Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データマイニングの基礎
Search
katsutan
February 23, 2017
Technology
0
170
データマイニングの基礎
長岡技術科学大学 自然言語処理研究室 B3ゼミ発表5
katsutan
February 23, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
180
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
160
Simple task-specific bilingual word embeddings
katsutan
0
180
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
210
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
160
Improving Word Embeddings Using Kernel PCA
katsutan
0
180
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
250
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
230
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
250
Other Decks in Technology
See All in Technology
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
390
ISUCONに強くなるかもしれない日々の過ごしかた/Findy ISUCON 2024-11-14
fujiwara3
8
870
IBC 2024 動画技術関連レポート / IBC 2024 Report
cyberagentdevelopers
PRO
1
110
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
100
アプリエンジニアのためのGraphQL入門.pdf
spycwolf
0
100
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
SREが投資するAIOps ~ペアーズにおけるLLM for Developerへの取り組み~
takumiogawa
1
430
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
120
アジャイルでの品質の進化 Agile in Motion vol.1/20241118 Hiroyuki Sato
shift_evolve
0
170
Security-JAWS【第35回】勉強会クラウドにおけるマルウェアやコンテンツ改ざんへの対策
4su_para
0
180
OCI 運用監視サービス 概要
oracle4engineer
PRO
0
4.8k
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
690
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
52
13k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Making Projects Easy
brettharned
115
5.9k
Agile that works and the tools we love
rasmusluckow
327
21k
Statistics for Hackers
jakevdp
796
220k
Six Lessons from altMBA
skipperchong
27
3.5k
Speed Design
sergeychernyshev
25
620
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Unsuck your backbone
ammeep
668
57k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Transcript
データマイニングの基礎 長岡技術科学大学 自然言語処理研究室 学部3年 勝田 哲弘 1 2017/2/25
データマイニング(Data Mining:DM) • データに内在する非明示的な知識を発掘する。 ▫ テキストを対象 テキストマイニング ▫ ウェブページを対象
ウェブマイニング • データマイニングはKDDと呼ばれることもある。 ▫ KDD(Knowledge Discovery in Databases) ▫ 厳密にはKDDはデータマイニングより広い概念 2
基本的な手法 -決定木- • 決定木学習アルゴリズム 1. 根ノードに置く属性を決定し、その属性値に応じて分 岐を作成。 2. データ集合を各分岐に応じて部分集合に分割して子 ノードを作成し、その子ノードを根ノードとする。
3. 1と2のプロセスを再帰的に繰り返し、決定木を成長 させる。 4. 子ノードのすべての事例が同一クラスに属していれば、 決定木の成長を止める。 3
基本的な手法 -決定木- • 多様性を測定する指標によって、分割属性を選 定する。 • 多様性指標 ▫ エントロピー(情報利得) ▫
情報利得比 4
情報利得に基づく決定木学習 • 気象条件とゴルフプレイ ゴ ル フ × × ◦ ◦
◦ × ◦ × ◦ ◦ ◦ ◦ ◦ × 天 気 晴 晴 曇 雨 雨 雨 曇 晴 晴 雨 晴 曇 曇 雨 温 度 暑 暑 暑 暖 涼 涼 涼 暖 涼 暖 暖 暖 暑 暖 湿 度 高 高 高 高 普 通 普 通 普 通 高 普 通 普 通 普 通 高 普 通 高 風 無 有 無 無 無 有 有 無 無 無 有 有 無 有 5
天気の情報量 • = − log2 ∈Ω Ω=ある事象の有限集合 • 晴 2,3
info 2,3 = 0.971 • 曇 4,0 info 4,0 = 0.0 • 雨 3,2 info 3,2 = 0.971 〇の場合,× の場合 • 平均情報量 info 2,3 , 4,0 , [3,2] = 5 14 ∗ 0.971 + 4 14 ∗ 0.0 + 5 14 ∗ 0.971 = 0.693 6
情報利得 • ゴルフプレイの情報量 info 9,5 = 0.940 • 天気の情報利得 天気
= info 9,5 − info 2,3 , 4,0 , 3,2 = 0.940 − 0.693 = 0.247 • その他の情報利得 温度 = 0.029 湿度 = 0.152 風 = 0.048 7
情報利得に基づく決定木学習 天気 ◦,× ◦,× ◦ 晴 曇 雨 8
情報利得に基づく決定木学習 • 気象条件とゴルフプレイ ゴ ル フ × × ◦ ◦
◦ × ◦ × ◦ ◦ ◦ ◦ ◦ × 天 気 晴 晴 曇 雨 雨 雨 曇 晴 晴 雨 晴 曇 曇 雨 温 度 暑 暑 暑 暖 涼 涼 涼 暖 涼 暖 暖 暖 暑 暖 湿 度 高 高 高 高 普 通 普 通 普 通 高 普 通 普 通 普 通 高 普 通 高 風 無 有 無 無 無 有 有 無 無 無 有 有 無 有 9
情報利得に基づく決定木学習 • 気象条件とゴルフプレイ ゴ ル フ × × ◦ ◦
◦ × ◦ × ◦ ◦ ◦ ◦ ◦ × 天 気 晴 晴 曇 雨 雨 雨 曇 晴 晴 雨 晴 曇 曇 雨 温 度 暑 暑 暑 暖 涼 涼 涼 暖 涼 暖 暖 暖 暑 暖 湿 度 高 高 高 高 普 通 普 通 普 通 高 普 通 普 通 普 通 高 普 通 高 風 無 有 無 無 無 有 有 無 無 無 有 有 無 有 10
情報利得に基づく決定木学習 天気 風 湿度 ◦ 晴 曇 雨 ◦ ◦
× × 無 普 高 有 11
情報利得比に基づく決定木学習 ゴ ル フ × × ◦ ◦ ◦ ×
◦ × ◦ ◦ ◦ ◦ ◦ × ID a b c d e f g h i j k l m n 天 気 晴 晴 曇 雨 雨 雨 曇 晴 晴 雨 晴 曇 曇 雨 温 度 暑 暑 暑 暖 涼 涼 涼 暖 涼 暖 暖 暖 暑 暖 湿 度 高 高 高 高 普 通 普 通 普 通 高 普 通 普 通 普 通 高 普 通 高 風 無 有 無 無 無 有 有 無 無 無 有 有 無 有 12
情報利得比に基づく決定木学習 ID a b n ◦ × × × …
m 13
情報利得比に基づく決定木学習 ID a b n ◦ × × × …
m Gain(ID) = 0.940 Gain(天気) = 0.247 14
情報利得比 • IDの分割情報量 info 1,1, … , 1 = −
1 14 ∗ log2 1 14 ∗ 14 = 3.807 • IDの情報利得比 0.940 3.807 = 0.246 • 天気 0.156 • 温度 0.021 • 湿度 0.152 • 風 0.048 15
決定木の課題 • 連続する数値をうまく扱えない。 ▫ 分岐数が多くなるため離散化させる必要がある • 過学習の問題 ▫ 事前枝刈り、事後枝刈りで対処 16
その他の手法 • ルール学習 • ナイーブベイズ学習 • 最近傍法 • 相関ルール 17
参考文献 • データマイニングの基礎 元田浩、津本周作、山口高平、沼尾正行 共著 オーム社 18