Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
計画する技術 / Planning is Skill
Search
Yoshiaki Yoshida
April 14, 2017
Technology
13
9.7k
計画する技術 / Planning is Skill
計画する技術
http://kakakakakku.hatenablog.com/entry/2017/04/14/203459
Yoshiaki Yoshida
April 14, 2017
Tweet
Share
More Decks by Yoshiaki Yoshida
See All by Yoshiaki Yoshida
技術ブロガーを育てる!ブログメンタリングで何を教えているのか / Passion for Blog Mentoring
kakakakakku
8
37k
プログラミング初心者に教えるときは「身近な比喩」が重要なのだ! / Metaphor is Important for Beginner Programmer
kakakakakku
2
5.7k
プロジェクトの成功を支える ZenHub と モブプログラミング / ZenHub and Mob Programming
kakakakakku
1
5.9k
楽しく!アウトプットを習慣化しよう / Let's Enjoy Output
kakakakakku
3
6.9k
さぁ!今すぐプロジェクトリーダーに立候補しよう / Be a Project Leader
kakakakakku
3
9.9k
プロジェクトをリードする技術 (Kyash 社 再演) / Project Leading is Skill for Kyash
kakakakakku
4
2.2k
プロジェクトをリードする技術 / Project Leading is Skill
kakakakakku
45
52k
Mackerel で ECS をどこまでモニタリングできるのか / Monitoring ECS with Mackerel
kakakakakku
0
13k
[2018/01/30] Redash 初心者向けハンズオン / Redash Meetup #0.1
kakakakakku
0
2.5k
Other Decks in Technology
See All in Technology
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
21
8.3k
AI with TiDD
shiraji
1
300
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
1
410
AI との良い付き合い方を僕らは誰も知らない
asei
0
270
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
240
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
3
2.3k
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
270
Building Serverless AI Memory with Mastra × AWS
vvatanabe
0
600
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
520
Introduce marp-ai-slide-generator
itarutomy
0
130
障害対応訓練、その前に
coconala_engineer
0
200
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
230
Featured
See All Featured
The Spectacular Lies of Maps
axbom
PRO
1
400
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
51
46k
Speed Design
sergeychernyshev
33
1.4k
The Cult of Friendly URLs
andyhume
79
6.7k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.4k
Context Engineering - Making Every Token Count
addyosmani
9
560
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
WENDY [Excerpt]
tessaabrams
8
35k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
870
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Marketing to machines
jonoalderson
1
4.4k
Transcript
ܭը͢Δٕज़ !LBLBLBLBLLV ࣾษڧձ
ΞδΣϯμ ‣ લఏ ‣ ͳͥܭը͕ॏཁͳͷ͔ʁ ‣ ܭըΛཱͯͯߦ͢Δͱ͖ʹҙ͍ࣝͯ͠Δ͜ͱ ‣ ·ͱΊ
લఏ
લఏ ‣ ࠓ։ൃϓϩηεʹґଘ͠ͳ͍zҰൠతͳzΛ͢Δ ‣ ͷzܭըzܦݧ ‣ େख֎ࢿܥ4*FSʢ##ʣΥʔλʔϑΥʔϧ ‣ 8FCاۀʢ##ʣΞδϟΠϧ ‣
8FCاۀʢ#$ʣܕͳ͠ ‣ ࠓίί $FSUJpFE4DSVN.BTUFS
ͳͥܭը͕ॏཁͳͷ͔ʁ
lແବzΛແͨ͘͢Ί
lແବzΛແͨ͘͢Ί ‣ ࠓΔ͖͜ͱΛࠓΔ ‣ l༏ઌॱҐzΛ໌֬ʹ͢Δ ‣ λεΫͷґଘؔʢ ΫϦςΟΧϧύεʣΛ໌֬ʹ͢Δ
l৴པߴzΛ૿ͨ͢Ί
l৴པߴzΛ૿ͨ͢Ί ‣ ৴པߴΛ૿ͨ͢ΊʹlଋΛकΔz͜ͱ͕ॏཁ ‣ ৄ͘͠ʮͭͷश׳ʯʹॻ͍ͯ͋Δ ‣ lଋΛकΔzͨΊʹlదͳܭըz͕ඞཁ ‣ ʮ͋ͷਓ͕ݴ͏ͳΒޭͦ͠͏ʯײ͕ॏཁ ‣
ͦͷͨΊʹޭମݧΛੵΈ্͍͛ͯ͘
ଋͨ࣌ؒ͠ʹΕͯ͘Δਓ ‣ ʮͳΒྑ͍Ͱ͠ΐʁʯ ‣ ʮ࣌ؒͳΒྑ͍Ͱ͠ΐʁʯ ‣ ʮిंԆ͔ͩΒ͠ΐ͏͕ͳ͍ΑͶʁʯ ‣ ଓ͘ͱʮͲʔͤࠓΕͯ͘ΔΜͩΖ͏ͳʯͱࢥΘΕͯ͠·͏ ‣
l৴པߴθϩzͳঢ়ଶ
ܭըΛཱͯͯߦ͢Δͱ͖ʹ ҙ͍ࣝͯ͠Δ͜ͱ ʘܭݸʗ
λεΫΛzࡉ͔͘zચ͍ग़͢
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ λεΫͷཻ͕େ͖͗͢Δͱߟྀ࿙Ε͕ൃੜ͘͢͠ͳΔ ‣ ʮਐྑ͍Ͱ͢ʯͱݴΘΕͯ৴ጪੑ͕ΠϚΠν ‣ νέοτࡉ͔͘ચ͍ग़͢͜ͱΛҙࣝ͢Δ ‣ dͰऴΘΔ͙Β͍ͷཻ͕ྑ͍ ‣
lখ͞ͳޭzΛੵΈ্͛Δ ƅЧƅ ʮ͜ͷνέοτෳࡶͳͷͰϲֻ݄͔Γͦ͏Ͱ͢ʯ
lྃͷఆٛzΛܾΊΔ
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ࣮·ͩlগ͠z࡞ۀ͕͋ΔͷʹΫϩʔζͯ͠͠·͏ ‣ ຊʹlগ͠zͳͷʁ ‣ ͦͷ··ޙճ͠ʹͳͬͯlϲ݄ܦաzʁ ‣ Ϋϩʔζ͢ΔlྃͷఆٛzΛܾΊ͓ͯ͘ ƅЧƅ
ʮ΄΅ऴΘͬͨͷͰνέοτΛΫϩʔζ͠·͢ʯ
ઓུతʹzόοϑΝzΛ֬อ͢Δ
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ࠔͳ͜ͱʹlෆ࣮֬ੑz͕͏ ‣ ಛʹେ͖ͳܭըͩͱlෆ࣮֬ੑz͕ݦஶʹͳΔ ‣ εέδϡʔϧʹόοϑΝΛ֬อ͢Δ ‣ طଘػೳʹো͕ى͖ͨͱ͖ʹ͑Δ ‣
lٕज़తෛ࠴zlෆ࣮֬ੑzʹؚ·ΕΔ ƅЧƅ ʮΫϦςΟΧϧͳߟྀ࿙Ε͕͋ΓશମʹӨڹ͠·͢ʯ
ͲͷΑ͏ʹlόοϑΝzΛ֬อ͢Δ͔ ‣ lϑΟϘφονྻzΛϕʔεʹ͢Δ ‣
‣ ʢҙʣ୯ҐEBZͰͳ͍ ‣ lෆ࣮֬ੑzΛߟྀͨ͠όοϑΝΛ֬อͰ͖Δ ‣ lϓϥϯχϯάϙʔΧʔzಉ͡ࢥͰߦ͏
ඞཁͳͷlෆ࣮֬ੑzΛݮΒ͢͜ͱ ‣ ৗʹlόοϑΝz͕ඞཁͰͳ͍ ‣ lෆ࣮֬ੑzΛ࠷ݶʹ͑ͯܭըͰ͖Δ͜ͱlॏཁͳεΩϧz ‣ ϏδωεϩδοΫʹৄ͍͠ ‣ ΞʔΩςΫνϟʹৄ͍͠ ‣
ٕज़ʹৄ͍͠ ‣ γεςϜӡ༻ʹৄ͍͠ ͜ͷΑ͏ͳਓ͕ܭը͢Δͱ lෆ࣮֬ੑzΛ ࠷ݶʹ͑Δ͜ͱ͕Ͱ͖Δ ˣ ͜ͷΑ͏ͳਓΛ૿ͤΔͱ ։ൃ৫ڧ͘ͳΔ
εʔύʔϚϯҭܭը ‣ ʑͷγεςϜ͍߹ΘͤରԠΛϥϯμϜʹৼΔ ‣ ຖճϥϯμϜʗिϩʔςʔγϣϯʗͦͷଞ ‣ ֤ϝϯόʔ͕όϥϯεྑ͘γεςϜશମΛΔػձʹͳΔ ‣ ৬छϩʔςʔγϣϯ ‣
ఆظతʹผͷ৬छΛܦݧ͢Δ ‣ ΞϓϦέʔγϣϯ୲͕ΠϯϑϥΛ୲ͨ͠ΓʢఋࢠೖΓʣ
ܭըΛzఆظతʹzݟ͢
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ͔֬ʹຊؾΛग़͞ͳ͍ͱμ ϝͳ໘͋Δ͚Ͳ ‣ ܭըΛݟ͢͜ͱʹΑͬͯམͪண͘͜ͱଟʑ͋Δ ‣ ܭըΠςϨʔςΟϒͳΠϕϯτͱߟ͑Δ ‣ ܭըʹνΣοΫϙΠϯτΛઃ͚Δ͜ͱޮՌత
ƅЧƅ ʮਐѱ͍ͷͰࠓపͰϦΧόϦ͠·͢ʯ
lฒߦλεΫzΛগͳΊʹ͢Δ
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ฒߦλεΫ͕ଟ͗͢Δͱશͯத్ʹͳͬͯ͠·͏ ‣ ґଘ͍ͯ͠ΔޙଓλεΫશͯࢭ·ͬͯ͠·͏ ‣ l8*1੍ݶzΛઃ͚ͯूத͢Δ ‣ νʔϜݸਓ ƅЧƅ
ʮฒߦͯ͠ਐΊͯΔͨΊશ෦ऴΘ͍ͬͯ·ͤΜʯ IUUQCMPHDSJTQTFIFOSJLLOJCFSH
lѱ͍Βͤz͙͢ʹ͑Δ
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ઌि·Ͱʮ༧ఆ௨ΓͰ͢ʯͬͯݴͬͯͨͷʹಥવʁ ‣ ͬͱલ͔Βݫ͍͠༧ஹͳ͔ͬͨͷʁ ‣ ʮ(JU)VCͷίϝϯτʹॻ͍͓͍ͯͨΜͰ͚͢Ͳʯ ‣ ࠔ͍ͬͯΔ͜ͱ΄Ͳl͙͢ʹzlޱ಄Ͱz͑ΔΑ͏ʹ͢Δ ƅЧƅ
ʮ໌༧ఆͩͬͨϦϦʔεݫͦ͠͏Ͱ͢ʯ
lίϯςΩετΛݶఆͨ͠z.5(
ҰൠతʹΑ͘ݟΔ෩ܠ ‣ ͘͠ͳΔͱڞ༗͕ޙճ͠ʹͳͬͯ͠·͏߹͋Δ ‣ ՂڥΛܴ͑ͨΒlؔऀʹߜͬͯzຖͤΔΛઃ͚Δ ‣ ݸਓతʹ༦ձʢ࣌ࠒʹ࠷େؒʣ͕൪ྑ͍ ‣ ༦ձ͕͗͢ΔͱlΜͩ··ա͗ͯ͠·͏z͕͋Δ ƅЧƅ
ʮͦ͠͏͔ͩͬͨΒ͑ΒΕͯ·ͤΜͰͨ͠ʯ
·ͱΊ
ܭըεΩϧΛߴΊΑ͏ ‣ ελʔτΞοϓͰܭըඇৗʹॏཁ ‣ lෆ࣮֬ੑzΛ࠷ݶʹ͑ͯܭըͰ͖Δ͜ͱlॏཁͳεΩϧz ‣ ܭըlΠςϨʔςΟϒͳzΠϕϯτ ‣ ܭըΛߦ͢ΔͨΊʹl৴པzͱlରzඞਢ