$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Segmentation-Free Word Embedding for Unsegmente...
Search
katsutan
August 27, 2018
Technology
1
120
Segmentation-Free Word Embedding for Unsegmented Languages ∗
文献紹介 勝田 哲弘
http://aclweb.org/anthology/D17-1080
katsutan
August 27, 2018
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
230
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
210
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
260
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
210
Improving Word Embeddings Using Kernel PCA
katsutan
0
220
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
320
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
Other Decks in Technology
See All in Technology
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
3
910
NIKKEI Tech Talk #41: セキュア・バイ・デザインからクラウド管理を考える
sekido
PRO
0
160
ActiveJobUpdates
igaiga
1
140
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
140
AI時代の新規LLMプロダクト開発: Findy Insightsを3ヶ月で立ち上げた舞台裏と振り返り
dakuon
0
230
Python 3.14 Overview
lycorptech_jp
PRO
1
120
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
260
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
チーリンについて
hirotomotaguchi
6
2.1k
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
400
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
1.8k
子育てで想像してなかった「見えないダメージ」 / Unforeseen "hidden burdens" of raising children.
pauli
2
300
Featured
See All Featured
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
11
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
How to build a perfect <img>
jonoalderson
0
4.6k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
740
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
190
Git: the NoSQL Database
bkeepers
PRO
432
66k
The SEO Collaboration Effect
kristinabergwall1
0
300
The browser strikes back
jonoalderson
0
60
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
83
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
60
Transcript
Segmentation-Free Word Embedding for Unsegmented Languages ∗ Takamasa Oshikiri Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 767–772 長岡技術科学大学 自然言語処理研究室 修士1年 勝田 哲弘
Abstract • 単語分割されていない言語に対して、前処理として単語分割を必要としない単語ベ クトルの獲得方法の提案 ◦ segmentation-free word embedding • 基本的に、中国語や日本語のようにスペースで区切られない言語では単語の分割
が必要になるが、人手によるリソースが必要になる。 • 文字ngramによる共起情報をもとに分割を行い、Twitter、Weibo、Wikipediaでの 名詞カテゴリ予測タスクでは、従来のアプローチより優れていることが示されていま す。
Introduction • NLPでは大規模なコーパスから単語ベクトルを獲得するword embeddingが注目さ れている。前処理としてセグメントが必要。 ◦ 英語やスペイン語などの言語では、単純なルールベースと共起ベースのアプローチがとられる。 ◦ 中国語、日本語、タイ語などのセグメント化されていない言語では、機械学習ベースのアプローチ がNLPで広く使用されています。(
Kudo et al。、2004; Tseng et al。、2005) ▪ 辞書が必要、固有名詞が苦手 • 文字nグラムに基づいて可能なすべてのセグメント化を列挙し、共起頻度からnグラ ム・ベクトルを学習する 枠組みを提案
Related Work セグメントに依存しないモデル • character-based RNN model ◦ Dhingra et
al. (2016) • learns n-gram vectors from the corpus that segmented randomly ◦ Schütze (2017) これらの手法は、テキストまたは系列のベクトル表現を学習することを目的としている。
Conventional Approaches to Word Embeddings skip-gram model with negative sampling
(SGNS) (Mikolov et al., 2013) 以下の単語、コンテキストの目的関数を最小にするベクトルの学習を行う。
Segmentation-Free Word Embeddings segmentation-free version of the SGNS • コーパスの頻繁な文字nグラムに基づくすべての可能なセグメントを表すnグラム格
子を構築する。(ラティス構造) • 頻繁なnグラム格子上の共起統計を用いてnグラムベクトルを学習する。
Experiment Twitter、Weibo、Wikipediaのコーパスにおける名詞カテゴリ予測タスクを用いて評価す る。 • Wikipedia (Japanese), Wikipedia (Chinese), Twitter (Japanese),
and Weibo (Chinese) • ngram = 1-8 for Japanese • ngram = 1-7 for Chinese • C-SVM(Hastie et al., 2009)
Results
Conclusion • 人手でアノテーションされたリソースに依存しない手法でその リソースに依存する手法を上回った。 • 将来的には別の手法を活用する ◦ the Stanford Word
Segmenter (Tseng et al., 2005) with k-best segmentations