Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Automatically Acquired Lexical Knowledge Improv...
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
kakubari
October 23, 2017
Technology
0
100
Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis
長岡技術科学大学
自然言語処理研究室
学部4年 角張竜晴
kakubari
October 23, 2017
Tweet
Share
More Decks by kakubari
See All by kakubari
動詞クエリの語間の関係性に基づくクエリマイニング
kakubari
0
120
Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
kakubari
1
180
Leveraging Crowdsourcing for Paraphrase Recognition
kakubari
0
92
Labeling the Semantic Roles of Commas
kakubari
0
86
Integrating Case Frame into Japanese to Chinese Hierarchical Phrase-based Translation Model
kakubari
0
120
Improving Chinese Semantic Role Labelingusing High-quality Surface and Deep Case Frames
kakubari
0
93
Exploring Verb Frames for Sentence Simplification in Hindi
kakubari
0
140
述語項構造と照応関係のアノテーション
kakubari
0
240
用言と直前の格要素の組を単位とする格フレームの自動構築
kakubari
0
210
Other Decks in Technology
See All in Technology
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
新規事業における「一部だけどコア」な AI精度改善の優先順位づけ
zerebom
0
440
入社1ヶ月でデータパイプライン講座を作った話
waiwai2111
1
200
オープンウェイトのLLMリランカーを契約書で評価する / searchtechjp
sansan_randd
3
460
全員が「作り手」になる。職能の壁を溶かすプロトタイプ開発。
hokuo
1
630
GCASアップデート(202510-202601)
techniczna
0
210
ゼロから始めたFindy初のモバイルアプリ開発
grandbig
2
530
re:Inventで出たインフラエンジニアが嬉しかったアップデート
nagisa53
4
230
漸進的過負荷の原則
sansantech
PRO
3
420
Claude Codeベストプラクティスまとめ
minorun365
53
30k
AI開発をスケールさせるデータ中心の仕組みづくり
kzykmyzw
0
190
AI開発の落とし穴 〜馬には乗ってみよAIには添うてみよ〜
sansantech
PRO
10
5.5k
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
AI: The stuff that nobody shows you
jnunemaker
PRO
2
220
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Skip the Path - Find Your Career Trail
mkilby
0
51
Embracing the Ebb and Flow
colly
88
5k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Designing for Timeless Needs
cassininazir
0
120
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
210
It's Worth the Effort
3n
188
29k
[SF Ruby Conf 2025] Rails X
palkan
0
730
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
Ԭ ٕ ज़ Պ ֶ େ ֶ ࣗ વ ݴ ޠ ॲ ཧ ݚ ڀ ࣨ ֶ ෦ ̐ ֯ ு ཽ Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis Daisuke Kawahara and Yuta Hayashibe and Hajime Morita and Sadao Kurohashi Proceedings of the 15th International Conference on Parsing Technologies, pages 1–10, Pisa, Italy; September 20–22, 2017. ਤදจΑΓҾ༻ 1
概要 2 ˗ఏҊ ࣗಈతʹ֫ಘ͞Εͨޠኮࣝʹجͮ͘ܗଶૉղੳٴ ͼΓड͚ղੳͷڞಉϞσϧͷఏҊ ˗݁Ռ ैདྷͷύΠϓϥΠϯϞσϧΑΓڞಉϞσϧͷ༗ޮ
ੑΛূ໌
はじめに 3 ηάϝϯτԽ͞Ε͍ͯͳ͍ݴޠͷղੳ ܗଶૉղੳ ୯ޠׂɺ104͚ɺݟग़͠ޠղੳ
Ὃ Γड͚ղੳड़ޠҾߏ 1"4 ղੳͳͲ ύΠϓϥΠϯॲཧͷ ¡ ܗଶૉղੳͷΤϥʔ͕ޙଓͷղੳʹൖ͢Δ ܗଶૉղੳͰ୯ޠׂΛ͢Δࡍʹɺߏจతٴͼߏతͳࣝ ͕ඞཁͳ߹͕͋Δɻ
はじめに 4 Մೳੑɹ͕ɹ͋Δ͔ͳ͍ɹ͔ɹ͔Βɹͳ͍ ˓B ͋Δ͔ͳ͍ FYJTUPSOPU
Մೳੑ͕͋Δ͔Ͳ͏͔ ɹ C ͋Δ͔ͳ͍ XBMLOPU Մೳੑ͕า͔ͳ͍
提案 5 ࣗಈతʹ֫ಘͨ͠ޠኮࣝʹجͮ͘ɺ ɹܗଶૉɾΓड͚ղੳͷڞಉϞσϧΛఏҊ͢Δɻ ޠኮࣝʹ̏ͭͷλΠϓ͕͋Δ ¡ ֨ϑϨʔϜ
¡ ໊ࢺͱड़ޠͷΓड͚ؔͷڞى֬ ¡ ୯ޠຒΊࠐΈ ಛʹɺ֨ϑϨʔϜɺܗଶతɾߏจతͳᐆດੑΛղফ ͢Δͷʹ༗ޮͳख͕͔Γɻ
関連研究 6 ϔϒϥΠޠͱΞϥϏΞޠͰϥςΟεղੳ๏͕ఏҊ ¡ (PMECFSHBOE5TBSGBSZ ¡ (PMECFSHFUBM
¡ (SFFOBOE.BOOJOH ¡ (PMECFSHBOE&MIBEBE ޠኮࣝͳ͠ͷڞಉղੳϞσϧΛఏҊ ¡ 5BXBSBFUBM
格フレーム 7 ֨ϑϨʔϜΛ༻ͯ͠ɺ1"4ͷଥੑΛධՁ͢Δ ֨ϑϨʔϜ,BXBIBSBFUBM ͷߏஙํ๏Λద༻
ܗଶૉղੳͱΓड͚ղੳ +6." ͱ,/1 Λੜίʔύεʹద༻ ͢Δɻ ΤϥʔͷӨڹ؇ͷͨΊɺᐆດੑͷͳ͍৴པੑͷߴ͍1"4ͷΈΛந ग़ ಉ͡ҙຯΛ࣋ͭ1"4Λड़ޠͱ࠷͍ۙҾΛ݁߹ࣝ͠ผ͢Δɻ ྫ͑ɺʮಓΛา͘ʯͱʮொΛา͘ʯͳͲͷड़ޠҾͷͰ۠ผ͢ Δɻ ԯͷຊޠจड़ޠ ͷ֨ϑϨʔϜΛऔಘ
名詞と述語の依存関係の共起確率 8 1"4Ͱଊ͑ΒΕͳ͍Γड͚ؔΛධՁ͢Δ Γड͚ؔͷڞى֬ͷ౷ܭຊޠ8FCίʔύε ͷԯจ͔Βऔಘ͢Δ ¡ ໊ࢺ໊ࢺ ÷
ෳ߹໊ࢺΛؚΉ໊ࢺؒͷґଘؔΛΧόʔ ¡ ड़ޠड़ޠ ÷ ड़ޠؒͷґଘؔΛΧόʔ
単語埋め込み 9 ୯ޠͱ୯ޠྻͷؒͷྨࣅΛܭࢉ͢Δ XPSEWFD .JLPMPWFUBM ʹΑͬͯɺԯͷ ຊޠͷ8FCจΛ༻ͯ͠܇࿅͢Δ
¡ ࣍ݩͰDPTྨࣅΛܭࢉ͢Δ
共同解析モデル 10 $,:ΞϧΰϦζϜΛ࠾༻ ¡ ڞಉղੳϞσϧʹ͘༻͞Ε͍ͯΔ ͜ͷϞσϧͷग़ྗ ¡ ୯ޠɺจઅɺٴͼΓड͚ؔͷશͯͷ໌֬ͳ݁ՌΛؚΉɺ
ɹ࠷దͳղੳπϦʔΛग़ྗ
共同解析モデルの解析手順 11 ީิ୯ޠͷ$,:ςʔϒϧͷӨ ¡ ܗଶૉղੳΛ༻͍ͯɺ୯ޠ֨ࢠΛੜ͢Δ ޠ۟ͷੜ ¡
104ϕʔεͷޠ۟ͷմͷنଇΛ ɹ༻͠$,:ςʔϒϧͰੜ͞ΕΔ ϧʔϧ,/1͔Βநग़͞ΕΔ ¡ ࠷খͷαϒπϦʔͱͯ͠Έͳ͢
共同解析モデルの解析手順 12 ྡ͢ΔαϒπϦʔϖΞͷϚʔδ ¡ ྡ͢ΔαϒπϦʔΛϚʔδ͠ɺ ɹ৽͍͠αϒπϦʔΛੜ ¡ ϘτϧΞοϓํࣜͰߦ͏
ೖྗจશମʹର͢Δީิ
共同解析モデルの解析手順 13 είΞ͕࠷ߴ͍πϦʔΛબ ੜ͞ΕͨީิͷதͰείΞ͕࠷ߴ͍Λग़ྗ
スコア機能とトレーニング 14 είΞػೳ
XJ ɿಛͷॏΈ ЇJ ɿಛJͷಛؔ ֶशखॱ ಛྔΛॳظԽ͠ɺ܇࿅ίʔύεͷ֤จͷ୯ޠ֨ࢠ Λೖྗ ೖྗจʹର͢ΔީิΛಘΔ ΰʔϧυπϦʔʹର͢ΔΓड͚είΞ͕࠷ߴ͍π ϦʔΛਖ਼ͷΠϯελϯεͱ͢Δ ಛͷॏΈ܇࿅ίʔύεͷશͯͷจ͔Β࠷దԽ͞ΕΔɻ
実験 15 ژେֶςΩετίʔύε /&84 ¡ ,BXBIBSBFUBM
ژେֶΣϒจॻϦʔυίʔύε 8&# ¡ )BOHZPFUBM
実験 16 ൺֱର ¡ ,/1 ,BXBIBSBBOE,VSPIBTIJ ¡
$BCP$IB 4BTTBOP ධՁ߲ ¡ 4FHɿ୯ޠׂ ¡ 104ɿ4FH 104 ¡ "MMɿ4FH 104 ͖Ίࡉ͔͍104 جຊܗ ¡ Q4FRɿจઅ۠Γ ¡ 6"4-"4ɿϥϕϧͳ͠ϥϕϧ͋ΓͷΓड͚ղੳ
実験結果 17
実験結果 18
結論 19 ࣗಈ֫ಘͨ͠ޠኮࣝʹجͮ͘ɺܗଶૉղੳٴͼ Γड͚ղੳͷڞಉϞσϧͷఏҊ ैདྷͷύΠϓϥΠϯϞσϧʹൺɺڞಉϞσϧͷ༗ ޮੑΛࣔͨ͠ ܗଶૉղੳͱΓड͚ղੳͷͨΊͷޠኮࣝΛ
χϡʔϥϧωοτϫʔΫϕʔεϞσϧʹΈࠐΉ͜ ͱʹࢼΈΔ