポリシー」大全 / 20250625-aws-summit-aws-policy
opelab
9
1k
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
228
22k
Adopting Sorbet at Scale
ufuk
77
9.4k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
GraphQLとの向き合い方2022年版
quramy
47
14k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Producing Creativity
orderedlist
PRO
346
40k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Into the Great Unknown - MozCon
thekraken
39
1.9k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Transcript
MongoDB 101
I am... • Nick Jackson • Awesome Developer Dude •
University of Lincoln • @jacksonj04
MongoDB Is... • A NoSQL document database.
Eh?
NoSQL • Is not a specification (unlike SQL). • (Generally)
doesn’t have schemas. • (Generally) works at web-scale. • (Generally) doesn’t do relational integrity.
Document Databases • Store documents. • Don’t store key-value pairs.
• Make building APIs and stuff really easy.
Ye Olde SQL id name email 1 Nick
[email protected]
2
Joss
[email protected]
Ye Olde SQL id name email office building 1 Nick
... 3107 MHT 2 Joss ... 3015 MHT 3 Harry ... NULL MHT
:-(
Documents: Awesome! { name: ‘Nick’, email: ‘
[email protected]
’, location: { office:
‘3105’, building: ‘MHT’ } }
Documents: Awesome! { name: ‘Harry’, email: ‘
[email protected]
’ }
Documents: Awesome! { name: ‘Joss’, email: ‘
[email protected]
’, location: { office:
‘3105’, building: ‘MHT’ }, likes: { music: [‘Folk’, ‘Hip-Hop’], drink: [‘Coffee’, ‘Ale’] } }
Servers Are Easy
On Its Own Mongo App
Replicated Mongo 1 Mongo 2 Mongo 3 App
Sharded App Router 1 Router 2 Mongo S1 Mongo S2
Mongo S3
http://mongodb.org
Inserts <3 JSON > db.people.save({name:'Nick'}) > db.people.save({name:'Joss'}) > db.people.save({name:'Harry'})
Query Be Simple... > db.people.find() { "_id" : ObjectId("4fa...103"), "name"
: "Nick" } { "_id" : ObjectId("4fa...104"), "name" : "Joss" } { "_id" : ObjectId("4fa...105"), "name" : "Harry" }
Query Be Simple... > db.people.find({name:'Nick'}) { "_id" : ObjectId("4fa...103"), "name"
: "Nick" }
Query Be Quick... > db.people.ensureIndex({name:1})
Updates are easy > db.people.update({name:'Nick'},{name:'Nick',likes: ['coffee']}) > db.people.find({name:'Nick'}) { "_id"
: ObjectId("4fa...103"), "name" : "Nick", "likes" : [ "coffee" ] }
Queries are powerful > db.people.update({name:'Joss'},{name:'Joss',likes: ['coffee','folk music']}) > db.people.find({likes:'coffee'}) {
"_id" : ObjectId("4fa...103"), "name" : "Nick", "likes" : [ "coffee" ] } { "_id" : ObjectId("4fa...104"), "name" : "Joss", "likes" : [ "coffee", "folk music" ] }
Deletes are also easy > db.people.remove({name:'Nick'}) > db.people.find() { "_id"
: ObjectId("4fa...104"), "name" : "Joss", "likes" : [ "coffee", "folk music" ] } { "_id" : ObjectId("4fa...105"), "name" : "Harry" }
Cool Things! • Geospatial indexes. db.places.find({loc:{$near:[-2, 53]}}) • JavaScript in
the Mongo shell. • Map/Reduce operations. • Can be used as a filesystem.
Downsides It has a few
It’s not ACID • Set of atomic operators, but no
things like transactions. • No enforced consistency. At all. • No locking, so updates can collide and be lost. • Disk writes are (usually) deferred, so data can be lost in failures.
It’s not ‘Enterprise’ • Your DBAs will find it new
and scary. • You need to un-learn a lot of the SQL mindset. • It’s not seen as ‘proven’, but this is generally rubbish.
Some MongoDB Users • Craigslist • MTV • SourceForge •
Disney • National Archives • HM Government • The Guardian • New York Times • bit.ly • GitHub • Foursquare • http://lncn.eu/fhx5