Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AOJ 0112 A Milk Shop 解説
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
kagamiz
March 28, 2013
Programming
0
470
AOJ 0112 A Milk Shop 解説
OkNCT-ICT 2013 春合宿 Day 4 (らしい) に解説したもの.
kagamiz
March 28, 2013
Tweet
Share
More Decks by kagamiz
See All by kagamiz
KCS v2. の開発
kagamiz
0
280
internship final presentation
kagamiz
0
1.3k
internship-middle term presentation
kagamiz
0
1.1k
すうがくのまほう
kagamiz
0
360
ご当地料理の紹介
kagamiz
0
470
オンラインジャッジシステムの実装
kagamiz
0
1.2k
AOJ 0022 Maximum Sum Sequence 解説
kagamiz
1
1.6k
AOJ 0557 A First Grader 解説
kagamiz
0
990
JOI2013 本選1 Illumination 解説
kagamiz
0
380
Other Decks in Programming
See All in Programming
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
190
FOSDEM 2026: STUNMESH-go: Building P2P WireGuard Mesh Without Self-Hosted Infrastructure
tjjh89017
0
140
Patterns of Patterns
denyspoltorak
0
1.3k
dchart: charts from deck markup
ajstarks
3
990
高速開発のためのコード整理術
sutetotanuki
1
380
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
190
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
640
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
560
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
510
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
130
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.5k
CSC307 Lecture 07
javiergs
PRO
0
550
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
340
58k
Facilitating Awesome Meetings
lara
57
6.7k
Skip the Path - Find Your Career Trail
mkilby
0
52
Site-Speed That Sticks
csswizardry
13
1.1k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Statistics for Hackers
jakevdp
799
230k
Prompt Engineering for Job Search
mfonobong
0
160
A Tale of Four Properties
chriscoyier
162
24k
Odyssey Design
rkendrick25
PRO
1
490
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Fireside Chat
paigeccino
41
3.8k
Transcript
AOJ 0112 A Milk Shop 解説 @kagamiz
問題の概要 • n 人のお客さんがいます. • i 番目の人がミルクを入れるのにはai 分の時間がかかりま す. •
1 度に1 人の人がミルクを入れられるとき, 待ち時間の合計 を最小化してください.
問題文の復習 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2 分 0 分 客2
6 分 2 分 客3 4 分 2 分 + 6 分 客4 3 分 2 分 + 6 分 + 4 分 客5 9 分 2 分 + 6 分 + 4 分 + 3 分 合計 37 分
問題文の復習 • 2 番目の人と3 番目の人を入れ替えてみる 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2
分 0 分 客2 6 分 2 分 客3 3 分 2 分 + 6 分 客4 4 分 2 分 + 6 分 + 3 分 客5 9 分 2 分 + 6 分 + 3 分 + 4 分 合計 35 分
問題文の復習 • 昇順にすると爆速になりそう 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2 分 0
分 客2 3 分 2 分 客3 4 分 2 分 + 3 分 客4 6 分 2 分 + 3 分 + 4 分 客5 9 分 2 分 + 3 分 + 4 分 + 6 分 合計 31 分
( ^o^) 昇順にすると爆速になりそう
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう)
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三 • ( ) ◠‿◠ ☛Wrong Answer
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三 • ( ) ◠‿◠ ☛Wrong Answer • ▂▅▇█▓▒░(’ω’) █▇▅▂ ░▒▓ うわあああああああ
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三 • ( ) ◠‿◠ ☛Wrong Answer • ▂▅▇█▓▒░(’ω’) █▇▅▂ ░▒▓ うわあああああああ • 最悪のケースを考えてみよう
最悪のケース • 10000 人のお客さんがそれぞれ60 分ずつ待つときが最悪 の待ち時間になる. • その時にかかる待ち時間の合計は, n 番目の人は(n
– 1) * 60 分待たないといけないので, Σ[i = 1, 10000] (i – 1) * 60 = 2999700000 分 となる. • しかしint 型で表せる数の最大値は2147483647 なので, int 型で総和を求めるとWrong Answer となる. => 直すとAC
やっぱり昇順でいれるのが最適? • “しかしint 型で表せる数の最大値は2147483647 なので, int 型で総和を求めるとWrong Answer となる.=>直すと AC”
• こういう風に, 貪欲的に「その場での最善」を選択してい くことを繰り返すアルゴリズムを貪欲法という. • ここでは, なぜ貪欲法でうまくいくかを簡単に証明.
問題文の復習[再掲] • 昇順にすると爆速になりそう 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2 分 0
分 客2 3 分 2 分 客3 4 分 2 分 + 3 分 客4 6 分 2 分 + 3 分 + 4 分 客5 9 分 2 分 + 3 分 + 4 分 + 6 分 合計 31 分
問題の言い換え • i 番目の人は, 待ち時間に(n – i) 回作用する. • つまり,
n 次元ベクトル a = (a1, a2, …, an), b = (n – 1, n – 2, …, 1, 0) としたとき, それぞれの成分を入れ替えて内積a ・ b を最小化する問題 となる.
問題の言い換え • a の各成分を昇順に入れ替えたベクトルをa', b は成分が 降順にならんだベクトルとすると, 次の並べ替え不等式が 成立する. a'・
b ≦ a ・ b (≦ a'' ・ b) • ここで, a'' は a の各成分を降順に並び替えたベクトル.
証明の概略 • a とb の各成分の個数が2 個だとする. • このとき, a1 ≦
a2, b1 ≦ b2 とすると • a1 b1 + a2b2 – (a1b2 + a2b1) = (a1 – a2)(b1 – b2)≧0 ∴a1b1 + a2b2 ≧ a1b2 + a2b1 • 各成分がn 個ある時も, ベクトルの2 つの成分に注目して同じ事 を行えば良い.