paradigm — a style of building the structure and elements of computer programs — that treats computation as the evaluation of mathematical functions and avoids changing- state and mutable data. It is a declarative programming paradigm, which means programming is done with expressions.” What is Functional Programming?
computer what you want, not how to get it • Algorithms are compositions of functions • Immutable data (or minimal side effects) preferred • SQL, HTML, Haskell, DSLs
functions myEventLib.on('update', (data) => console.log(data)); function doubleNumber(n) { return n * 2; } // Earlier example, passing in named function function doubleNumbers(numbers) { return numbers.map(doubleNumber); }
functions myEventLib.on('update', (data) => console.log(data)); function doubleNumber(n) { return n * 2; } // Earlier example, passing in named function function doubleNumbers(numbers) { return numbers.map(doubleNumber); }
function square(n) { return n * n; } function add6(n) { return n + 6; } // Reduces down to the same value let value1 = add6(square(doubleNumber(3))); // 42 let value2 = add6(square(6)); // 42 let value3 = add6(36); // 42 let value4 = 42; // Same value for every call let otherValue1 = doubleNumber(3) + doubleNumber(3) + doubleNumber(3) + doubleNumber(3); let otherValue2 = 6 + 6 + 6 + 6;
function square(n) { return n * n; } function add6(n) { return n + 6; } // Reduces down to the same value let value1 = add6(square(doubleNumber(3))); // 42 let value2 = add6(square(6)); // 42 let value3 = add6(36); // 42 let value4 = 42; // Same value for every call let otherValue1 = doubleNumber(3) + doubleNumber(3) + doubleNumber(3) + doubleNumber(3); let otherValue2 = 6 + 6 + 6 + 6;
function square(n) { return n * n; } function add6(n) { return n + 6; } // Reduces down to the same value let value1 = add6(square(doubleNumber(3))); // 42 let value2 = add6(square(6)); // 42 let value3 = add6(36); // 42 let value4 = 42; // Same value for every call let otherValue1 = doubleNumber(3) + doubleNumber(3) + doubleNumber(3) + doubleNumber(3); let otherValue2 = 6 + 6 + 6 + 6;
return n + counter; } function addToCounter2(n) { let counter = 0; counter++; return n + counter; } // Not referentially transparent let value1 = addToCounter1(1) + addToCounter1(1); // 5 let value2 = 2 + 3; // Not the same value every call! // Referentially transparent let otherValue1 = addToCounter2(1) + addToCounter2(1); // 4 let otherValue2 = 2 + 2;
return n + counter; } function addToCounter2(n) { let counter = 0; counter++; return n + counter; } // Not referentially transparent let value1 = addToCounter1(1) + addToCounter1(1); // 5 let value2 = 2 + 3; // Not the same value every call! // Referentially transparent let otherValue1 = addToCounter2(1) + addToCounter2(1); // 4 let otherValue2 = 2 + 2;
return n + counter; } function addToCounter2(n) { let counter = 0; counter++; return n + counter; } // Not referentially transparent let value1 = addToCounter1(1) + addToCounter1(1); // 5 let value2 = 2 + 3; // Not the same value every call! // Referentially transparent let otherValue1 = addToCounter2(1) + addToCounter2(1); // 4 let otherValue2 = 2 + 2;
} function capitalize(string) { return string[0].toUpperCase() + string.slice(1).toLowerCase(); } function toTitleCase(string) { return string .split(/\s+/) .map(capitalize) .join(' '); } • No side effects. • String and number arguments are immutable.
of itself • Solve the problem by solving smaller pieces • Similar to inductive proofs • In programming, a function that calls itself • In FP, imperative looping (e.g. with while or for) is practically nonexistent, so solve with recursion
max stack size • Replace stack frames instead of adding new ones • The last statement before returning must be recursive call • Typically rewrite function to include an accumulator that holds the current result • (Coming to JavaScript in ES2015!)
fibonacci(20); // 0 ms fibonacci(30); // 13 ms fibonacci(35); // 131 ms fibonacci(40); // 1516 ms fibonacci(45); // 16.6 seconds! fibonacci(100); // Who knows how long
array function map(fn, array) { if (array.length === 0) { return array; } const [head, ...tail] = array; return [fn(head), ...map(fn, tail)]; } Grab the first element and remaining elements
array; } const [head, ...tail] = array; return [fn(head), ...map(fn, tail)]; } Array#map Map values in array to other values in new array var head = array[0];
array; } const [head, ...tail] = array; return [fn(head), ...map(fn, tail)]; } Array#map Map values in array to other values in new array var tail = array.slice(1);
array function map(fn, array) { if (array.length === 0) { return array; } const [head, ...tail] = array; return [fn(head), ...map(fn, tail)]; } Return new array with altered head and mapped array of remaining elements
{ return (y) => x + y; } let add1 = additionFactory(1); add1(2); // 3 // Now we can write an add function // and use partial application function add(x, y) { return x + y; } // Partial application with native `bind` function add1 = add.bind(null, 1); add1(2); // 3 // Use a custom-written `partial` function add1 = partial(add, 1); add1(2); // 3
{ return (y) => x + y; } let add1 = additionFactory(1); add1(2); // 3 // Now we can write an add function // and use partial application function add(x, y) { return x + y; } // Partial application with native `bind` function add1 = add.bind(null, 1); add1(2); // 3 // Use a custom-written `partial` function add1 = partial(add, 1); add1(2); // 3
{ return (y) => x + y; } let add1 = additionFactory(1); add1(2); // 3 // Now we can write an add function // and use partial application function add(x, y) { return x + y; } // Partial application with native `bind` function add1 = add.bind(null, 1); add1(2); // 3 // Use a custom-written `partial` function add1 = partial(add, 1); add1(2); // 3
{ return (y) => x + y; } let add1 = additionFactory(1); add1(2); // 3 // Now we can write an add function // and use partial application function add(x, y) { return x + y; } // Partial application with native `bind` function add1 = add.bind(null, 1); add1(2); // 3 // Use a custom-written `partial` function add1 = partial(add, 1); add1(2); // 3
into a function • Successive invocations of function with arguments returns a new function with those arguments assigned • Keep returning a new function until all arguments “filled,” and then invoke the actual function with all of those arguments (sounds recursive, huh?)
y + z); // All arguments supplied, normal invocation. add(1, 2, 3); // 6 // Supply arguments one at a time. Final argument // induces invocation. add(1)(2)(3); // 6 // Equivalent to previous example. let add1 = add(1); let add3 = add1(2); add3(3); // 6 // Supply more than one argument at a time. add(1, 2)(3); // 6 add(1)(2, 3); // 6
y + z); // All arguments supplied, normal invocation. add(1, 2, 3); // 6 // Supply arguments one at a time. Final argument // induces invocation. add(1)(2)(3); // 6 // Equivalent to previous example. let add1 = add(1); let add3 = add1(2); add3(3); // 6 // Supply more than one argument at a time. add(1, 2)(3); // 6 add(1)(2, 3); // 6
y + z); // All arguments supplied, normal invocation. add(1, 2, 3); // 6 // Supply arguments one at a time. Final argument // induces invocation. add(1)(2)(3); // 6 // Equivalent to previous example. let add1 = add(1); let add3 = add1(2); add3(3); // 6 // Supply more than one argument at a time. add(1, 2)(3); // 6 add(1)(2, 3); // 6
y + z); // All arguments supplied, normal invocation. add(1, 2, 3); // 6 // Supply arguments one at a time. Final argument // induces invocation. add(1)(2)(3); // 6 // Equivalent to previous example. let add1 = add(1); let add3 = add1(2); add3(3); // 6 // Supply more than one argument at a time. add(1, 2)(3); // 6 add(1)(2, 3); // 6
y + z); // All arguments supplied, normal invocation. add(1, 2, 3); // 6 // Supply arguments one at a time. Final argument // induces invocation. add(1)(2)(3); // 6 // Equivalent to previous example. let add1 = add(1); let add3 = add1(2); add3(3); // 6 // Supply more than one argument at a time. add(1, 2)(3); // 6 add(1)(2, 3); // 6
y + z); // All arguments supplied, normal invocation. add(1, 2, 3); // 6 // Supply arguments one at a time. Final argument // induces invocation. add(1)(2)(3); // 6 // Equivalent to previous example. let add1 = add(1); let add3 = add1(2); add3(3); // 6 // Supply more than one argument at a time. add(1, 2)(3); // 6 add(1)(2, 3); // 6