Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AOJ 0112 A Milk Shop 解説
Search
kagamiz
March 28, 2013
Programming
0
470
AOJ 0112 A Milk Shop 解説
OkNCT-ICT 2013 春合宿 Day 4 (らしい) に解説したもの.
kagamiz
March 28, 2013
Tweet
Share
More Decks by kagamiz
See All by kagamiz
KCS v2. の開発
kagamiz
0
270
internship final presentation
kagamiz
0
1.3k
internship-middle term presentation
kagamiz
0
1.1k
すうがくのまほう
kagamiz
0
360
ご当地料理の紹介
kagamiz
0
460
オンラインジャッジシステムの実装
kagamiz
0
1.2k
AOJ 0022 Maximum Sum Sequence 解説
kagamiz
1
1.6k
AOJ 0557 A First Grader 解説
kagamiz
0
990
JOI2013 本選1 Illumination 解説
kagamiz
0
370
Other Decks in Programming
See All in Programming
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
400
チームをチームにするEM
hitode909
0
310
AIコーディングエージェント(Gemini)
kondai24
0
210
TypeScript 5.9 で使えるようになった import defer でパフォーマンス最適化を実現する
bicstone
1
1.3k
S3 VectorsとStrands Agentsを利用したAgentic RAGシステムの構築
tosuri13
6
300
認証・認可の基本を学ぼう前編
kouyuume
0
190
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
440
大体よく分かるscala.collection.immutable.HashMap ~ Compressed Hash-Array Mapped Prefix-tree (CHAMP) ~
matsu_chara
1
220
ローターアクトEクラブ アメリカンナイト:川端 柚菜 氏(Japan O.K. ローターアクトEクラブ 会長):2720 Japan O.K. ロータリーEクラブ2025年12月1日卓話
2720japanoke
0
730
UIデザインに役立つ 2025年の最新CSS / The Latest CSS for UI Design 2025
clockmaker
18
7.3k
WebRTC と Rust と8K 60fps
tnoho
2
2k
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
200
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Six Lessons from altMBA
skipperchong
29
4.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Bash Introduction
62gerente
615
210k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Transcript
AOJ 0112 A Milk Shop 解説 @kagamiz
問題の概要 • n 人のお客さんがいます. • i 番目の人がミルクを入れるのにはai 分の時間がかかりま す. •
1 度に1 人の人がミルクを入れられるとき, 待ち時間の合計 を最小化してください.
問題文の復習 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2 分 0 分 客2
6 分 2 分 客3 4 分 2 分 + 6 分 客4 3 分 2 分 + 6 分 + 4 分 客5 9 分 2 分 + 6 分 + 4 分 + 3 分 合計 37 分
問題文の復習 • 2 番目の人と3 番目の人を入れ替えてみる 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2
分 0 分 客2 6 分 2 分 客3 3 分 2 分 + 6 分 客4 4 分 2 分 + 6 分 + 3 分 客5 9 分 2 分 + 6 分 + 3 分 + 4 分 合計 35 分
問題文の復習 • 昇順にすると爆速になりそう 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2 分 0
分 客2 3 分 2 分 客3 4 分 2 分 + 3 分 客4 6 分 2 分 + 3 分 + 4 分 客5 9 分 2 分 + 3 分 + 4 分 + 6 分 合計 31 分
( ^o^) 昇順にすると爆速になりそう
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう)
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三 • ( ) ◠‿◠ ☛Wrong Answer
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三 • ( ) ◠‿◠ ☛Wrong Answer • ▂▅▇█▓▒░(’ω’) █▇▅▂ ░▒▓ うわあああああああ
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三 • ( ) ◠‿◠ ☛Wrong Answer • ▂▅▇█▓▒░(’ω’) █▇▅▂ ░▒▓ うわあああああああ • 最悪のケースを考えてみよう
最悪のケース • 10000 人のお客さんがそれぞれ60 分ずつ待つときが最悪 の待ち時間になる. • その時にかかる待ち時間の合計は, n 番目の人は(n
– 1) * 60 分待たないといけないので, Σ[i = 1, 10000] (i – 1) * 60 = 2999700000 分 となる. • しかしint 型で表せる数の最大値は2147483647 なので, int 型で総和を求めるとWrong Answer となる. => 直すとAC
やっぱり昇順でいれるのが最適? • “しかしint 型で表せる数の最大値は2147483647 なので, int 型で総和を求めるとWrong Answer となる.=>直すと AC”
• こういう風に, 貪欲的に「その場での最善」を選択してい くことを繰り返すアルゴリズムを貪欲法という. • ここでは, なぜ貪欲法でうまくいくかを簡単に証明.
問題文の復習[再掲] • 昇順にすると爆速になりそう 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2 分 0
分 客2 3 分 2 分 客3 4 分 2 分 + 3 分 客4 6 分 2 分 + 3 分 + 4 分 客5 9 分 2 分 + 3 分 + 4 分 + 6 分 合計 31 分
問題の言い換え • i 番目の人は, 待ち時間に(n – i) 回作用する. • つまり,
n 次元ベクトル a = (a1, a2, …, an), b = (n – 1, n – 2, …, 1, 0) としたとき, それぞれの成分を入れ替えて内積a ・ b を最小化する問題 となる.
問題の言い換え • a の各成分を昇順に入れ替えたベクトルをa', b は成分が 降順にならんだベクトルとすると, 次の並べ替え不等式が 成立する. a'・
b ≦ a ・ b (≦ a'' ・ b) • ここで, a'' は a の各成分を降順に並び替えたベクトル.
証明の概略 • a とb の各成分の個数が2 個だとする. • このとき, a1 ≦
a2, b1 ≦ b2 とすると • a1 b1 + a2b2 – (a1b2 + a2b1) = (a1 – a2)(b1 – b2)≧0 ∴a1b1 + a2b2 ≧ a1b2 + a2b1 • 各成分がn 個ある時も, ベクトルの2 つの成分に注目して同じ事 を行えば良い.