Upgrade to Pro — share decks privately, control downloads, hide ads and more …

NumPyとSciPyの使い方 / Python NumPy

kaityo256
December 06, 2022

NumPyとSciPyの使い方 / Python NumPy

プログラミング基礎同演習

kaityo256

December 06, 2022
Tweet

More Decks by kaityo256

Other Decks in Education

Transcript

  1. 5 31 Linear Algebra PACKage BLASをビルディングブロックとして線形代数の問題を解くパッケージ 連立一次方程式 最小二乗法 固有値問題 特異値問題

    https://www.r-ccs.riken.jp/wp-content/uploads/2019/05/nakata190523.pdf 線形代数演算ライブラリBLAS とLAPACKの基礎と実践 (中田真秀) 𝐴𝑥 = 𝑏 min 𝑏 − 𝐴𝑥 𝐴𝑥 = 𝜆𝑥 𝑋 = 𝑈Σ𝑉† 今回の課題
  2. 9 31 import numpy as np まずNumPyをインポート np.arrayにPythonのリストを渡すとNumPy配列になる data =

    np.array([1,2,3]) data 1 2 3 A Visual Intro to NumPy and Data Representation (https://jalammar.github.io/visual-numpy/) np.array([[1,2],[3,4]]) data 1 2 3 4
  3. 10 31 A Visual Intro to NumPy and Data Representation

    (https://jalammar.github.io/visual-numpy/) np.zeros(3) 0 0 0 0 0 0 0 np.zeros((2,2)) np.ones(3) 1 1 1 1 1 1 1 np.ones((2,2)) np.zerosで要素が全てゼロ、np.onesで要素が全て1の NumPy配列を作ることができる 「形」はタプルで指定
  4. 12 31 NumPy配列は、メモリ上では一次元配列として格納 np.array([[1,2],[3,4]]) data 1 2 3 4 メモリ

    1 2 3 4 data (2,2) NumPy配列の「形」は、shapeで得ることができる data.shape #=> (2,2)
  5. 13 31 a = np.arange(8) 0 1 2 3 4

    5 6 7 b = a.reshape((2,4)) 0 1 2 3 4 5 6 7 c = a.reshape((2,2,2)) 4 5 6 7 0 1 2 3 2 4
  6. 14 31 同じ形(shape)のNumPy配列同士は四則演算ができる 0 1 2 1 1 1 +

    = 1 2 3 0 1 2 3 ※ 演算は要素ごとになることに注意 0 1 2 3 x = 0 1 4 9
  7. 15 31 NumPy配列にスカラー量を演算できる 0 1 2 1 + = 1

    2 3 0 1 2 1 + = 1 1 0 1 2 2 x = 0 2 4 0 1 2 2 x = 2 2
  8. 16 31 from scipy import linalg import numpy as np

    まずはインポートする linalg.eighでエルミート行列の固有値、固有ベクトルを求める a = np.array([[1,2],[2,1]]) w, v = linalg.eigh(a) 1 2 2 1 a w 3 -1 行列 固有値 1 -1 v固有ベクトル (※) 1 1 ※実際には正規化されたベクトルが得られる
  9. 20 31 電子をエネルギー障壁で閉じ込める (井戸型ポテンシャル) 電子の存在確率が 障壁の外に少しだけ染み出す −ℏ2 2𝑚 𝑑2 𝑑𝑥2

    + 𝑉 𝑥 𝜓 𝑥 = 𝐸𝜓(𝑥) 電子の存在確率は以下のシュレーディンガー方程式の解として求まる
  10. 21 31 −ℏ2 2𝑚 𝑑2 𝑑𝑥2 + 𝑉 𝑥 𝜓

    𝑥 = 𝐸𝜓(𝑥) シュレーディンガー方程式 𝜓 𝑥 離散化 𝑣𝑖 連続的な関数 離散的なベクトル
  11. 22 31 𝑑2𝜓 𝑑𝑥2 ∼ 𝑣𝑖+1 −2𝑣𝑖 +𝑣𝑖−1 「微分」は「差分」で近似できる −ℏ2

    2𝑚 𝑑2 𝑑𝑥2 + 𝑉 𝑥 𝜓 𝑥 = 𝐸𝜓(𝑥) 𝐻 Ԧ 𝑣 = 𝜆 Ԧ 𝑣 離散化 シュレーディンガー方程式 行列の固有値問題 固有値: 電子のエネルギー 固有ベクトル:電子の存在確率
  12. 23 31 電子の存在確率が 障壁の外に少し だけ染み出す E 0 -5 閉じ込め効果により 少しエネルギーが

    高くなる 井戸型ポテンシャルに閉じ込められた電子が ・障壁の外に少し染み出すこと ・閉じ込めによりエネルギーが少し高くなること を確認する
  13. 27 31 𝑋 = 𝑈Σ𝑉† x x = 𝑋 𝑈

    𝑉† Σ Σ 特異値(対角行列) Singular Value Decomposition, SVD 𝑈 𝑉† ユニタリ行列(正方行列)
  14. 28 31 x x = 𝑋 𝑈 𝑉† Σ 𝑈

    Σ x Σ𝑉† = こことここだけ使って再構成 ෨ 𝑋 = x 𝑈 Σ Σ𝑉†