Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rails × パターン / Rails meets Patterns
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Junichi Kobayashi
December 08, 2018
Technology
3
2.6k
Rails × パターン / Rails meets Patterns
Junichi Kobayashi
December 08, 2018
Tweet
Share
More Decks by Junichi Kobayashi
See All by Junichi Kobayashi
rage against annotate_predecessor
junk0612
0
210
The Implementations of Advanced LR Parser Algorithm
junk0612
3
2.4k
「今のプロジェクトいろいろ大変なんですよ、app/services とかもあって……」/After Kaigi on Rails 2024 LT Night
junk0612
6
2.8k
LR で JSON パーサーを作る / Coding LR JSON Parser
junk0612
2
1.7k
「ナントカLR」を整理する / Clarifying LR Algorithms
junk0612
1
640
From LALR to IELR: A Lrama's Next Step
junk0612
2
4.7k
RubyConf Taiwan / Understanding Parser Generators surrounding Ruby with Contributing Lrama
junk0612
2
7k
LL法とLR法の違いは?調べてみた!-完全版-/Comparing LL and LR parse algorithm -EX Edition-
junk0612
0
1.5k
ESM Super LT/Comparing LL and LR parse algorithm
junk0612
1
210
Other Decks in Technology
See All in Technology
DEVCON 14 Report at AAMSX RU65: V9968, MSX0tab5, MSXDIY etc
mcd500
0
230
BiDiってなんだ?
tomorrowkey
2
500
Zephyr RTOS の発表をOpen Source Summit Japan 2025で行った件
iotengineer22
0
280
メルカリのAI活用を支えるAIセキュリティ
s3h
7
5k
[Iceberg Meetup #4] ゼロからはじめる: Apache Icebergとはなにか? / Apache Iceberg for Beginners
databricksjapan
0
510
Azure SQL Databaseでベクター検索を活用しよう
nakasho
0
120
人はいかにして 確率的な挙動を 受け入れていくのか
vaaaaanquish
4
3k
持続可能な開発のためのミニマリズム
sansantech
PRO
4
590
3分でわかる!新機能 AWS Transform custom
sato4mi
1
250
AI時代、1年目エンジニアの悩み
jin4
0
110
最速で価値を出すための プロダクトエンジニアのツッコミ術
kaacun
1
320
Azure SRE Agent x PagerDutyによる近未来インシデント対応への期待 / The Future of Incident Response: Azure SRE Agent x PagerDuty
aeonpeople
0
220
Featured
See All Featured
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
130
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
A better future with KSS
kneath
240
18k
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
Context Engineering - Making Every Token Count
addyosmani
9
630
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
130
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
86
Site-Speed That Sticks
csswizardry
13
1k
Agile that works and the tools we love
rasmusluckow
331
21k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
420
RailsConf 2023
tenderlove
30
1.3k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
150
Transcript
3BJMTʷύλʔϯ גࣜձࣾӬγεςϜϚωδϝϯτΞδϟΠϧࣄۀ෦ খྛ७Ұ !KVOL 3BJMT%FWFMPQFST.FFUVQ%BZ/PVWFMMF7BHVF גࣜձࣾυϦίϜ༷ 4BU
খྛ७Ұ !KVOL
ࣗݾհ • !KVOL • גࣜձࣾӬγεςϜϚωδϝϯτ • ԻήʔϚʔɺϘʔυήʔϚʔ
• ʰ,BUBͷ࡞ΓํʱCZ!DPMPSCPY • ϥϯνεϙϯαʔ ‣ -JOLVQͷ͝հ • ʰχϟʔ2-ษڧձʱCZ!LFOqBO એ
None
None
͋Γ͕ͱ͏͍͟͝·͢
ͷഎܠ • ϏδωεྖҬλʔήοτ͕ҟͳΔ༷ʑͳ ϓϩδΣΫτ • ڞ௨ͯ͠ݟ͔ͭΔύλʔϯ͕͋Δ
3BJMTʷύλʔϯ • 3BJMTϓϩδΣΫτͰΑ͘ΘΕ͍ͯΔ ઃܭɾ࣮ͷύλʔϯͷ • ର ‣ αʔϏεاۀʹۈ͍ͯ͠Δ एखͷํ ‣
ύλʔϯʹҰՈݴ͋Δ ϕςϥϯͷํ
ύλʔϯ ύλϯ • ʮ͋Δঢ়گʹ͓͍ͯ͋ΔΛղܾ͍ͨ͠ ͱ͖ʹΑ͘ΘΕΔखஈͷҰͭʯ • ιϑτΣΞͷจ຺ʹݶΒΕͳ͍ DGύλϯɾϥϯήʔδ •
ιϑτΣΞք۾ͰʮσβΠϯύλʔϯʯ ͕༗໊
୯Ұςʔϒϧܧঝ • ग़యʰΤϯλʔϓϥΠζΞϓϦέʔγϣ ϯΞʔΩςΫνϟύλʔϯʱ • త03Ϛοϐϯάʹ͓͍ͯΫϥεܧঝ Λσʔλϕʔε্Ͱදݱ͍ͨ͠ • എܠϞσϧؒʹܧঝ͕ؔ͋Γɺؔ࿈͢ ΔϞσϧ͔Βಁաతʹѻ͍͍ͨ
୯Ұςʔϒϧܧঝ
୯Ұςʔϒϧܧঝ • ࣮ͭͷςʔϒϧʹΫϥεΛද͢ ΧϥϜΛ࡞Δ • 3BJMTͰͷ࣮Ϋϥεͷςʔϒϧʹ UZQFΧϥϜΛՃ͢Δ
୯Ұςʔϒϧܧঝ • ར ‣ αϒΫϥεͷՃʹରͯ͠ॊೈʹରԠͰ͖Δ ‣ 3BJMTͷωΠςΟϒαϙʔτ͕͋Δ • ܽ ‣
ςʔϒϧ͕େ͖͘ͳΓ͍͢ ॎʹԣʹ ‣ αϒΫϥεͷΧϥϜʹରͯ͠/05/6-- Λ͔͚ΒΕͳ͍ • ؔ࿈Ϋϥεςʔϒϧܧঝ۩Ϋϥεܧঝ
ϑΥʔϜΦϒδΣΫτ • ग़యෆ໌ • తෳͷϞσϧʹ·͕ͨΔॲཧ ॲཧʹಛ༗ͷόϦσʔγϣϯͳͲΛ͍ͨ͠ • എܠϑΝοτίϯτϩʔϥΛආ͚ͯ Ϟσϧʹॻ͍͍ͯ͘ͱɺϞσϧ͕ͲΜͲΜ ංେԽͯ͠͠·͏
ϑΥʔϜΦϒδΣΫτ • ࣮Ұ࿈ͷखଓ͖ΛΦϒδΣΫτʹ ·ͱΊΔ • 3BJMTͰͷ࣮ "DUJWF.PEFM.PEFMΛ͏ͱ όϦσʔγϣϯΛ"3ͱಉ͡ཁྖͰ ॻ͚ͯศར
ϑΥʔϜΦϒδΣΫτ • ར ‣ ॲཧͷهड़͕Օॴʹ·ͱ·ΓɺϞσϧʹ ίϯτϩʔϥʹෛ୲Λ͔͚ͳ͍ ‣ ॲཧಛ༗ͷόϦσʔγϣϯΛॻ͚Δ • ܽ
‣ ํΛߟ࣮͑ͯ͠ͳ͍ͱɺ͋ͬͱ͍͏ؒʹ BQQGPSNTԼ͕ΧΦεԽ͢Δ
צఆ • ग़యʰΞφϦγεύλʔϯʱ • తܾࡁγεςϜͳͲͰ͓ۚͷग़ೖΓΛ ཧ͍ͨ͠ • എܠ͓ۚΛऔΓѻ͏γεςϜͳͷͰɺ ॲཧΛݫີʹߦ͍ͭͭཤྺΛ͍ͨ͠
צఆ
צఆ • ࣮֤औҾΛ·ͱΊΔϞσϧͱऔҾͷ ֤߲Λ࣋ͭϞσϧΛ࡞Δ • 3BJMTͰͷ࣮߲ͷ߹ܭ͕ʹͳΔ ͜ͱ"3ͷόϦσʔγϣϯͰ ࣮Ͱ͖Δ
צఆ • ར ‣ ͓ۚͷग़͠ೖΕΛձܭతʹද͢͜ͱ͕Ͱ͖Δ ‣ ʮϞϊͷग़͠ೖΕʯΛ͍ͬͯΔͷͰ ࡏݿཧͳͲʹԠ༻͕Ͱ͖Δ • ܽ
‣ ձܭͷ͕ࣝඞཁ ‣ ʮΓ͗͢ʯʹҙ
0OFNPSFUIJOH
ύλʔϯதಟ • ৽͍͜͠ͱΛֶͿͱɺͦΕ͕ԿͰ ղܾͰ͖ΔΑ͏ʹݟ͑ͯ͘Δ • ඞཁͳഎܠٞΛҰແࢹ͠ɺ ղܾͰ͖Δ͔Βͱಋೖͯ͠ɺ ͋ͱͰਏ͍͜ͱʹͳΔ
ύλʔϯதಟ • ʮࣗͷͬͨؒҧ͍͔ΒֶͼɺೋͱͦΕΛ܁ Γฦͨ͘͠ͳ͍͔ΒɺγεςϜͷ࠷ॳ͔ΒϑϨΩ γϒϧͰؤڧͳઃܭͱͳΔΑ͏ɺΒେมͳ࿑ ྗΛ͗ࠐΉɻ೦ͳ͜ͱʹɺγεςϜ͕ͦͷϨ ϕϧͷϑϨΩγϏϦςΟͱؤ݈͞Λඞཁͱ͠ͳ͍ ͳΒɺͦͷ࡞ۀແҙຯͳফͱͳΔ͜ͱʹɺ Βؾ͍͍ͮͯͳ͍ʯ ‣
ʰΤΫετϦʔϜɾϓϩάϥϛϯάݕূฤʱ ୈষύλʔϯͱ91