Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データマイニングの基礎
Search
katsutan
February 23, 2017
Technology
0
190
データマイニングの基礎
長岡技術科学大学 自然言語処理研究室 B3ゼミ発表5
katsutan
February 23, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
220
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
200
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
250
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
200
Improving Word Embeddings Using Kernel PCA
katsutan
0
210
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
310
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
250
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
Other Decks in Technology
See All in Technology
企業の生成AIガバナンスにおけるエージェントとセキュリティ
lycorptech_jp
PRO
2
190
ブロックテーマ時代における、テーマの CSS について考える Toro_Unit / 2025.09.13 @ Shinshu WordPress Meetup
torounit
0
130
Platform開発が先行する Platform Engineeringの違和感
kintotechdev
4
580
大「個人開発サービス」時代に僕たちはどう生きるか
sotarok
20
10k
「全員プロダクトマネージャー」を実現する、Cursorによる仕様検討の自動運転
applism118
22
12k
「どこから読む?」コードとカルチャーに最速で馴染むための実践ガイド
zozotech
PRO
0
520
dbt開発 with Claude Codeのためのガードレール設計
10xinc
2
1.3k
Unlocking the Power of AI Agents with LINE Bot MCP Server
linedevth
0
110
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
260
KotlinConf 2025_イベントレポート
sony
1
140
EncryptedSharedPreferences が deprecated になっちゃった!どうしよう! / Oh no! EncryptedSharedPreferences has been deprecated! What should I do?
yanzm
0
450
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
2
460
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
We Have a Design System, Now What?
morganepeng
53
7.8k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Practical Orchestrator
shlominoach
190
11k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
A better future with KSS
kneath
239
17k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Making Projects Easy
brettharned
117
6.4k
Transcript
データマイニングの基礎 長岡技術科学大学 自然言語処理研究室 学部3年 勝田 哲弘 1 2017/2/25
データマイニング(Data Mining:DM) • データに内在する非明示的な知識を発掘する。 ▫ テキストを対象 テキストマイニング ▫ ウェブページを対象
ウェブマイニング • データマイニングはKDDと呼ばれることもある。 ▫ KDD(Knowledge Discovery in Databases) ▫ 厳密にはKDDはデータマイニングより広い概念 2
基本的な手法 -決定木- • 決定木学習アルゴリズム 1. 根ノードに置く属性を決定し、その属性値に応じて分 岐を作成。 2. データ集合を各分岐に応じて部分集合に分割して子 ノードを作成し、その子ノードを根ノードとする。
3. 1と2のプロセスを再帰的に繰り返し、決定木を成長 させる。 4. 子ノードのすべての事例が同一クラスに属していれば、 決定木の成長を止める。 3
基本的な手法 -決定木- • 多様性を測定する指標によって、分割属性を選 定する。 • 多様性指標 ▫ エントロピー(情報利得) ▫
情報利得比 4
情報利得に基づく決定木学習 • 気象条件とゴルフプレイ ゴ ル フ × × ◦ ◦
◦ × ◦ × ◦ ◦ ◦ ◦ ◦ × 天 気 晴 晴 曇 雨 雨 雨 曇 晴 晴 雨 晴 曇 曇 雨 温 度 暑 暑 暑 暖 涼 涼 涼 暖 涼 暖 暖 暖 暑 暖 湿 度 高 高 高 高 普 通 普 通 普 通 高 普 通 普 通 普 通 高 普 通 高 風 無 有 無 無 無 有 有 無 無 無 有 有 無 有 5
天気の情報量 • = − log2 ∈Ω Ω=ある事象の有限集合 • 晴 2,3
info 2,3 = 0.971 • 曇 4,0 info 4,0 = 0.0 • 雨 3,2 info 3,2 = 0.971 〇の場合,× の場合 • 平均情報量 info 2,3 , 4,0 , [3,2] = 5 14 ∗ 0.971 + 4 14 ∗ 0.0 + 5 14 ∗ 0.971 = 0.693 6
情報利得 • ゴルフプレイの情報量 info 9,5 = 0.940 • 天気の情報利得 天気
= info 9,5 − info 2,3 , 4,0 , 3,2 = 0.940 − 0.693 = 0.247 • その他の情報利得 温度 = 0.029 湿度 = 0.152 風 = 0.048 7
情報利得に基づく決定木学習 天気 ◦,× ◦,× ◦ 晴 曇 雨 8
情報利得に基づく決定木学習 • 気象条件とゴルフプレイ ゴ ル フ × × ◦ ◦
◦ × ◦ × ◦ ◦ ◦ ◦ ◦ × 天 気 晴 晴 曇 雨 雨 雨 曇 晴 晴 雨 晴 曇 曇 雨 温 度 暑 暑 暑 暖 涼 涼 涼 暖 涼 暖 暖 暖 暑 暖 湿 度 高 高 高 高 普 通 普 通 普 通 高 普 通 普 通 普 通 高 普 通 高 風 無 有 無 無 無 有 有 無 無 無 有 有 無 有 9
情報利得に基づく決定木学習 • 気象条件とゴルフプレイ ゴ ル フ × × ◦ ◦
◦ × ◦ × ◦ ◦ ◦ ◦ ◦ × 天 気 晴 晴 曇 雨 雨 雨 曇 晴 晴 雨 晴 曇 曇 雨 温 度 暑 暑 暑 暖 涼 涼 涼 暖 涼 暖 暖 暖 暑 暖 湿 度 高 高 高 高 普 通 普 通 普 通 高 普 通 普 通 普 通 高 普 通 高 風 無 有 無 無 無 有 有 無 無 無 有 有 無 有 10
情報利得に基づく決定木学習 天気 風 湿度 ◦ 晴 曇 雨 ◦ ◦
× × 無 普 高 有 11
情報利得比に基づく決定木学習 ゴ ル フ × × ◦ ◦ ◦ ×
◦ × ◦ ◦ ◦ ◦ ◦ × ID a b c d e f g h i j k l m n 天 気 晴 晴 曇 雨 雨 雨 曇 晴 晴 雨 晴 曇 曇 雨 温 度 暑 暑 暑 暖 涼 涼 涼 暖 涼 暖 暖 暖 暑 暖 湿 度 高 高 高 高 普 通 普 通 普 通 高 普 通 普 通 普 通 高 普 通 高 風 無 有 無 無 無 有 有 無 無 無 有 有 無 有 12
情報利得比に基づく決定木学習 ID a b n ◦ × × × …
m 13
情報利得比に基づく決定木学習 ID a b n ◦ × × × …
m Gain(ID) = 0.940 Gain(天気) = 0.247 14
情報利得比 • IDの分割情報量 info 1,1, … , 1 = −
1 14 ∗ log2 1 14 ∗ 14 = 3.807 • IDの情報利得比 0.940 3.807 = 0.246 • 天気 0.156 • 温度 0.021 • 湿度 0.152 • 風 0.048 15
決定木の課題 • 連続する数値をうまく扱えない。 ▫ 分岐数が多くなるため離散化させる必要がある • 過学習の問題 ▫ 事前枝刈り、事後枝刈りで対処 16
その他の手法 • ルール学習 • ナイーブベイズ学習 • 最近傍法 • 相関ルール 17
参考文献 • データマイニングの基礎 元田浩、津本周作、山口高平、沼尾正行 共著 オーム社 18