Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3_Seminar_05
Search
kakubari
February 24, 2017
Technology
0
88
B3_Seminar_05
ビックデータ解析入門3
kakubari
February 24, 2017
Tweet
Share
More Decks by kakubari
See All by kakubari
動詞クエリの語間の関係性に基づくクエリマイニング
kakubari
0
110
Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
kakubari
1
160
Leveraging Crowdsourcing for Paraphrase Recognition
kakubari
0
83
Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis
kakubari
0
100
Labeling the Semantic Roles of Commas
kakubari
0
78
Integrating Case Frame into Japanese to Chinese Hierarchical Phrase-based Translation Model
kakubari
0
120
Improving Chinese Semantic Role Labelingusing High-quality Surface and Deep Case Frames
kakubari
0
90
Exploring Verb Frames for Sentence Simplification in Hindi
kakubari
0
130
述語項構造と照応関係のアノテーション
kakubari
0
230
Other Decks in Technology
See All in Technology
セキュアな認可付きリモートMCPサーバーをAWSマネージドサービスでつくろう! / Let's build an OAuth protected remote MCP server based on AWS managed services
kaminashi
3
290
「れきちず」のこれまでとこれから - 誰にでもわかりやすい歴史地図を目指して / FOSS4G 2025 Japan
hjmkth
1
280
[Keynote] What do you need to know about DevEx in 2025
salaboy
0
160
Modern_Data_Stack最新動向クイズ_買収_AI_激動の2025年_.pdf
sagara
0
240
AWS Top Engineer、浮いてませんか? / As an AWS Top Engineer, Are You Out of Place?
yuj1osm
2
210
ガバメントクラウド(AWS)へのデータ移行戦略の立て方【虎の巻】 / 20251011 Mitsutosi Matsuo
shift_evolve
PRO
2
190
20251007: What happens when multi-agent systems become larger? (CyberAgent, Inc)
ornew
1
220
Large Vision Language Modelを用いた 文書画像データ化作業自動化の検証、運用 / shibuya_AI
sansan_randd
0
130
社内報はAIにやらせよう / Let AI handle the company newsletter
saka2jp
8
1.4k
新規事業におけるGORM+SQLx併用アーキテクチャ
hacomono
PRO
0
170
AI駆動開発を推進するためにサービス開発チームで 取り組んでいること
noayaoshiro
0
250
Escaping_the_Kraken_-_October_2025.pdf
mdalmijn
0
160
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
40
2.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Raft: Consensus for Rubyists
vanstee
139
7.1k
Agile that works and the tools we love
rasmusluckow
331
21k
Context Engineering - Making Every Token Count
addyosmani
5
230
Writing Fast Ruby
sferik
629
62k
Designing Experiences People Love
moore
142
24k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
How GitHub (no longer) Works
holman
315
140k
Statistics for Hackers
jakevdp
799
220k
Documentation Writing (for coders)
carmenintech
75
5k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Transcript
Ԭٕज़Պֶେֶ ిؾిࢠใֶ՝ఔ ֶ෦ɹ֯ுཽ ࣗવݴޠݚڀࣨ ɹ#̏θϛ ʙୈճʙ ϏοΫσʔλղੳೖᶅ
目次 ˔ͱϞʔϝϯτ ˔͖ͱϞʔϝϯτ ˔͍ҙຯͰͷ͖ ˔ཁ౷ܭྔ ˔౷ܭྔͷਪఆ
分布と統計量 ˔ूஂͷதͷͲͷཁૉબΕΔ֬Λಉ͡ʹ͢Δ ɹແ࡞ҝநग़๏ɺϥϯμϜαϯϓϦϯά ˔ಘΒΕͨඪຊ ɹແ࡞ҝඪຊɺϥϯμϜαϯϓϧ நग़ͨ͠ඪຊͷ࣮ଌʹج͍ͮͯɺ ूஂɺฏۉɺࢄΛਪఆ͢Δɻ
શମ͔ΒภΓͳ͘औΓग़ͨ͠Ұ෦͔ΒશମͷಛੑΛΔ
分布とモーメント ˔Ϟʔϝϯτͱ ɹฏۉࢄͷΑ͏ʹΛಛ͚Δྔ ྫ͑ʜ ਖ਼نฏۉͱࢄ͕༩͑ΒΕΕɺ࠶ݱ͕Մೳ ฏۉࢄͦΕͧΕ̍࣍ɺ̎࣍ͷϞʔϝϯτ ɹฏۉɿ ɹࢄɿ
µ = E[x]= x ⋅ f (x)dx ∫ σ 2 = E[(x −µ)2 ]= (x −µ)2 ⋅ f (x)dx ∫
分布とモーメント ˔Ұൠతͳʹରͯ͠ ɹฏۉࢄΑΓߴ࣍ͷϞʔϝϯτ·Ͱߟ͑Δ͜ͱͰ Λಛ͚Δ ˔֬ʹ͓͍ͯ ɹЋΛத৺ͱͨ͠ҰൠԽ͞ΕͨϞʔϝϯτͷఆٛ
E[(x −α)n ]= (x −α)n ⋅ f (x)dx ∫
べき分布とモーメント ˔ϞʔϝϯτʹΑΔͷಛ͚ͮ ཧ্औΓѻ͍͍͢ ࣮ࡍʹଟ͘ͷ౷ܭख๏ͰҊʹԾఆ͞Ε͍ͯΔ ଟ͘ͷ߹ɺਖ਼نࢦͰ͋Δɻ
Ὃ ݱ࣮ͰɺҟͳΔʹै͏֬ม͕͋Δɻ ͦͷΑ͏ͳ֬มʹै͍ͬͯΔσʔλͰɺ ؍ଌ͞Εͨʹରͯ͠౷ܭख๏͕దͰ͋Δ͔ҙ ͖తͳΛ࣋ͭ
べき分布とモーメント ˔͖ͱʜ ɹɾҝସՁ֨ࠩͷ ɹɾॴಘ͕େ͖͍ྖҬͰͷݸਓॴಘͷ ɹɾจষதͷ୯ޠͷස ࣾձݱɺࣗવݱ
べき分布とモーメント P(≥ x) = Ax−α Լهͷྦྷੵؔʹै͏Λ͖ͱ͍͏ɻ
"ن֨Խఆ ͖͕ͦ͢ް͍͜ͱΛಛͱ͢Δ ʢۃʹେ͖ͳΛ࣋ͭݱ͕ਖ਼نΑΓى͜Γ͍͢ʣ (x ≥ A 1 α ) (1)
べき分布とモーメント ˔͖ͷੑ࣭ ଟ͘ͷখ͞ͳͱগͳ͍ܻҧ͍ʹେ͖ͳΛͱΔ ͷΛؚΉ ਖ਼نΑΓߴ͍֬Ͱܻҧ͍ʹେ͖ͳΛͱΔ ྦྷੵؔΛ྆ରͰϓϩοτ͢ΔͱઢʹͳΔɻ ઢͷ͖͖ࢦЋͰ͋Δɻ
Ћ㱡̎ͰࢄɺЋ㱡̍Ͱฏۉ͕ଘࡏ͠ͳ͍ɻʢЋ࣍ Ҏ্ͷϞʔϝϯτ͕ଘࡏ͠ͳ͍ʣ Ћ̍Ͱɺ࠷େͷγΣΞ͕αϯϓϧ/ˠ㱣Ͱ̌ ʹͳΒͳ͍ɻ ɹ S max = max(x 1 , x 2 ,!, x N ) x i k=1 N ∑
べき分布とモーメント ಛʹࡾͭͷੑ࣭ɺσʔλͷ͕͖ʹै͍ͬͯΔ ͔͔֬ΊΔͨΊʹσʔλղੳʹ͏ɻ σʔλͷྦྷੵΛॻ͘ɻ ྆ରϓϩοτ͠ɺઢͰ͋Δ͜ͱΛ͔֬ΊΔɻ ۙࣅઢΛٻΊɺࢦЋΛٻΊΔɻ
広い意味でのべき分布 ͕ࣜݫີʹΓཱͭ͜ͱݱ࣮ʹͳ͍ɻ Ὃ ͷઈର͕େ͖͍ྖҬͰɺ ͖ؔͰۙࣅͰ͖ΔΑ͏ͳ
͖ͷΛ࣋ͭͱ͍͍ɺ૯͖ͯ͡ͱݺͿɻ ྫʣɾٯΨϯϚ ɹɹɾθʔλ ɹɹଞʹଟ͋Δɻ
要約統計量 ˔ཁ౷ܭྔͱ ɹඪຊͷ࣋ͭੑ࣭Λఆྔతʹಛ͚Δྔ ɾҐஔʹؔ͢Δཁ౷ܭྔ ඪຊฏۉɺதԝ ɾईʹؔ͢Δཁ౷ܭྔ ࢄɺඪ४ภࠩ
統計量の推定 ˔ϏοΫσʔλͷॲཧ ؍ଌ͞Εͨσʔλ͔Βཁ౷ܭྔΛ༻͍ͯɺ ɾͦͷ֬ີؔͷύϥϝʔλΛٻΊΔ ɾσʔλ͕ै͏ํఔࣜͷύϥϝʔλΛٻΊΔ ੳʹΑΓɺूஂ͕࣋ͭະͷύϥϝʔλΛಘΔ ඪຊ͔Βਪఆ͢Δ ਪఆํ๏ʹɺ࠷ਪఆ࠷খೋਪఆ͕͋Δɻ
参考文献 ˔ߴ҆ඒࠤࢠฤஶɺాଜޫଠɾࡾӜߤஶɺ ɹʮֶੜɾٕज़ऀͷͨΊͷϏοΫσʔλղੳೖʯ ʢୈ̏ষʣɺ ɹגࣜձࣾຊධࣾɺ݄