Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
動詞クエリの語間の関係性に基づくクエリマイニング
Search
kakubari
January 21, 2018
Technology
0
110
動詞クエリの語間の関係性に基づくクエリマイニング
長岡技術科学大学
自然言語処理研究室
角張竜晴
kakubari
January 21, 2018
Tweet
Share
More Decks by kakubari
See All by kakubari
Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
kakubari
1
160
Leveraging Crowdsourcing for Paraphrase Recognition
kakubari
0
83
Automatically Acquired Lexical Knowledge Improves Japanese Joint Morphological and Dependency Analysis
kakubari
0
100
Labeling the Semantic Roles of Commas
kakubari
0
79
Integrating Case Frame into Japanese to Chinese Hierarchical Phrase-based Translation Model
kakubari
0
120
Improving Chinese Semantic Role Labelingusing High-quality Surface and Deep Case Frames
kakubari
0
90
Exploring Verb Frames for Sentence Simplification in Hindi
kakubari
0
130
述語項構造と照応関係のアノテーション
kakubari
0
230
用言と直前の格要素の組を単位とする格フレームの自動構築
kakubari
0
200
Other Decks in Technology
See All in Technology
初海外がre:Inventだった人間の感じたこと
tommy0124
1
180
東京大学「Agile-X」のFPGA AIデザインハッカソンを制したソニーのAI最適化
sony
0
180
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
6
1.6k
今から間に合う re:Invent 準備グッズと現地の地図、その他ラスベガスを周る際の Tips/reinvent-preparation-guide
emiki
1
230
AIを使ってテストを楽にする
kworkdev
PRO
0
400
アウトプットから始めるOSSコントリビューション 〜eslint-plugin-vueの場合〜 #vuefes
bengo4com
3
1.9k
Okta Identity Governanceで実現する最小権限の原則
demaecan
0
240
GCASアップデート(202508-202510)
techniczna
0
240
Amazon Athena で JSON・Parquet・Iceberg のデータを検索し、性能を比較してみた
shigeruoda
1
290
Amazon Q Developer CLIをClaude Codeから使うためのベストプラクティスを考えてみた
dar_kuma_san
0
310
Databricks Free Edition で始めるMLflow
taka_aki
0
690
InsightX 会社説明資料/ Company deck
insightx
0
180
Featured
See All Featured
Balancing Empowerment & Direction
lara
5
710
Building Adaptive Systems
keathley
44
2.8k
Designing Experiences People Love
moore
142
24k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Site-Speed That Sticks
csswizardry
13
940
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Become a Pro
speakerdeck
PRO
29
5.6k
Bash Introduction
62gerente
615
210k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Transcript
Ԭ ٕ ज़ Պ ֶ େ ֶ ࣗ વ ݴ ޠ ॲ ཧ ݚ ڀ ࣨ ֶ ෦ ̐ ֯ ு ཽ 動詞クエリの語間の関係性に基づくクエリマイニング 福地 大助,山本 岳洋,田中 克己 人工知能学会論文誌 32巻1号WII-J(2017年) ਤදจΑΓҾ༻ 1
概要 2 ʲఏҊʳ 8FCͷΫΤϦͰಈࢺΛؚΉ߹ͷݕࡧํ๏ΛఏҊ ʲ݁Ռʳ ఏҊख๏͕ैདྷͷݕࡧΤϯδϯΑΓ༗ҙੑΛࣔ͢ ͜ͱ͕Ͱ͖ͨ
はじめに 3 8FCݕࡧΤϯδϯͷٸͳൃల ˠਓʑ͕ݕࡧΤϯδϯΛ༻ͯ͠ใΛऔಘ ϥϯΩϯάख๏ FY1BHF3BOLΞϧΰϦζϜ MFBSOJOHUPSBOL
ˠ8FCݕࡧͷਫ਼େ্͖͘ ʲʳ બͨ͠ΫΤϦʹΑΓɺదͳݕࡧ݁Ռ͕ಘΒΕͳ͍ FYΫΤϦதʹಈࢺαม໊ࢺΛؚΉ߹
問題点 4 ݕࡧҙਤɿΓΜ͝ͷΛҭͯΔํ๏ΛΓ͍ͨ ΫΤϦɿlΓΜ͝࡞ΔΓํz ݕࡧ݁ՌɿʮΓΜ͝ΛͬͨϨγϐʯʹؔ͢Δϖʔδ ΫΤϦɿlΓΜ͝Λ࡞ΔΓํz ݕࡧ݁ՌɿಉҰͷϑϨʔζΛؚΜͰ͍Δϖʔδ͕ͳ͍
不適切な検索結果の要因 5 ΫΤϦͷΩʔϫʔυؒͷؔੑΛߟྀͰ͖ͳ͍ ಈࢺαม໊ࢺΛද͢Ωʔϫʔυʹରͯ͠ɺ తޠͱͯ͠ಇ͘߹ΛɺओޠखஈΛද͢म০ޠͱΈͳ͢ɻ ΫΤϦͷޠኮදݱ͕8FC্ͷݕࡧ݅ͱҟͳΔ ʮΓΜ͝ͷΛҭͯΔํ๏ʯΛΔͨΊʹɺ
8FC্ͷදݱͰ͋ΔʮΓΜ͝ͷഓʯΛ༻͍Δඞཁ͕͋Δɻ
提案手法 6 ʲख๏ʳ ΫΤϦʹؚ·ΕΔΩʔϫʔυؒͷؔੑΛਪఆ ݕࡧҙਤΛదʹදݱͨ͠ΩʔϫʔυΛൃݟ ީิͷΫΤϦΛੜ͠ఏࣔ
提案手法の流れ 7
提案手法の流れ 8 ϢʔβʹΑͬͯ༩͑ΒΕͨಈࢺΫΤϦRΛೖྗͱ͢Δɻ ೖྗ͞ΕͨಈࢺΫΤϦR\L L ʜ
LO ^ͱಈࢺΩʔ ϫʔυLW͔ΒతΩʔϫʔυLTΛநग़ ʢlΓΜ͝࡞ΔΓํzͷ߹ʣ ᶃΫΤϦlΓΜ͝࡞Δzɺl࡞ΔΓํzͷݕࡧ݁Ռจॻ ͷ୯ޠؒڑΛܭࢉ͢Δɻ ᶄ୯ޠؒڑ͕খ͍͞ํΛɺతΩʔϫʔυͱ͢Δɻ
提案手法の流れ 9 ਓखͰ४උ֤ͨ͠ॿࢺʹ͍ͭͯLTͱLWʹର͢Δ݁ ͼ͖ͭͷڧ͞Λܭࢉ͠ɺؔੑΛਪఆ ॿࢺू߹1\͕ Ͱ Λ^ͷதͰɺ
ಈࢺΩʔϫʔυٴͼతΩʔϫʔυͱ݁ͼ͖͕ͭ ࠷ڧ͍ॿࢺΛൃݟ͠ɺؔੑਪఆΛ࣮ݱ͢Δɻ <ۚࢠ> lΓΜ͝Λ࡞ΔzͷؔੑείΞʹ
提案手法の流れ 10 ਪఆ͞Εͨؔੑʹج͖ͮɺLWͷมީิू߹7\LW ʜ LW N ^Λ
ੜ ֨ϑϨʔϜ ژେֶ֨ϑϨʔϜ తΩʔϫʔυLTΛೖྗ͠ɺਪఆͨ͠ॿࢺQͷݕࡧ݁ՌΛநग़͠ɺ ༻ྫதͷಈࢺදݱͰස͕ߴ͍ॱʹ݅Λมީิͱ͢Δɻ 8FCݕࡧ݁Ռ ᶃΫΤϦlLTQzͰݕࡧɺݕࡧ݁ՌΛ݅औಘ ᶄݕࡧ݁Ռ͔ΒɺlLTQzͷޙʹݱΕΔಈ࡞Ωʔϫʔυ \LW ʜ LW N ^Λநग़ ᶅΫΤϦʮlLTQzLW ʜ LW N ʯͰ࠶ݕࡧ ᶆεςοϓᶄ͔ΒᶅΛ܁Γฦ͢
提案手法の流れ 11 ೖྗΫΤϦதͷLWΛ֤มީิLW J 㱨7ͱೖΕସ͑ͨ ͷΛR J ͱ͠ɺΫΤϦมީิू߹2\R
ʜ R N ^ Λੜ ֤ΫΤϦมީิR J 㱨2ʹରͯ͠ɺͦͷ༗༻ੑΛද ͢είΞT J Λܭࢉ ΫΤϦมީิू߹2ͷཁૉΛཁૉΛ༗༻ੑεί Ξͷ߱ॱʹϥϯΩϯάͯ͠ग़ྗ
提案手法の流れ 12 ʲ༗༻ੑείΞʳ తΩʔϫʔυͱಈ࡞Ωʔϫʔυީิͷڞى ॳظΫΤϦͷಈ࡞Ωʔϫʔυͱಈ࡞Ωʔϫʔυީ ิͷྨࣅ ॳظΫΤϦͷݕࡧ݁ՌͱΫΤϦमਖ਼ީิͰಘΒΕ
Δݕࡧ݁Ռͷඇྨࣅ Ҏ্ͷείΞͷੵΛ߱ॱʹ݅ग़ྗ͢Δɻ
実験 13 ख๏̍ తΩʔϫʔυͱಈ࡞ΩʔϫʔυީิͷڞىͷΈΛ༻͍ͯΫΤϦΛ ϥϯΩϯά͢Δख๏ɻ ख๏̎ ख๏̍ʹՃ͑ɺಈ࡞Ωʔϫʔυͱಈ࡞Ωʔϫʔυมީิͷྨࣅ ߟྀ͢Δख๏ɻ
ख๏̏ ख๏̎ʹՃ͑ɺॳظΫΤϦͷݕࡧ݁ՌͱฦؐޙͷΫΤϦͰಘΒΕΔݕ ࡧ݁ՌͷඇྨࣅΛߟྀ͢Δख๏ɻ ֨ϑϨʔϜख๏̏छྨɺ8FCݕࡧख๏̏छྨ ʹܭ̒छྨͷख๏
実験 14 ϕʔεϥΠϯख๏ (PPHMFͷݕࡧΤϯδϯ͕ఏࣔ͢ΔΫΤϦਪનΛ࠾༻ &YlΓΜ͝࡞ΔΓํzͱ͍͏ΫΤϦΛೖྗͨ͠߹
評価に用いたクエリの例 15
評価尺度 16 .33! ฏۉٯॱҐ ॱҐ݅ͷϥϯΩϯάͷதͰਖ਼ղΫΤϦͷॱҐΛߟྀ͠ ͨධՁई
$POUBJO! ্Ґ݅Ҏʹਖ਼ղΫΤϦΛݸͰؚΉධՁΫΤϦͷׂ ߹ΛධՁ "WF3FM/VN ਖ਼ղΫΤϦͰಘΒΕΔݕࡧ݁Ռ্Ґ݅தʹग़ݱ͢Δద ߹จॻͱͯ͠ܭࢉ
実験結果 17 • ̏ͭͷࢦඪΛΈ߹ΘͤΔ͜ͱͰɺΑΓߴ͍ਫ਼͕ಘΒΕ Δɻ • ֨ϑϨʔϜख๏ΑΓ8FCݕࡧख๏ͷํ͕ߴ͍ਫ਼Ͱਖ਼ղΫ ΤϦΛಘΒΕΔɻ • 8FCݕࡧͷख๏̏ϕʔεϥΠϯΑΓɺݕࡧҙਤΛద
ʹද͍ͯ͠Δͱߟ͑ΒΕΔɻ
実験結果 18