Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB 101
Search
Nick Jackson
May 07, 2012
Technology
1
120
MongoDB 101
A crash course on MongoDB I gave to attendees at the JISC MRD Hackday organised by DevCSI.
Nick Jackson
May 07, 2012
Tweet
Share
More Decks by Nick Jackson
See All by Nick Jackson
It's all about the data.
jacksonj04
0
80
Development Tools
jacksonj04
0
96
Eating Your Own Dog Food
jacksonj04
0
340
LNCD and The Cloud
jacksonj04
0
120
OAuth 101
jacksonj04
3
370
API Driven Development
jacksonj04
0
210
We Can Haz Ur Datas?!
jacksonj04
0
350
Universal Search at Lincoln
jacksonj04
0
48
Jerome Overview
jacksonj04
0
47
Other Decks in Technology
See All in Technology
子育てで想像してなかった「見えないダメージ」 / Unforeseen "hidden burdens" of raising children.
pauli
2
320
Agent Skillsがハーネスの垣根を超える日
gotalab555
5
3.4k
ZOZOの独自性を生み出す「似合う4大要素」の開発サイクル
zozotech
PRO
0
110
さくらのクラウド開発ふりかえり2025
kazeburo
2
210
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
110
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
190
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
120
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
120
2025-12-18_AI駆動開発推進プロジェクト運営について / AIDD-Promotion project management
yayoi_dd
0
150
AlmaLinux + KVM + Cockpit で始めるお手軽仮想化基盤 ~ 開発環境などでの利用を想定して ~
koedoyoshida
0
150
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9.9k
Knowledge Work の AI Backend
kworkdev
PRO
0
100
Featured
See All Featured
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
400
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
0
91
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
So, you think you're a good person
axbom
PRO
0
1.8k
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Design in an AI World
tapps
0
97
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
The Curious Case for Waylosing
cassininazir
0
190
Typedesign – Prime Four
hannesfritz
42
2.9k
Transcript
MongoDB 101
I am... • Nick Jackson • Awesome Developer Dude •
University of Lincoln • @jacksonj04
MongoDB Is... • A NoSQL document database.
Eh?
NoSQL • Is not a specification (unlike SQL). • (Generally)
doesn’t have schemas. • (Generally) works at web-scale. • (Generally) doesn’t do relational integrity.
Document Databases • Store documents. • Don’t store key-value pairs.
• Make building APIs and stuff really easy.
Ye Olde SQL id name email 1 Nick
[email protected]
2
Joss
[email protected]
Ye Olde SQL id name email office building 1 Nick
... 3107 MHT 2 Joss ... 3015 MHT 3 Harry ... NULL MHT
:-(
Documents: Awesome! { name: ‘Nick’, email: ‘
[email protected]
’, location: { office:
‘3105’, building: ‘MHT’ } }
Documents: Awesome! { name: ‘Harry’, email: ‘
[email protected]
’ }
Documents: Awesome! { name: ‘Joss’, email: ‘
[email protected]
’, location: { office:
‘3105’, building: ‘MHT’ }, likes: { music: [‘Folk’, ‘Hip-Hop’], drink: [‘Coffee’, ‘Ale’] } }
Servers Are Easy
On Its Own Mongo App
Replicated Mongo 1 Mongo 2 Mongo 3 App
Sharded App Router 1 Router 2 Mongo S1 Mongo S2
Mongo S3
http://mongodb.org
Inserts <3 JSON > db.people.save({name:'Nick'}) > db.people.save({name:'Joss'}) > db.people.save({name:'Harry'})
Query Be Simple... > db.people.find() { "_id" : ObjectId("4fa...103"), "name"
: "Nick" } { "_id" : ObjectId("4fa...104"), "name" : "Joss" } { "_id" : ObjectId("4fa...105"), "name" : "Harry" }
Query Be Simple... > db.people.find({name:'Nick'}) { "_id" : ObjectId("4fa...103"), "name"
: "Nick" }
Query Be Quick... > db.people.ensureIndex({name:1})
Updates are easy > db.people.update({name:'Nick'},{name:'Nick',likes: ['coffee']}) > db.people.find({name:'Nick'}) { "_id"
: ObjectId("4fa...103"), "name" : "Nick", "likes" : [ "coffee" ] }
Queries are powerful > db.people.update({name:'Joss'},{name:'Joss',likes: ['coffee','folk music']}) > db.people.find({likes:'coffee'}) {
"_id" : ObjectId("4fa...103"), "name" : "Nick", "likes" : [ "coffee" ] } { "_id" : ObjectId("4fa...104"), "name" : "Joss", "likes" : [ "coffee", "folk music" ] }
Deletes are also easy > db.people.remove({name:'Nick'}) > db.people.find() { "_id"
: ObjectId("4fa...104"), "name" : "Joss", "likes" : [ "coffee", "folk music" ] } { "_id" : ObjectId("4fa...105"), "name" : "Harry" }
Cool Things! • Geospatial indexes. db.places.find({loc:{$near:[-2, 53]}}) • JavaScript in
the Mongo shell. • Map/Reduce operations. • Can be used as a filesystem.
Downsides It has a few
It’s not ACID • Set of atomic operators, but no
things like transactions. • No enforced consistency. At all. • No locking, so updates can collide and be lost. • Disk writes are (usually) deferred, so data can be lost in failures.
It’s not ‘Enterprise’ • Your DBAs will find it new
and scary. • You need to un-learn a lot of the SQL mindset. • It’s not seen as ‘proven’, but this is generally rubbish.
Some MongoDB Users • Craigslist • MTV • SourceForge •
Disney • National Archives • HM Government • The Guardian • New York Times • bit.ly • GitHub • Foursquare • http://lncn.eu/fhx5