Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
計画する技術 / Planning is Skill
Search
Yoshiaki Yoshida
April 14, 2017
Technology
13
9.7k
計画する技術 / Planning is Skill
計画する技術
http://kakakakakku.hatenablog.com/entry/2017/04/14/203459
Yoshiaki Yoshida
April 14, 2017
Tweet
Share
More Decks by Yoshiaki Yoshida
See All by Yoshiaki Yoshida
技術ブロガーを育てる!ブログメンタリングで何を教えているのか / Passion for Blog Mentoring
kakakakakku
8
37k
プログラミング初心者に教えるときは「身近な比喩」が重要なのだ! / Metaphor is Important for Beginner Programmer
kakakakakku
2
5.7k
プロジェクトの成功を支える ZenHub と モブプログラミング / ZenHub and Mob Programming
kakakakakku
1
5.9k
楽しく!アウトプットを習慣化しよう / Let's Enjoy Output
kakakakakku
3
6.9k
さぁ!今すぐプロジェクトリーダーに立候補しよう / Be a Project Leader
kakakakakku
3
9.9k
プロジェクトをリードする技術 (Kyash 社 再演) / Project Leading is Skill for Kyash
kakakakakku
4
2.2k
プロジェクトをリードする技術 / Project Leading is Skill
kakakakakku
45
52k
Mackerel で ECS をどこまでモニタリングできるのか / Monitoring ECS with Mackerel
kakakakakku
0
13k
[2018/01/30] Redash 初心者向けハンズオン / Redash Meetup #0.1
kakakakakku
0
2.5k
Other Decks in Technology
See All in Technology
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
190
障害対応訓練、その前に
coconala_engineer
0
200
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
140
20251219 OpenIDファウンデーション・ジャパン紹介 / OpenID Foundation Japan Intro
oidfj
0
510
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
190
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
110
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
330
Next.js 16の新機能 Cache Components について
sutetotanuki
0
190
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
1.9k
LayerX QA Night#1
koyaman2
0
270
AI with TiDD
shiraji
1
300
"人"が頑張るAI駆動開発
yokomachi
1
620
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1032
470k
Making Projects Easy
brettharned
120
6.5k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
32
The untapped power of vector embeddings
frankvandijk
1
1.5k
New Earth Scene 8
popppiees
0
1.2k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Navigating Team Friction
lara
191
16k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
36
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Why Our Code Smells
bkeepers
PRO
340
57k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5k
Transcript
ܭը͢Δٕज़ !LBLBLBLBLLV ࣾษڧձ
ΞδΣϯμ ‣ લఏ ‣ ͳͥܭը͕ॏཁͳͷ͔ʁ ‣ ܭըΛཱͯͯߦ͢Δͱ͖ʹҙ͍ࣝͯ͠Δ͜ͱ ‣ ·ͱΊ
લఏ
લఏ ‣ ࠓ։ൃϓϩηεʹґଘ͠ͳ͍zҰൠతͳzΛ͢Δ ‣ ͷzܭըzܦݧ ‣ େख֎ࢿܥ4*FSʢ##ʣΥʔλʔϑΥʔϧ ‣ 8FCاۀʢ##ʣΞδϟΠϧ ‣
8FCاۀʢ#$ʣܕͳ͠ ‣ ࠓίί $FSUJpFE4DSVN.BTUFS
ͳͥܭը͕ॏཁͳͷ͔ʁ
lແବzΛແͨ͘͢Ί
lແବzΛແͨ͘͢Ί ‣ ࠓΔ͖͜ͱΛࠓΔ ‣ l༏ઌॱҐzΛ໌֬ʹ͢Δ ‣ λεΫͷґଘؔʢ ΫϦςΟΧϧύεʣΛ໌֬ʹ͢Δ
l৴པߴzΛ૿ͨ͢Ί
l৴པߴzΛ૿ͨ͢Ί ‣ ৴པߴΛ૿ͨ͢ΊʹlଋΛकΔz͜ͱ͕ॏཁ ‣ ৄ͘͠ʮͭͷश׳ʯʹॻ͍ͯ͋Δ ‣ lଋΛकΔzͨΊʹlదͳܭըz͕ඞཁ ‣ ʮ͋ͷਓ͕ݴ͏ͳΒޭͦ͠͏ʯײ͕ॏཁ ‣
ͦͷͨΊʹޭମݧΛੵΈ্͍͛ͯ͘
ଋͨ࣌ؒ͠ʹΕͯ͘Δਓ ‣ ʮͳΒྑ͍Ͱ͠ΐʁʯ ‣ ʮ࣌ؒͳΒྑ͍Ͱ͠ΐʁʯ ‣ ʮిंԆ͔ͩΒ͠ΐ͏͕ͳ͍ΑͶʁʯ ‣ ଓ͘ͱʮͲʔͤࠓΕͯ͘ΔΜͩΖ͏ͳʯͱࢥΘΕͯ͠·͏ ‣
l৴པߴθϩzͳঢ়ଶ
ܭըΛཱͯͯߦ͢Δͱ͖ʹ ҙ͍ࣝͯ͠Δ͜ͱ ʘܭݸʗ
λεΫΛzࡉ͔͘zચ͍ग़͢
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ λεΫͷཻ͕େ͖͗͢Δͱߟྀ࿙Ε͕ൃੜ͘͢͠ͳΔ ‣ ʮਐྑ͍Ͱ͢ʯͱݴΘΕͯ৴ጪੑ͕ΠϚΠν ‣ νέοτࡉ͔͘ચ͍ग़͢͜ͱΛҙࣝ͢Δ ‣ dͰऴΘΔ͙Β͍ͷཻ͕ྑ͍ ‣
lখ͞ͳޭzΛੵΈ্͛Δ ƅЧƅ ʮ͜ͷνέοτෳࡶͳͷͰϲֻ݄͔Γͦ͏Ͱ͢ʯ
lྃͷఆٛzΛܾΊΔ
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ࣮·ͩlগ͠z࡞ۀ͕͋ΔͷʹΫϩʔζͯ͠͠·͏ ‣ ຊʹlগ͠zͳͷʁ ‣ ͦͷ··ޙճ͠ʹͳͬͯlϲ݄ܦաzʁ ‣ Ϋϩʔζ͢ΔlྃͷఆٛzΛܾΊ͓ͯ͘ ƅЧƅ
ʮ΄΅ऴΘͬͨͷͰνέοτΛΫϩʔζ͠·͢ʯ
ઓུతʹzόοϑΝzΛ֬อ͢Δ
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ࠔͳ͜ͱʹlෆ࣮֬ੑz͕͏ ‣ ಛʹେ͖ͳܭըͩͱlෆ࣮֬ੑz͕ݦஶʹͳΔ ‣ εέδϡʔϧʹόοϑΝΛ֬อ͢Δ ‣ طଘػೳʹো͕ى͖ͨͱ͖ʹ͑Δ ‣
lٕज़తෛ࠴zlෆ࣮֬ੑzʹؚ·ΕΔ ƅЧƅ ʮΫϦςΟΧϧͳߟྀ࿙Ε͕͋ΓશମʹӨڹ͠·͢ʯ
ͲͷΑ͏ʹlόοϑΝzΛ֬อ͢Δ͔ ‣ lϑΟϘφονྻzΛϕʔεʹ͢Δ ‣
‣ ʢҙʣ୯ҐEBZͰͳ͍ ‣ lෆ࣮֬ੑzΛߟྀͨ͠όοϑΝΛ֬อͰ͖Δ ‣ lϓϥϯχϯάϙʔΧʔzಉ͡ࢥͰߦ͏
ඞཁͳͷlෆ࣮֬ੑzΛݮΒ͢͜ͱ ‣ ৗʹlόοϑΝz͕ඞཁͰͳ͍ ‣ lෆ࣮֬ੑzΛ࠷ݶʹ͑ͯܭըͰ͖Δ͜ͱlॏཁͳεΩϧz ‣ ϏδωεϩδοΫʹৄ͍͠ ‣ ΞʔΩςΫνϟʹৄ͍͠ ‣
ٕज़ʹৄ͍͠ ‣ γεςϜӡ༻ʹৄ͍͠ ͜ͷΑ͏ͳਓ͕ܭը͢Δͱ lෆ࣮֬ੑzΛ ࠷ݶʹ͑Δ͜ͱ͕Ͱ͖Δ ˣ ͜ͷΑ͏ͳਓΛ૿ͤΔͱ ։ൃ৫ڧ͘ͳΔ
εʔύʔϚϯҭܭը ‣ ʑͷγεςϜ͍߹ΘͤରԠΛϥϯμϜʹৼΔ ‣ ຖճϥϯμϜʗिϩʔςʔγϣϯʗͦͷଞ ‣ ֤ϝϯόʔ͕όϥϯεྑ͘γεςϜશମΛΔػձʹͳΔ ‣ ৬छϩʔςʔγϣϯ ‣
ఆظతʹผͷ৬छΛܦݧ͢Δ ‣ ΞϓϦέʔγϣϯ୲͕ΠϯϑϥΛ୲ͨ͠ΓʢఋࢠೖΓʣ
ܭըΛzఆظతʹzݟ͢
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ͔֬ʹຊؾΛग़͞ͳ͍ͱμ ϝͳ໘͋Δ͚Ͳ ‣ ܭըΛݟ͢͜ͱʹΑͬͯམͪண͘͜ͱଟʑ͋Δ ‣ ܭըΠςϨʔςΟϒͳΠϕϯτͱߟ͑Δ ‣ ܭըʹνΣοΫϙΠϯτΛઃ͚Δ͜ͱޮՌత
ƅЧƅ ʮਐѱ͍ͷͰࠓపͰϦΧόϦ͠·͢ʯ
lฒߦλεΫzΛগͳΊʹ͢Δ
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ฒߦλεΫ͕ଟ͗͢Δͱશͯத్ʹͳͬͯ͠·͏ ‣ ґଘ͍ͯ͠ΔޙଓλεΫશͯࢭ·ͬͯ͠·͏ ‣ l8*1੍ݶzΛઃ͚ͯूத͢Δ ‣ νʔϜݸਓ ƅЧƅ
ʮฒߦͯ͠ਐΊͯΔͨΊશ෦ऴΘ͍ͬͯ·ͤΜʯ IUUQCMPHDSJTQTFIFOSJLLOJCFSH
lѱ͍Βͤz͙͢ʹ͑Δ
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ઌि·Ͱʮ༧ఆ௨ΓͰ͢ʯͬͯݴͬͯͨͷʹಥવʁ ‣ ͬͱલ͔Βݫ͍͠༧ஹͳ͔ͬͨͷʁ ‣ ʮ(JU)VCͷίϝϯτʹॻ͍͓͍ͯͨΜͰ͚͢Ͳʯ ‣ ࠔ͍ͬͯΔ͜ͱ΄Ͳl͙͢ʹzlޱ಄Ͱz͑ΔΑ͏ʹ͢Δ ƅЧƅ
ʮ໌༧ఆͩͬͨϦϦʔεݫͦ͠͏Ͱ͢ʯ
lίϯςΩετΛݶఆͨ͠z.5(
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ͘͠ͳΔͱڞ༗͕ޙճ͠ʹͳͬͯ͠·͏߹͋Δ ‣ ՂڥΛܴ͑ͨΒlؔऀʹߜͬͯzຖͤΔΛઃ͚Δ ‣ ݸਓతʹ༦ձʢ࣌ࠒʹ࠷େؒʣ͕൪ྑ͍ ‣ ༦ձ͕͗͢ΔͱlΜͩ··ա͗ͯ͠·͏z͕͋Δ ƅЧƅ
ʮͦ͠͏͔ͩͬͨΒ͑ΒΕͯ·ͤΜͰͨ͠ʯ
·ͱΊ
ܭըεΩϧΛߴΊΑ͏ ‣ ελʔτΞοϓͰܭըඇৗʹॏཁ ‣ lෆ࣮֬ੑzΛ࠷ݶʹ͑ͯܭըͰ͖Δ͜ͱlॏཁͳεΩϧz ‣ ܭըlΠςϨʔςΟϒͳzΠϕϯτ ‣ ܭըΛߦ͢ΔͨΊʹl৴པzͱlରzඞਢ