$30 off During Our Annual Pro Sale. View Details »

SER594 Lecture 06

SER594 Lecture 06

Human Computer Interaction
Static Models
(201902)

Javier Gonzalez-Sanchez
PRO

April 22, 2019
Tweet

More Decks by Javier Gonzalez-Sanchez

Other Decks in Programming

Transcript

  1. SER594
    Human-Computer Interaction
    Lecture 06
    Static Models
    Javier Gonzalez-Sanchez, PhD
    [email protected]
    javiergs.engineering.asu.edu
    Office Hours: By appointment

    View Slide

  2. Quiz 02
    • User Experience
    • Color
    • Messages
    • Data Integration

    View Slide

  3. Data
    1

    View Slide

  4. Overview
    Data
    Multimodal
    Synchronization
    Fusion
    Cleaning
    Normalization
    Remove Outliers

    View Slide

  5. Summary
    Sensing
    Device
    (rate in Hz)
    Legacy Software
    Sensing
    (Input or Raw Data)
    Physiological responses and/or
    Emotion reported (output or sensed values)
    Emotiv© EEG
    headset
    (128 Hz)
    Emotiv© SDK Brain Waves
    EEG activity. Reported in 14 channels [16],: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6,
    F4, F8, and AF4.
    Face activity. Blink, wink (left and right), look (left and right), raise brow, furrow brow,
    smile, clench, smirk (left and right), and laugh.
    Emotions. Excitement, engagement, boredom, meditation and frustration.
    Standard Webcam
    (10 Hz)
    MIT Media Lab MindReader Facial Expressions Emotion. Agreeing, concentrating, disagreeing, interested, thinking and unsure.
    MIT skin conductance sensor
    (2 Hz)
    USB driver Skin Conductivity Arousal.
    MIT pressure sensor
    (6 Hz)
    USB driver Pressure One pressure value per sensor allocated into the input/control device.
    Tobii© Eye tracking
    (60 Hz)
    Tobii© SDK Eye Tracking Gaze point (x, y).
    MIT posture sensor
    (6 Hz)
    USB driver Pressure
    Pressure values in the back and the seat (in the right, middle and left zones) of a
    cushion chair.

    View Slide

  6. Integration | sparse
    [18] J. Liu, S. Ji, and J. Ye. SLEP: Sparse Learning with Efficient Projections. Arizona State University, 2009. http://www.public.asu.edu/~jye02/Software/SLEP.
    timestamp fixationIndex gazePointX gazePointY
    mappedFixationPo
    intX
    mappedFixationPo
    intY
    fixationDuration
    Short Term
    Excitement
    Long Term
    Excitement
    Engagement/Bored
    om
    Meditation Frustration Conductance agreement concentrating
    4135755652 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628
    4135755659 213 573 408 570 408 216
    4135755668 0.436697 0.521059 0.550011 0.335825 0.498908
    4135755676 213 566 412 570 408 216
    4135755692 213 565 404 570 408 216
    4135755709 213 567 404 570 408 216
    4135755714
    4135755726 213 568 411 570 408 216
    4135755742 213 568 409 570 408 216
    4135755759 213 563 411 570 408 216
    4135755761
    4135755776 213 574 413 570 408 216
    4135755792 213 554 402 570 408 216
    4135755809 214 603 409 696 405 216
    4135755824
    4135755826 214 701 407 696 405 216
    4135755842 214 697 403 696 405 216
    4135755859 214 693 401 696 405 216
    4135755876 214 700 402 696 405 216
    4135755892 214 701 411 696 405 216
    4135755909 214 686 398 696 405 216
    4135755918
    4135755926 214 694 399 696 405 216
    4135755942 214 694 407 696 405 216
    4135755959 214 698 404 696 405 216
    4135755964
    4135755976 214 704 398 696 405 216
    4135755992 214 693 415 696 405 216
    4135756009 214 696 411 696 405 216
    4135756025 215 728 406 804 387 183
    4135756027 0.436697 0.521059 0.550011 0.335825 0.498908 1 1

    View Slide

  7. Integration | state machine
    timestamp fixationIndex gazePointX gazePointY
    mappedFixationPo
    intX
    mappedFixationPo
    intY
    fixationDuration
    Short Term
    Excitement
    Long Term
    Excitement
    Engagement/Bored
    om
    Meditation Frustration Conductance agreement concentrating
    4135755652 213 574 414 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755659 213 573 408 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755668 213 573 408 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755676 213 566 412 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755692 213 565 404 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755709 213 567 404 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755714 213 567 404 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755726 213 568 411 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755742 213 568 409 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755759 213 563 411 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755761 213 563 411 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755776 213 574 413 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755792 213 554 402 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755809 214 603 409 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755824 214 603 409 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755826 214 701 407 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755842 214 697 403 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755859 214 693 401 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755876 214 700 402 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755892 214 701 411 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755909 214 686 398 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755918 214 686 398 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755926 214 694 399 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755942 214 694 407 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755959 214 698 404 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755964 214 698 404 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755976 214 704 398 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135755992 214 693 415 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135756009 214 696 411 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135756025 215 728 406 804 387 183 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
    4135756027 215 728 406 804 387 183 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1

    View Slide

  8. Static Models
    2

    View Slide

  9. Overview
    Data
    Multimodal
    Cleaning
    Modeling
    Static
    Dynamic

    View Slide

  10. Classification | Regression
    • Function Approximation – define an equation
    (mathematical relationship)
    • Developing a model using historical data to make a
    prediction on new data where we do not have the
    answer.
    • Approximating a mapping function (f) from input
    variables (x) to output variables (y).
    • Assume that new data will behave in similar way

    View Slide

  11. Tool | Eureqa
    https://www.nutonian.com/download/eureqa-desktop-download/
    [19] Dubcˇa ́kova ́, R. Eureqa-so9ware review. Gene>c programming and evolvable machines. Genet. Program. Evol. Mach. (2010) online first. doi:10.1007/s10710- 010-9124-z .

    View Slide

  12. Eureqa | Enter Data
    • Import data:
    Final = 50% midterm + 25% HW + 25%Quiz

    View Slide

  13. Eureqa | Prepare Data
    • Clean: Normalize and remove outliers

    View Slide

  14. Eureqa | Define a search
    • Building Blocks and Error Metric

    View Slide

  15. Eureqa | Results

    View Slide

  16. Eureqa | Review

    View Slide

  17. Model
    • Final = 50% midterm + 25% HW + 25%Quiz
    • Final = 11.48
    + 0.50*MidTerm
    + 0.08*HW3
    + 0.05*Q1 + 0.04*Q2 + 0.05*Q3 + 0.05*Q4
    + 0.00*HW1*HW2
    Q5

    View Slide

  18. Analyzing Data | Biometrics
    3

    View Slide

  19. Reference | Tobii Eye Tracker

    View Slide

  20. Reference | ABM B-Alert Wireless EEG
    • EEG workload is correlated with increased working memory load
    and difficulty level in mental arithmetic and other complex problem
    solving tasks.
    • ABM has 2 workload models -- one model was built on a Forward
    digit span (FBDS) task (recommended to use, as it fits for ~85% of
    population) and
    • the other built on a backward digit span (BDS) task (fits ~15% of
    population).
    • ABM's data outputs also contain the mean probability between
    the FBDS and BDS model.
    https://www.memorylosstest.com/digit-span/

    View Slide

  21. Reference | Shimmer GSR
    • Battery
    • GSC (mVolts)
    • GSR (kOmh)
    • Quality

    View Slide

  22. Homework
    • What could be said about these 2 seconds in the
    life of our first subject?
    • What could be said about the 20 minutes in the life
    of our second subject?

    View Slide

  23. SER594 – Human Computer Interaction
    Javier Gonzalez-Sanchez
    [email protected]
    Spring 2019
    Disclaimer. These slides can only be used as study material for the SER594 course at ASU.
    They cannot be distributed or used for another purpose.

    View Slide