Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Automatically Acquired Lexical Knowledge Improv...
Search
kakubari
October 23, 2017
Technology
0
100
Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis
長岡技術科学大学
自然言語処理研究室
学部4年 角張竜晴
kakubari
October 23, 2017
Tweet
Share
More Decks by kakubari
See All by kakubari
動詞クエリの語間の関係性に基づくクエリマイニング
kakubari
0
110
Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
kakubari
1
160
Leveraging Crowdsourcing for Paraphrase Recognition
kakubari
0
83
Labeling the Semantic Roles of Commas
kakubari
0
79
Integrating Case Frame into Japanese to Chinese Hierarchical Phrase-based Translation Model
kakubari
0
120
Improving Chinese Semantic Role Labelingusing High-quality Surface and Deep Case Frames
kakubari
0
90
Exploring Verb Frames for Sentence Simplification in Hindi
kakubari
0
130
述語項構造と照応関係のアノテーション
kakubari
0
230
用言と直前の格要素の組を単位とする格フレームの自動構築
kakubari
0
200
Other Decks in Technology
See All in Technology
2025/10/27 JJUGナイトセミナー WildFlyとQuarkusの 始め方
megascus
0
110
サブドメインテイクオーバー事例紹介と対策について
mikit
9
2.5k
実践マルチモーダル検索!
shibuiwilliam
3
520
NOT A HOTEL SOFTWARE DECK (2025/11/04)
notahotel
0
900
dbtとAIエージェントを組み合わせて見えたデータ調査の新しい形
10xinc
7
1.7k
オブザーバビリティが育むシステム理解と好奇心
maruloop
3
1.9k
AI時代の発信活動 ~技術者として認知してもらうための発信法~ / 20251028 Masaki Okuda
shift_evolve
PRO
1
130
SRE × マネジメントレイヤーが挑戦した組織・会社のオブザーバビリティ改革 ― ビジネス価値と信頼性を両立するリアルな挑戦
coconala_engineer
0
420
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
340
DSPy入門
tomehirata
6
850
[Journal club] Thinking in Space: How Multimodal Large Language Models See, Remember, and Recall Spaces
keio_smilab
PRO
0
110
累計5000万DLサービスの裏側 – LINEマンガのKotlinで挑む大規模 Server-side ETLの最適化
ldf_tech
0
130
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
Side Projects
sachag
455
43k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Become a Pro
speakerdeck
PRO
29
5.6k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Visualization
eitanlees
150
16k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Faster Mobile Websites
deanohume
310
31k
Transcript
Ԭ ٕ ज़ Պ ֶ େ ֶ ࣗ વ ݴ ޠ ॲ ཧ ݚ ڀ ࣨ ֶ ෦ ̐ ֯ ு ཽ Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis Daisuke Kawahara and Yuta Hayashibe and Hajime Morita and Sadao Kurohashi Proceedings of the 15th International Conference on Parsing Technologies, pages 1–10, Pisa, Italy; September 20–22, 2017. ਤදจΑΓҾ༻ 1
概要 2 ˗ఏҊ ࣗಈతʹ֫ಘ͞Εͨޠኮࣝʹجͮ͘ܗଶૉղੳٴ ͼΓड͚ղੳͷڞಉϞσϧͷఏҊ ˗݁Ռ ैདྷͷύΠϓϥΠϯϞσϧΑΓڞಉϞσϧͷ༗ޮ
ੑΛূ໌
はじめに 3 ηάϝϯτԽ͞Ε͍ͯͳ͍ݴޠͷղੳ ܗଶૉղੳ ୯ޠׂɺ104͚ɺݟग़͠ޠղੳ
Ὃ Γड͚ղੳड़ޠҾߏ 1"4 ղੳͳͲ ύΠϓϥΠϯॲཧͷ ¡ ܗଶૉղੳͷΤϥʔ͕ޙଓͷղੳʹൖ͢Δ ܗଶૉղੳͰ୯ޠׂΛ͢Δࡍʹɺߏจతٴͼߏతͳࣝ ͕ඞཁͳ߹͕͋Δɻ
はじめに 4 Մೳੑɹ͕ɹ͋Δ͔ͳ͍ɹ͔ɹ͔Βɹͳ͍ ˓B ͋Δ͔ͳ͍ FYJTUPSOPU
Մೳੑ͕͋Δ͔Ͳ͏͔ ɹ C ͋Δ͔ͳ͍ XBMLOPU Մೳੑ͕า͔ͳ͍
提案 5 ࣗಈతʹ֫ಘͨ͠ޠኮࣝʹجͮ͘ɺ ɹܗଶૉɾΓड͚ղੳͷڞಉϞσϧΛఏҊ͢Δɻ ޠኮࣝʹ̏ͭͷλΠϓ͕͋Δ ¡ ֨ϑϨʔϜ
¡ ໊ࢺͱड़ޠͷΓड͚ؔͷڞى֬ ¡ ୯ޠຒΊࠐΈ ಛʹɺ֨ϑϨʔϜɺܗଶతɾߏจతͳᐆດੑΛղফ ͢Δͷʹ༗ޮͳख͕͔Γɻ
関連研究 6 ϔϒϥΠޠͱΞϥϏΞޠͰϥςΟεղੳ๏͕ఏҊ ¡ (PMECFSHBOE5TBSGBSZ ¡ (PMECFSHFUBM
¡ (SFFOBOE.BOOJOH ¡ (PMECFSHBOE&MIBEBE ޠኮࣝͳ͠ͷڞಉղੳϞσϧΛఏҊ ¡ 5BXBSBFUBM
格フレーム 7 ֨ϑϨʔϜΛ༻ͯ͠ɺ1"4ͷଥੑΛධՁ͢Δ ֨ϑϨʔϜ,BXBIBSBFUBM ͷߏஙํ๏Λద༻
ܗଶૉղੳͱΓड͚ղੳ +6." ͱ,/1 Λੜίʔύεʹద༻ ͢Δɻ ΤϥʔͷӨڹ؇ͷͨΊɺᐆດੑͷͳ͍৴པੑͷߴ͍1"4ͷΈΛந ग़ ಉ͡ҙຯΛ࣋ͭ1"4Λड़ޠͱ࠷͍ۙҾΛ݁߹ࣝ͠ผ͢Δɻ ྫ͑ɺʮಓΛา͘ʯͱʮொΛา͘ʯͳͲͷड़ޠҾͷͰ۠ผ͢ Δɻ ԯͷຊޠจड़ޠ ͷ֨ϑϨʔϜΛऔಘ
名詞と述語の依存関係の共起確率 8 1"4Ͱଊ͑ΒΕͳ͍Γड͚ؔΛධՁ͢Δ Γड͚ؔͷڞى֬ͷ౷ܭຊޠ8FCίʔύε ͷԯจ͔Βऔಘ͢Δ ¡ ໊ࢺ໊ࢺ ÷
ෳ߹໊ࢺΛؚΉ໊ࢺؒͷґଘؔΛΧόʔ ¡ ड़ޠड़ޠ ÷ ड़ޠؒͷґଘؔΛΧόʔ
単語埋め込み 9 ୯ޠͱ୯ޠྻͷؒͷྨࣅΛܭࢉ͢Δ XPSEWFD .JLPMPWFUBM ʹΑͬͯɺԯͷ ຊޠͷ8FCจΛ༻ͯ͠܇࿅͢Δ
¡ ࣍ݩͰDPTྨࣅΛܭࢉ͢Δ
共同解析モデル 10 $,:ΞϧΰϦζϜΛ࠾༻ ¡ ڞಉղੳϞσϧʹ͘༻͞Ε͍ͯΔ ͜ͷϞσϧͷग़ྗ ¡ ୯ޠɺจઅɺٴͼΓड͚ؔͷશͯͷ໌֬ͳ݁ՌΛؚΉɺ
ɹ࠷దͳղੳπϦʔΛग़ྗ
共同解析モデルの解析手順 11 ީิ୯ޠͷ$,:ςʔϒϧͷӨ ¡ ܗଶૉղੳΛ༻͍ͯɺ୯ޠ֨ࢠΛੜ͢Δ ޠ۟ͷੜ ¡
104ϕʔεͷޠ۟ͷմͷنଇΛ ɹ༻͠$,:ςʔϒϧͰੜ͞ΕΔ ϧʔϧ,/1͔Βநग़͞ΕΔ ¡ ࠷খͷαϒπϦʔͱͯ͠Έͳ͢
共同解析モデルの解析手順 12 ྡ͢ΔαϒπϦʔϖΞͷϚʔδ ¡ ྡ͢ΔαϒπϦʔΛϚʔδ͠ɺ ɹ৽͍͠αϒπϦʔΛੜ ¡ ϘτϧΞοϓํࣜͰߦ͏
ೖྗจશମʹର͢Δީิ
共同解析モデルの解析手順 13 είΞ͕࠷ߴ͍πϦʔΛબ ੜ͞ΕͨީิͷதͰείΞ͕࠷ߴ͍Λग़ྗ
スコア機能とトレーニング 14 είΞػೳ
XJ ɿಛͷॏΈ ЇJ ɿಛJͷಛؔ ֶशखॱ ಛྔΛॳظԽ͠ɺ܇࿅ίʔύεͷ֤จͷ୯ޠ֨ࢠ Λೖྗ ೖྗจʹର͢ΔީิΛಘΔ ΰʔϧυπϦʔʹର͢ΔΓड͚είΞ͕࠷ߴ͍π ϦʔΛਖ਼ͷΠϯελϯεͱ͢Δ ಛͷॏΈ܇࿅ίʔύεͷશͯͷจ͔Β࠷దԽ͞ΕΔɻ
実験 15 ژେֶςΩετίʔύε /&84 ¡ ,BXBIBSBFUBM
ژେֶΣϒจॻϦʔυίʔύε 8&# ¡ )BOHZPFUBM
実験 16 ൺֱର ¡ ,/1 ,BXBIBSBBOE,VSPIBTIJ ¡
$BCP$IB 4BTTBOP ධՁ߲ ¡ 4FHɿ୯ޠׂ ¡ 104ɿ4FH 104 ¡ "MMɿ4FH 104 ͖Ίࡉ͔͍104 جຊܗ ¡ Q4FRɿจઅ۠Γ ¡ 6"4-"4ɿϥϕϧͳ͠ϥϕϧ͋ΓͷΓड͚ղੳ
実験結果 17
実験結果 18
結論 19 ࣗಈ֫ಘͨ͠ޠኮࣝʹجͮ͘ɺܗଶૉղੳٴͼ Γड͚ղੳͷڞಉϞσϧͷఏҊ ैདྷͷύΠϓϥΠϯϞσϧʹൺɺڞಉϞσϧͷ༗ ޮੑΛࣔͨ͠ ܗଶૉղੳͱΓड͚ղੳͷͨΊͷޠኮࣝΛ
χϡʔϥϧωοτϫʔΫϕʔεϞσϧʹΈࠐΉ͜ ͱʹࢼΈΔ