Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Automatically Acquired Lexical Knowledge Improv...
Search
kakubari
October 23, 2017
Technology
0
100
Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis
長岡技術科学大学
自然言語処理研究室
学部4年 角張竜晴
kakubari
October 23, 2017
Tweet
Share
More Decks by kakubari
See All by kakubari
動詞クエリの語間の関係性に基づくクエリマイニング
kakubari
0
110
Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
kakubari
1
160
Leveraging Crowdsourcing for Paraphrase Recognition
kakubari
0
83
Labeling the Semantic Roles of Commas
kakubari
0
78
Integrating Case Frame into Japanese to Chinese Hierarchical Phrase-based Translation Model
kakubari
0
120
Improving Chinese Semantic Role Labelingusing High-quality Surface and Deep Case Frames
kakubari
0
90
Exploring Verb Frames for Sentence Simplification in Hindi
kakubari
0
130
述語項構造と照応関係のアノテーション
kakubari
0
230
用言と直前の格要素の組を単位とする格フレームの自動構築
kakubari
0
200
Other Decks in Technology
See All in Technology
やる気のない自分との向き合い方/How to Deal with Your Unmotivated Self
sanogemaru
0
470
能登半島災害現場エンジニアクロストーク 【JAWS FESTA 2025 in 金沢】
ditccsugii
0
430
Adminaで実現するISMS/SOC2運用の効率化 〜 アカウント管理編 〜
shonansurvivors
4
440
OpenAI gpt-oss ファインチューニング入門
kmotohas
2
1.2k
Vibe Coding Year in Review. From Karpathy to Real-World Agents by Niels Rolland, CEO Paatch
vcoisne
0
120
実装で解き明かす並行処理の歴史
zozotech
PRO
1
700
小学4年生夏休みの自由研究「ぼくと Copilot エージェント」
taichinakamura
0
630
ユーザーの声とAI検証で進める、プロダクトディスカバリー
sansantech
PRO
1
130
Codexとも仲良く。CodeRabbit CLIの紹介
moongift
PRO
0
130
"プロポーザルってなんか怖そう"という境界を超えてみた@TSUDOI by giftee Tech #1
shilo113
0
180
「れきちず」のこれまでとこれから - 誰にでもわかりやすい歴史地図を目指して / FOSS4G 2025 Japan
hjmkth
1
280
オープンソースでどこまでできる?フォーマル検証チャレンジ
msyksphinz
0
130
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
53
7.8k
RailsConf 2023
tenderlove
30
1.2k
Faster Mobile Websites
deanohume
310
31k
How to Ace a Technical Interview
jacobian
280
24k
Making Projects Easy
brettharned
119
6.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
KATA
mclloyd
32
15k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
Ԭ ٕ ज़ Պ ֶ େ ֶ ࣗ વ ݴ ޠ ॲ ཧ ݚ ڀ ࣨ ֶ ෦ ̐ ֯ ு ཽ Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis Daisuke Kawahara and Yuta Hayashibe and Hajime Morita and Sadao Kurohashi Proceedings of the 15th International Conference on Parsing Technologies, pages 1–10, Pisa, Italy; September 20–22, 2017. ਤදจΑΓҾ༻ 1
概要 2 ˗ఏҊ ࣗಈతʹ֫ಘ͞Εͨޠኮࣝʹجͮ͘ܗଶૉղੳٴ ͼΓड͚ղੳͷڞಉϞσϧͷఏҊ ˗݁Ռ ैདྷͷύΠϓϥΠϯϞσϧΑΓڞಉϞσϧͷ༗ޮ
ੑΛূ໌
はじめに 3 ηάϝϯτԽ͞Ε͍ͯͳ͍ݴޠͷղੳ ܗଶૉղੳ ୯ޠׂɺ104͚ɺݟग़͠ޠղੳ
Ὃ Γड͚ղੳड़ޠҾߏ 1"4 ղੳͳͲ ύΠϓϥΠϯॲཧͷ ¡ ܗଶૉղੳͷΤϥʔ͕ޙଓͷղੳʹൖ͢Δ ܗଶૉղੳͰ୯ޠׂΛ͢Δࡍʹɺߏจతٴͼߏతͳࣝ ͕ඞཁͳ߹͕͋Δɻ
はじめに 4 Մೳੑɹ͕ɹ͋Δ͔ͳ͍ɹ͔ɹ͔Βɹͳ͍ ˓B ͋Δ͔ͳ͍ FYJTUPSOPU
Մೳੑ͕͋Δ͔Ͳ͏͔ ɹ C ͋Δ͔ͳ͍ XBMLOPU Մೳੑ͕า͔ͳ͍
提案 5 ࣗಈతʹ֫ಘͨ͠ޠኮࣝʹجͮ͘ɺ ɹܗଶૉɾΓड͚ղੳͷڞಉϞσϧΛఏҊ͢Δɻ ޠኮࣝʹ̏ͭͷλΠϓ͕͋Δ ¡ ֨ϑϨʔϜ
¡ ໊ࢺͱड़ޠͷΓड͚ؔͷڞى֬ ¡ ୯ޠຒΊࠐΈ ಛʹɺ֨ϑϨʔϜɺܗଶతɾߏจతͳᐆດੑΛղফ ͢Δͷʹ༗ޮͳख͕͔Γɻ
関連研究 6 ϔϒϥΠޠͱΞϥϏΞޠͰϥςΟεղੳ๏͕ఏҊ ¡ (PMECFSHBOE5TBSGBSZ ¡ (PMECFSHFUBM
¡ (SFFOBOE.BOOJOH ¡ (PMECFSHBOE&MIBEBE ޠኮࣝͳ͠ͷڞಉղੳϞσϧΛఏҊ ¡ 5BXBSBFUBM
格フレーム 7 ֨ϑϨʔϜΛ༻ͯ͠ɺ1"4ͷଥੑΛධՁ͢Δ ֨ϑϨʔϜ,BXBIBSBFUBM ͷߏஙํ๏Λద༻
ܗଶૉղੳͱΓड͚ղੳ +6." ͱ,/1 Λੜίʔύεʹద༻ ͢Δɻ ΤϥʔͷӨڹ؇ͷͨΊɺᐆດੑͷͳ͍৴པੑͷߴ͍1"4ͷΈΛந ग़ ಉ͡ҙຯΛ࣋ͭ1"4Λड़ޠͱ࠷͍ۙҾΛ݁߹ࣝ͠ผ͢Δɻ ྫ͑ɺʮಓΛา͘ʯͱʮொΛา͘ʯͳͲͷड़ޠҾͷͰ۠ผ͢ Δɻ ԯͷຊޠจड़ޠ ͷ֨ϑϨʔϜΛऔಘ
名詞と述語の依存関係の共起確率 8 1"4Ͱଊ͑ΒΕͳ͍Γड͚ؔΛධՁ͢Δ Γड͚ؔͷڞى֬ͷ౷ܭຊޠ8FCίʔύε ͷԯจ͔Βऔಘ͢Δ ¡ ໊ࢺ໊ࢺ ÷
ෳ߹໊ࢺΛؚΉ໊ࢺؒͷґଘؔΛΧόʔ ¡ ड़ޠड़ޠ ÷ ड़ޠؒͷґଘؔΛΧόʔ
単語埋め込み 9 ୯ޠͱ୯ޠྻͷؒͷྨࣅΛܭࢉ͢Δ XPSEWFD .JLPMPWFUBM ʹΑͬͯɺԯͷ ຊޠͷ8FCจΛ༻ͯ͠܇࿅͢Δ
¡ ࣍ݩͰDPTྨࣅΛܭࢉ͢Δ
共同解析モデル 10 $,:ΞϧΰϦζϜΛ࠾༻ ¡ ڞಉղੳϞσϧʹ͘༻͞Ε͍ͯΔ ͜ͷϞσϧͷग़ྗ ¡ ୯ޠɺจઅɺٴͼΓड͚ؔͷશͯͷ໌֬ͳ݁ՌΛؚΉɺ
ɹ࠷దͳղੳπϦʔΛग़ྗ
共同解析モデルの解析手順 11 ީิ୯ޠͷ$,:ςʔϒϧͷӨ ¡ ܗଶૉղੳΛ༻͍ͯɺ୯ޠ֨ࢠΛੜ͢Δ ޠ۟ͷੜ ¡
104ϕʔεͷޠ۟ͷմͷنଇΛ ɹ༻͠$,:ςʔϒϧͰੜ͞ΕΔ ϧʔϧ,/1͔Βநग़͞ΕΔ ¡ ࠷খͷαϒπϦʔͱͯ͠Έͳ͢
共同解析モデルの解析手順 12 ྡ͢ΔαϒπϦʔϖΞͷϚʔδ ¡ ྡ͢ΔαϒπϦʔΛϚʔδ͠ɺ ɹ৽͍͠αϒπϦʔΛੜ ¡ ϘτϧΞοϓํࣜͰߦ͏
ೖྗจશମʹର͢Δީิ
共同解析モデルの解析手順 13 είΞ͕࠷ߴ͍πϦʔΛબ ੜ͞ΕͨީิͷதͰείΞ͕࠷ߴ͍Λग़ྗ
スコア機能とトレーニング 14 είΞػೳ
XJ ɿಛͷॏΈ ЇJ ɿಛJͷಛؔ ֶशखॱ ಛྔΛॳظԽ͠ɺ܇࿅ίʔύεͷ֤จͷ୯ޠ֨ࢠ Λೖྗ ೖྗจʹର͢ΔީิΛಘΔ ΰʔϧυπϦʔʹର͢ΔΓड͚είΞ͕࠷ߴ͍π ϦʔΛਖ਼ͷΠϯελϯεͱ͢Δ ಛͷॏΈ܇࿅ίʔύεͷશͯͷจ͔Β࠷దԽ͞ΕΔɻ
実験 15 ژେֶςΩετίʔύε /&84 ¡ ,BXBIBSBFUBM
ژେֶΣϒจॻϦʔυίʔύε 8&# ¡ )BOHZPFUBM
実験 16 ൺֱର ¡ ,/1 ,BXBIBSBBOE,VSPIBTIJ ¡
$BCP$IB 4BTTBOP ධՁ߲ ¡ 4FHɿ୯ޠׂ ¡ 104ɿ4FH 104 ¡ "MMɿ4FH 104 ͖Ίࡉ͔͍104 جຊܗ ¡ Q4FRɿจઅ۠Γ ¡ 6"4-"4ɿϥϕϧͳ͠ϥϕϧ͋ΓͷΓड͚ղੳ
実験結果 17
実験結果 18
結論 19 ࣗಈ֫ಘͨ͠ޠኮࣝʹجͮ͘ɺܗଶૉղੳٴͼ Γड͚ղੳͷڞಉϞσϧͷఏҊ ैདྷͷύΠϓϥΠϯϞσϧʹൺɺڞಉϞσϧͷ༗ ޮੑΛࣔͨ͠ ܗଶૉղੳͱΓड͚ղੳͷͨΊͷޠኮࣝΛ
χϡʔϥϧωοτϫʔΫϕʔεϞσϧʹΈࠐΉ͜ ͱʹࢼΈΔ