Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
主成分分析(PCA)の仕組み
Search
K_DM
January 15, 2022
Education
0
180
主成分分析(PCA)の仕組み
K_DM
January 15, 2022
Tweet
Share
More Decks by K_DM
See All by K_DM
X-meansの仕組み
k_study
0
1.7k
勾配ブースティングの仕組み
k_study
0
86
k-meansクラスタリングの仕組み
k_study
0
220
決定木を使った回帰の仕組み
k_study
0
210
アンサンブル学習① ランダムフォレストの仕組み
k_study
0
89
決定木に含まれるパラメタによる事前剪定と事後剪定
k_study
0
600
線形回帰② 正則化と過学習
k_study
0
490
外れ値とHuber(フーバー)損失
k_study
0
1k
木構造1~決定木の仕組み(分類)
k_study
0
150
Other Decks in Education
See All in Education
技術文章を書くための執筆技術と実践法(パラグラフライティング)
hisashiishihara
18
6.5k
OpenSourceSummitJapanを運営してみた話
kujiraitakahiro
0
720
2025.05.10 技術書とVoicyとわたし #RPALT
kaitou
1
230
Case Studies and Course Review - Lecture 12 - Information Visualisation (4019538FNR)
signer
PRO
1
2k
マネジメント「される側」 こそ覚悟を決めろ
nao_randd
10
5.4k
登壇未経験者のための登壇戦略~LTは設計が9割!!!~
masakiokuda
3
550
ANS-C01_2回不合格から合格までの道程
amarelo_n24
1
260
バックオフィス組織にも「チームトポロジー」の考えが使えるかもしれない!!
masakiokuda
0
110
America and the World
oripsolob
0
510
2025年度春学期 統計学 第2回 統計資料の収集と読み方(講義前配付用) (2025. 4. 17)
akiraasano
PRO
0
150
Common STIs in London: Symptoms, Risks & Prevention
medicaldental
0
130
アウトプット0のエンジニアが半年でアウトプットしまくった話 With JAWS-UG
masakiokuda
2
320
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
7
510
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
A Tale of Four Properties
chriscoyier
160
23k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Statistics for Hackers
jakevdp
799
220k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.7k
Agile that works and the tools we love
rasmusluckow
329
21k
Transcript
次元削減1 次元削減1 主成分分析 主成分分析 作成者:K (リンク)
『次元削減』で説明する項目 PCA・ICA・CCA など
今回の内容 •「教師なし学習」のおさらい •「次元削減」とは •主成分分析 •アルゴリズム •実験 •まとめ PCA(主成分分析)について説明します
教師なし学習 教師データ無しでデータの中の構造を見つける データ は与えられている が、正解データ は無い =教師なし学習 X y ڭࢣͳֶ͠शʢ͖ΐ͏͠ͳ͕͘͠͠Ύ͏,
ӳ: Unsupervised Learningʣͱɺػցֶशͷख๏ͷҰ ͭͰ͋Δɻʮग़ྗ͖͢ͷʯ͕͋Β͔͡Ίܾ·͍ͬͯͳ͍ͱ͍͏Ͱڭࢣ͋Γֶशͱେ͖͘ҟ ͳΔɻσʔλͷഎޙʹଘࡏ͢Δຊ࣭తͳߏΛநग़͢ΔͨΊʹ༻͍ΒΕΔɻ ग़యɿhttps://ja.wikipedia.org/wiki/ڭࢣͳֶ͠श
次元削減とは たくさんある特徴をより少ない数値で表現する 例:ボディマス指数 BMI = 体重[kg] / (身長[m]) × (身長[m])
→体重と身長というデータをBMIと呼ばれる一つの数値で表している
次元削減とは たくさんある特徴をより少ない数値で表現する 例:ボディマス指数 BMI = 体重[kg] / (身長[m]) × (身長[m])
→体重と身長というデータをBMIと呼ばれる一つの数値で表している 手元にあるデータに対して、いい感じに次元削減して データを表現する方法はないだろうか? ㅟ ㅟ ㅟ ㅟ
PCA(主成分分析) データのばらつきを表現できる軸を見つける手法 ओੳʢ͠Ύ͍ͤͿΜͿΜ͖ͤɺӳ: principal component analysis; PCAʣɺ૬ؔͷ͋Δଟ ͷม͔Β૬ؔͷͳ͍গͰશମͷΒ͖ͭΛ࠷Α͘ද͢ओͱݺΕΔมΛ߹͢Δଟม ྔղੳͷҰख๏ɻ ग़యɿhttps://ja.wikipedia.org/wiki/ओੳ
✕✕ ✕ ✕ ✕ ✕ ✕ 第一主成分
PCA(主成分分析) 二次元の座標のデータを一次元で表現してみる
PCA(主成分分析) 二次元の座標のデータを一次元で表現してみる ✕✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕
PCA(主成分分析) 二次元の座標のデータを一次元で表現してみる ✕✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ 分散が少ない = 情報の損失が多い 分散が大きい = 情報が残っている データを射影した時に分散が最大になるような軸を探せばいい
実際に分散が最大になるような軸を見つけてみる 3つのデータをまとめた行列 X = x1,1 x1,2 x2,1 x2,2 x3,1 x3,2
実際に分散が最大になるような軸を見つけてみる ✕ ✕ ✕ ✕ ✕ ✕ e e x1
x2 x3 x3 ·e 分散が最大 → が最大 → が最大 → が最大 → が最大となる を見つければ良い (x1 ·e)2 + (x2 ·e)2 + (x3 ·e)2 (Xe)T(Xe) eT(XTX)e/3 eTΣe e
実際に分散が最大になるような軸を見つけてみる ✕ ✕ ✕ e x3 ·e 分散が最大 → が最大
→ が最大 → が最大 → が最大となる を見つければ良い (x1 ·e)2 + (x2 ·e)2 + (x3 ·e)2 (Xe)T(Xe) eT(XTX)/3 eTΣe e の直線であり という制約をつける ↓ 「制約がある中で分散の式を最大にする」 という問題になる。 ↓ ラグランジュの未定乗数法で解ける! e = αx + βy α2 + β2 = 1
ラグランジュの未定乗数法を適用する L(ex , ey , λ) = eTΣe − λ(α2
+ β2 − 1) ∂L(ex , ey , λ) ∂α = (1 0) Σ ( α β) + (α β) ΣT ( 1 0) − 2λα = 0 ∂L(ex , ey , λ) ∂β = (0 1) Σ ( α β) + (α β) ΣT ( 0 1) − 2λβ = 0 Σ ( α β) = λ ( α β) となるような が求まれば、 分散を最大にする軸 が求まる! α, β e
ラグランジュの未定乗数法を適用する Σ ( α β) = λ ( α β)
となるような が求まれば、 分散を最大にする軸 が求まる! α, β e 分散が最大になるような軸を見つけたいならば、 の最大固有値の固有ベクトルを求めればよい Σ ※ は分散共分散行列と呼ばれる行列 Σ = (XTX)/3 分散が最大 → が最大 → が最大 → が最大 → が最大となる を見つければ良い (x1 ·e)2 + (x2 ·e)2 + (x3 ·e)2 (Xe)T(Xe) eT(XTX)/3 eTΣe e 上の式を に代入すると となることがわかる eTΣe eTΣe = λ
PCA(主成分分析) データのばらつきを表現できる軸を見つける手法 ✕✕ ✕ ✕ ✕ ✕ ✕ 第一主成分 •第一主成分を求めるには、分散共分散行列の最大固有値の固有ベクトルを求める
•データ前処理がこの計算に影響を与えるかどうか意識する必要がある
実験!
3次元のデータを二次元にして 散布図で可視化します https://k-datamining.github.io/dm-book/data-analysis/materials/dimensionality_reduction/PCA.html
まとめ 主成分分析について説明しました •主成分分析(PCA)とは、次元削減をする教師なし学習手法のひとつ •主に高次元のデータを可視化する時に使うことができる •分散が最大になる方向が最も情報の損失が少ない方向 •分散共分散行列の固有ベクトルを求めることで、主成分方向が求まる •PCAで次元削減して可視化をする時は、データ前処理がPCAの計算にどのような影響 を与えるか考える
参考文献 •鈴木大慈, データ解析 第七回「主成分分析」http://ibis.t.u-tokyo.ac.jp/suzuki/ lecture/2015/dataanalysis/L7.pdf •sklearn.decomposition.PCA — scikit-learn 1.0.2 documentation