$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
不偏推定量とJackknife法 / Jackknife
Search
kaityo256
PRO
March 18, 2021
Education
38
4.4k
不偏推定量とJackknife法 / Jackknife
いわゆる1/NバイアスとJackknifeリサンプリングについての解説
kaityo256
PRO
March 18, 2021
Tweet
Share
More Decks by kaityo256
See All by kaityo256
卒論の書き方 / Happy Writing
kaityo256
PRO
50
26k
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
11
6.5k
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
10
1.6k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
9
3.6k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
7
690
論文紹介のやり方 / How to review
kaityo256
PRO
17
88k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
17
1.8k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
8
670
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
16
5.5k
Other Decks in Education
See All in Education
自分だけの、誰も想像できないキャリアの育て方 〜偶然から始めるキャリアプラン〜 / Career planning starting by luckly v2
vtryo
1
310
授業レポート:共感と協調のリーダーシップ(2025年上期)
jibunal
1
170
あなたの言葉に力を与える、演繹的なアプローチ
logica0419
1
240
Web Application Frameworks - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.4k
Semantic Web and Web 3.0 - Lecture 9 - Web Technologies (1019888BNR)
signer
PRO
2
3.1k
ROSConJP 2025 発表スライド
f0reacharr
0
270
Ch1_-_Partie_1.pdf
bernhardsvt
0
470
とある長岡高専卒のおっさんがIT企業のマネージャーになるまで / journey-from-nagaoka-kosen-grad-to-it-manager
masaru_b_cl
0
170
1202
cbtlibrary
0
140
仏教の源流からの奈良県中南和_奈良まほろば館‗飛鳥・藤原DAO/asuka-fujiwara_Saraswati
tkimura12
0
160
焦りと不安を、技術力に変える方法 - 新卒iOSエンジニアの失敗談と成長のフレームワーク
hypebeans
1
600
Featured
See All Featured
Side Projects
sachag
455
43k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Building an army of robots
kneath
306
46k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Code Reviewing Like a Champion
maltzj
527
40k
Transcript
1 不偏推定量とJackknife法 慶應義塾大学理工学部物理情報工学科 渡辺 2021/03/18
2 確率変数 𝑋 確率密度 𝑓(𝑥) 𝑃 𝑥 ≤
𝑋 < 𝑥 + 𝑑𝑥 = 𝑓 𝑥 𝑑𝑥 母集団の期待値 μ = 𝑥𝑓 𝑥 𝑑𝑥 一次のモーメント この確率変数の期待値(平均値)μの関数g(μ) をサンプリングにより推定したい 母集団の分散 𝜎2 = (𝑥 − 𝜇)2𝑓 𝑥 𝑑𝑥 二次
3 N回のサンプリングデータ 𝑋1 , 𝑋2 , ⋯ ,
𝑋𝑁 期待値の推定値(推定量) 1 𝑁 σ 𝑖 𝑋𝑖 推定量の期待値 「期待値の推定量」は確率変数となる N回のサンプリングを何度も繰り返し、推定量の期待値を得る 1 𝑁 σ𝑖 𝑋𝑖 = 𝜇 母集団の期待値 (推定したい値) 標本からサンプリングして得られた推定量の期待値が 母集団の期待値に等しい場合、その推定量を不偏推定量と呼ぶ ※ サンプリングで分散を計算する時Nで割ると不偏推定量にならないのでN-1で割る
4 N回測定して得られた期待値の推定量 「期待値の関数」の値を推定したい 𝑦 = 𝑔(𝜇) 𝜇𝑁 = 1 𝑁
𝑖 𝑋𝑖 これをそのまま関数に入れて期待値をとっても 不偏推定量にならない 𝑦 = 𝑔 𝜇 ≠ 𝑔(𝜇𝑁 )
5 一般に確率変数 𝑋 について 𝑔( 𝑋) ≠ 𝑔
𝑋 と 𝑔( 𝑋) 関数の期待値 期待値の関数𝑔 𝑋 は 一致しないから ※期待値をとってから関数にいれるか、関数に入れてから期待値を取るかの違い
6 μ g(x)を上に凸な関数とし、x=μで接線をひく 𝑦 = 𝑎 𝑥 − 𝜇 +
𝑔(𝜇) 𝑦 = 𝑔(𝑥) ※ Thanks to @genkuroki 上図より明らかに 𝑔 𝑥 ≤ 𝑎 𝑥 − 𝜇 + 𝑔(𝜇) 両辺の期待値を取れば 𝑔 𝑥 ≤ 𝑔 𝜇 = 𝑔( 𝑥 ) 下に凸の場合は符号が逆に
7 𝜀 = 𝜇𝑁 − 𝜇 𝜇𝑁 = 1 𝑁
𝑖 𝑋𝑖 N回の測定で得られた期待値の推定量 真の期待値とのずれ 𝑔 𝜇𝑁 − 𝑔 𝜇 = 𝑔 𝜇 + 𝜀 − 𝑔 𝜇 = 𝑔′ 𝜇 𝜀 + 1 2 𝑔′′ 𝜇 𝜀2 + 𝑂(𝜀3) 𝑔 𝜇𝑁 − 𝑔 𝜇 = 1 2 𝑔′′ 𝜇 𝜀2 = 𝑔′′(𝜇)𝜎2 2𝑁 真の値 推定値 推定値と真の値のずれの期待値 1/Nバイアス
8 平均0、分散𝜎2のガウス分布に従う確率変数Xを考える 𝑋2 = 𝜎2 𝑋4 = 3𝜎4
2次のモーメント 4次のモーメント 4次と2次のモーメントの比を取ると、分散依存性が消える 𝑋4 𝑋2 2 = 3 尖度(Kurtosis) この量の1/Nバイアスを確認する
9 𝑋2 𝑁 = 1 𝑁 𝑖
𝑋𝑖 2 𝑋4 𝑁 = 1 𝑁 𝑖 𝑋𝑖 4 N個のサンプリング(N回の測定)で得られたデータから 2次と4次のモーメントを推定する 𝑈𝑁 = 𝑋4 𝑁 𝑋2 𝑁 2 得られたモーメントから尖度を計算する 上記を繰り返して𝑈𝑁 の期待値 𝑈𝑁 を計算する
10 𝑈𝑁 1/𝑁 理論値 十分なサンプリング回数にも関わらず、真の値からずれている(バイアス) 推定値
11 それをN個ずつのブロックに分割する 十分な数(無限個でも良い)のデータがある 𝑁 それぞれのブロックの期待値𝜇𝑁 から「期待値の関数」を計算する 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 )
𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) 「期待値の関数」の期待値を計算する 𝑔(𝜇𝑁 ) 𝑔(𝜇𝑁 ) − 𝑔 𝜇 = 𝑂(1/𝑁) バイアスが残る ・・・ ・・・ ・・・
12 不偏推定量ではあるが、ばらつきのせいで真の値 からずれる誤差を統計誤差(標準誤差)と呼ぶ 𝜇𝑁 = 1 𝑁 𝑖
𝑋𝑖 𝜇𝑁 − 𝜇 = 𝑂(1/ 𝑁) 不偏推定量でない推定量の期待値について、真の値 からのずれを系統誤差(バイアス)と呼ぶ。 𝑔(𝜇𝑁 ) − 𝑔 𝜇 = 𝑂(1/𝑁) N回の測定をMセット繰り返す時、Mを増やすと 統計誤差は減らせるが、系統誤差は消えない (間違った値に収束する)
13 期待値の関数の推定には1/Nバイアスが乗る N無限大極限では一致するが、収束が遅い 手持ちのデータから1/Nバイアスを除去したい Jackknifeリサンプリング
14 N個のデータがある 𝑁 全部のデータを使って期待値𝜇𝑁 を計算 それを使って関数の推定値𝑈𝑁 = 𝑔(𝜇𝑁 )を計算 1個のデータを捨てる
𝑁 − 1 残りのデータを使って期待値𝜇𝑁−1 を計算 それを使って関数の推定値𝑈𝑁−1 = 𝑔(𝜇𝑁−1 )を計算
15 𝑈𝑁 は、真の値𝑈∞ に対して1/Nバイアスがあると仮定 𝑈𝑁 = 𝑈∞ + 𝑎/𝑁 一つデータを捨てて得た𝑈𝑁
のバイアスは 𝑈𝑁−1 = 𝑈∞ + 𝑎/(𝑁 − 1) この2式から𝑈∞ を求めると 𝑈∞ = 𝑁𝑈𝑁 − (𝑁 − 1)𝑈𝑁−1 ※ Thanks to smorita and yomichi
16 𝑈𝑁 1/𝑁 𝑁 = ∞ NとN-1から1/N→0外挿を行った
17 1個のデータ除外して計算 せっかくのデータを捨てるのはもったいないので活用する 𝑈𝑁−1 1 𝑈𝑁−1 2 別のデータ除外して計算 ・ ・
・ 𝑈𝑁−1 𝑁 𝑈𝑁−1 = 1 𝑁 𝑖 𝑈𝑁−1 𝑖 精度の高い「N-1個のデータの推定量」 が得られる
18 𝑈𝑁 1/𝑁 理論値 単純な推定値 Jackknifeによるバイアス除去 𝑁𝑈𝑁 − (𝑁 −
1)𝑈𝑁−1 𝑈𝑁
19 母集団の何かを推定する量を推定量(estimator)と呼ぶ 誤差には統計誤差と系統誤差(バイアス)がある その期待値が母集団の期待値に一致する量(バイアス が無い量)を不偏推定量(unbiased estimator)と呼ぶ 期待値の関数の単純な推定は不偏推定量を与えない Jackknife法はリサンプリング法の一種 リサンプリングによりバイアスを除去できる (ことがある)
※もっとまじめにやるならbootstrap法とかを使う