$30 off During Our Annual Pro Sale. View Details »

Confronting the "Extreme Planetary Systems" Claimed Around sdBVs

jjhermes
July 20, 2015

Confronting the "Extreme Planetary Systems" Claimed Around sdBVs

Conference presentation, 15 min. July 2015: Seventh Meeting on Hot Subdwarfs and Related Objects, Oxford, UK.

jjhermes

July 20, 2015
Tweet

More Decks by jjhermes

Other Decks in Science

Transcript

  1. Confronting the “Extreme
    Planetary Systems”
    Claimed Around sdBVs
    JJ Hermes

    View Slide

  2. Banksy

    View Slide

  3. Charpinet*et*al.*2011,*Nature,*480,*4967
    KIC 05807616
    Phase-folded at 5.76-hr signal
    Phase-folded at 8.23-hr signal
    FT: first 14 months!
    of Kepler data!
    (Q2+Q5-Q8)
    KOI$55.01:$$P
    orb
    $=$5.7625$hr1
    1(48.204*9Hz)7
    7~0.76*REarth&
    7~0.44*MEarth&
    7asep*=*1.290*R!7
    KOI$55.02:$$P
    orb
    $=$8.2293$hr1
    1(33.755*9Hz)7
    7~0.87*REarth&
    7~0.66*MEarth&
    7asep*=*1.636*R!7
    1
    a
    Roche
    $=$0.624$R
    !(

    View Slide

  4. Charpinet*et*al.*2011,*Nature,*480,*4967
    KIC 05807616
    Phase-folded at 5.76-hr signal
    Phase-folded at 8.23-hr signal
    FT: first 14 months!
    of Kepler data!
    (Q2+Q5-Q8)
    •  g*modes.(standing.waves),.must.
    be.reflected.off.surface&
    •  theoretical.cutoff.frequency.for.
    ell=1.g*modes.~4.5.hr.(61.GHz).
    (Hansen*et*al.*1985,*ApJ,*297,*554)7
    “leaving$orbital$modulations$…$the$
    most$plausible$interpretation.”7

    View Slide

  5. P
    1
    $=$5.273$hr1
    1(52.68*9Hz)7
    P
    2
    $=$7.807$hr1
    1(35.58*9Hz)7
    P
    3
    $=$19.48$hr1
    1(14.26*9Hz)7
    KIC 10001893
    theoretical cutoff
    frequency for ell=1
    g-modes: 60 muHz
    SilvoMi*et*al.*2014,*A&A,*570,*A1307
    FT: All 36 months of Kepler data

    View Slide

  6. •  Signals.are.unstable.in.frequency&
    •  Signals.are.unstable.in.amplitude&
    •  Some.signals.are.in.impossible.planetary.
    configurations&
    Issues Complicating the Planetary Hypothesis

    View Slide

  7. •  8.23*hr.signal.already.
    showed.frequency.instability.
    after.first.year&
    •  Charpinet+.2011.suggestion:.
    Dynamical.(orbital).
    perturbations.from.a.third.
    body.(w/.period.~57.days)&
    1. Signals are Unstable in Frequency
    Charpinet*et*al.*2011,*Nature,*480,*4967
    Synthetic FT w/
    freq. modulation

    View Slide

  8. 1. Signals are Unstable in Frequency
    Year 1:!
    All data used by Charpinet+ 2011
    Year 2
    Year 3
    All Kepler data
    •  The.frequency.variability.
    is.not.long*term.coherent&
    •  Why.does.it.affect.one.
    mode.and.not.the.other?.
    (“~3:2.resonance”)&

    View Slide

  9. 1. Signals are Unstable in Frequency
    Year 1
    Year 2
    Year 3
    All Kepler data
    Right two panels
    are two random!
    g-mode pulsations
    in the same star

    View Slide

  10. 2. Signals are Unstable in Amplitude
    (200-day sliding
    window, standard
    Kepler pipeline)
    F2
    F1

    View Slide

  11. 2. Signals are Unstable in Amplitude
    Jurek*Krzesinski*2015,*A&A,*in*press7
    F2 F1
    (200-day sliding window, custom pixel mask)

    View Slide

  12. 2. Signals are Unstable in Amplitude
    SilvoMi*et*al.*2014,*A&A,*570,*A1307
    Q3+Q5+Q6+
    Q7+Q8.1
    Q8.2+Q8.3+Q9+
    Q10+Q11+!
    Q12.1+Q12.2
    Q12.3+Q13+!
    Q14+Q15+Q16+
    Q17.1+Q17.2
    First 13 months
    Next 13 months
    Last ~13 months

    View Slide

  13. 2. Signals are Unstable in Amplitude
    Jeffery*et*al.*2013,*MNRAS,*429,*32077
    •  40,000.K.sdO.KIC.10449976.shows.unstable.~3.9.day.variability&
    •  “The.stochastic.variations.in.period.and.light.amplitude.are.
    a_ributed.to.weather.on.….a.tidally.locked.planet.that.is.heated.
    to.~5000.K.by.the.UV.radiation.from.the.hot.sdO.star.”
    & & & & & & &.....
    & & &SS*Bear*&*Soker*2014,*MNRAS,*437,*14007
    Q3
    Q9

    View Slide

  14. 3. Signals Exist in Impossible Planetary Systems
    Østensen*et*al.*2014,*A&A,*569,*157
    •  KIC.10553698A:.sdBV.in.3.4*day.binary.w/.~0.6.M!
    .WD&
    –  5σ.significant.signal.at.46.84.GHz.(5.93.hr)&
    •  KIC.11558725A:.sdBV.in.10*day.orbit.w/..>0.63.M!.
    WD.(Telting+.2012)&
    –  Significant.signals.at.37.86.GHz.(7.34.hr).and.49.78.GHz.(5.58.hr)&
    •  Dynamics.don’t.allow.for.planet(s).to.exist.inside.these.WD+sdBs(
    AA/2014/23611
    0
    100
    200
    300
    0 10 20 30 40 50 60 70 80 90 100
    0
    100
    200
    300
    100 110 120 130 140 150 160 170 180 190 200
    0
    100
    200
    300
    200 210 220 230 240 250 260 270 280 290 300
    Amplitude [ppm]
    0
    100
    200
    300
    300 310 320 330 340 350 360 370 380 390 400
    100
    200
    300
    50 60 70 80 90 100
    150 160 170 180 190 200
    250 260 270 280 290 300
    350 360 370 380 390 400
    450 460 470 480 490 500
    requency [µHz]
    xis has been truncated at 300 ppm to show sufficient details, even if there are
    d by a continuous line.
    B
    s-

    S
    e-
    er
    n
    o-
    a
    h
    he
    es
    KIC 10553698A
    Photometric Doppler beaming
    signal from ~0.6 M!
    companion
    Significant signal at
    46.84 µHz (5.93 hr)

    View Slide

  15. If Not Planets, then What?
    •  Back*to*the*drawing*board:7
    •  Contamination*from*a*nearby*star7
    •  Custom*pixel*masks7
    •  Spurious*Kepler*frequencies7
    •  Not*in*Baran*2013*(arXiv:*1306.5472)7
    •  Rotational*modulations7
    •  pSmode*spliMings:*Prot*~*40*days*7
    •  Stellar*pulsations7
    •  Cutoff*frequency?7
    •  Nonlinear*combination*frequencies7
    •  Possible*difference*frequencies?7
    •  Reflection*off*closeSin*planets7

    View Slide

  16. Revisiting the Theoretical Cutoff Frequency
    •  Critical.frequency.
    delineating.
    standing/running.
    waves&
    •  “Surface.reflection.
    condition”&
    •  Grey.atmosphere:.
    νcrit,l=1
    .=.40.3.GHz&
    •  Charpinet+.2011.
    used.full.seismic.
    models,.found.
    νcrit,l=1
    .=.61.0.GHz&
    &
    •  Hansen*et*al.*1985,*
    ApJ,*297,*554&

    View Slide

  17. Revisiting the Theoretical Cutoff Frequency
    •  Not.an.energy.barrier,.
    just.an.energy.sink:.
    Amplitudes.shrink.but.
    not.necessarily.to.0&
    •  Really.want.to.compare.
    energy.leakage.e*folding.
    timescale.to.intrinsic.
    driving.e*folding.
    timescale&
    •  Truly.a.non*adiabatic.
    problem,.but.adiabatic.
    approx..should.be.decent&
    •  νcrit,l=1
    .=.61.0.GHz&
    •  νcrit,l=2
    .=.105.7.GHz&
    Charpinet*et*al.*2011,*Nature,*480,*4967

    View Slide

  18. Nonlinear Combination Frequencies?
    e.g.,..f1
    .+.f2
    .=.f3
    ....or....f1
    .*.f2
    .=.f3&
    Frequency.(GHz)&
    Amplitude.(ppt)&
    Hermes*et*al.*2014,*ApJ,*789,*857
    Pulsating WD: GD 1212
    Independent g-modes Combination frequencies
    Difference frequencies
    •  14.5.hr.signal.in.K2.run.on.white.dwarf.GD.1212:..f10
    .*.f8&

    View Slide

  19. Nonlinear Combination Frequencies?
    f15
    .=.201.66.GHz& f1
    .=.167.84.GHz&
    f15.
    *.f1
    .=.33.82.GHz&
    f11
    .=.248.32.GHz& f2
    .=.199.51.GHz&
    f11.
    *.f2
    .=.48.81.GHz&
    Independent g-modes
    in KIC 5807616
    Exact nonlinear
    combination
    (can explain F2)
    Exact nonlinear
    combination
    (cannot explain F1)

    View Slide

  20. Conclusion: Major Flaws w/ ‘Extreme sdB Planets’
    •  At.least.four.sdBVs.in.Kepler.show.significant.5*9.hr.variability&
    •  Major.complications.to.these.being.reflections.off.close*in.planets:&
    –  Signals.are.unstable5in5frequency(
    –  Signals.are.unstable5in5amplitude(
    –  Some.signals.are.in.impossible5planetary5configurations(
    (
    •  A.connection5with5pulsations5is.the.most.plausible.explanation,.
    but.several.interesting.questions.remain&

    View Slide