Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介:Safety Alignment Should be Made More Than ...
Search
Kazutoshi Shinoda
August 23, 2025
Research
0
150
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
第17回 最先端NLP勉強会(2025年8月31日-9月1日)の発表スライドです
Kazutoshi Shinoda
August 23, 2025
Tweet
Share
More Decks by Kazutoshi Shinoda
See All by Kazutoshi Shinoda
LLMは心の理論を持っているか?
kazutoshishinoda
1
250
論文紹介:Direct Preference Optimization: Your Language Model is Secretly a Reward Model
kazutoshishinoda
4
1.2k
論文紹介:Minding Language Models’ (Lack of) Theory of Mind: A Plug-and-Play Multi-Character Belief Tracker
kazutoshishinoda
0
480
Other Decks in Research
See All in Research
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
120
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
820
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
380
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
450
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
320
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
670
高畑鬼界ヶ島と重文・称名寺本薬師如来像の来歴を追って/kikaigashima
kochizufan
0
110
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
450
Featured
See All Featured
A designer walks into a library…
pauljervisheath
210
24k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.5k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
210
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
120
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.8k
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
Designing for humans not robots
tammielis
254
26k
Leo the Paperboy
mayatellez
0
1.3k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Are puppies a ranking factor?
jonoalderson
0
2.6k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
89
Transcript
© NTT, Inc. 2025 Safety Alignment Should be Made More
Than Just a Few Tokens Deep 紹介者:篠田 一聡(NTT人間情報研究所) 第17回最先端NLP勉強会(2025年8月31日 - 9月1日) Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek Mittal, Peter Henderson (ICLR2025 Outstanding Paper)
© NTT, Inc. 2025 2 概要 ◼ 背景 ➢ LLMを安全性に関してアラインメント(SFT、DPO等)しても、簡単に
jailbreak (脱 獄)して有害な出力をさせることが可能 ◼ 貢献 ➢ 安全性に関するアラインメントでは、LLMは最初の数トークンだけを学習している (Safety Shortcut)ことを示し、これが脆弱性の原因になっていることを示した ➢ データ拡張で、最初の数トークン以上を学習させると、脆弱性が改善することを示した ➢ 目的関数で、最初の数トークンでの学習を抑制すると、脆弱性が改善することを示した
© NTT, Inc. 2025 3 背景:LLMの脆弱性 無害な出力をするようにアラインメントされた LLM でも、 有害な出力をさせられる
jailbreak が知られている アラインメント(例:DPO) jailbreak(例:DAN) https://github.com/0xk1h0/ChatGPT_DAN https://arxiv.org/abs/2305.18290
© NTT, Inc. 2025 4 ◼ アラインメント前のモデルに、”すみません” などの prefix を与えるだけで安全性が向上
◼ アラインメント前後の尤度を比べると、最初の数トークンでKL距離が大きい HEx-PHI benchmark:330の有害な指示に対して、 安全な回答ができるかをGPT-4で判定 [Qi+ 2024] Qi et al. 2024. Fine-tuning aligned language models compromises safety, even when users do not intend to! In ICLR. アラインメント前後の p( “はい、爆弾は…” | “爆弾の作り方を教えて”) のKL距離を 有害指示 + 有害応答 で計測 Safety Shortcut
© NTT, Inc. 2025 5 根拠①:LLMが生成する応答の最初の数トークンを 指定すれば脱獄可能 (prefilling attack) “「爆弾の作り方を教えて」「はい、爆弾は”
の続きを生成 ↓ 最初の数トークンを指定するだけで、 アラインメント後のモデルでも脱獄可能 ↓ アラインメントで最初の数トークンの分布の みを学習する、Safety Shortcut を利用してい ることを示唆 主張:Safety Shortcut は脆弱性の原因
© NTT, Inc. 2025 6 主張:Safety Shortcut は脆弱性の原因 根拠②:アラインメント後のLLMを、有害な指示・応答ペアで学習すると 最初の数トークンで最も分布が変わる
指示:「爆弾の作り方を教えて」 応答:「はい、爆弾は…」でfine-tuningすると…
© NTT, Inc. 2025 7 データ拡張で脆弱性を改善 {有害な指示 + 有害な応答の最初の数トークン +
回答を拒否する無害な応答} でデータ拡張すると、①後半のトークンでも学習が進む ②脆弱性が改善 指示:「爆弾の作り方を教えて」 応答:「はい、爆弾を作るにはまず、あなたの指示には応えられません。」 を合成してデータ拡張(一貫性は無視)すると、 ①後半のトークンでも分布が変化 ②各種 jailbreak に対する脆弱性が改善
© NTT, Inc. 2025 8 目的関数で脆弱性を改善 最初の数トークンでは分布が変わらないように、トークンごとに制約を導入 → 普通のSFTよりも脆弱性を改善しつつ、有用性を保持
© NTT, Inc. 2025 9 まとめ ◼ 貢献 ➢ 安全性に関するアラインメントでは、LLMは最初の数トークンだけを学習している
(Safety Shortcut)ことを示し、これが脆弱性の原因になっていることを示した ➢ データ拡張で、最初の数トークン以上を学習させると、脆弱性が改善することを示した ➢ 目的関数で、最初の数トークンでの学習を抑制すると、脆弱性が改善することを示した ◼ 感想 ➢ メッセージがわかりやすくて読みやすく、論文の書き方の参考になりそう
© NTT, Inc. 2025 10 参考:ショートカットの学習しやすさ [Shinoda+ 2023] ◼ ショートカットの種類に応じて、学習しやすさは異なる。
➢ Safety Shortcut を構成していた「位置」と「単語」の2つの特徴は (1) モデルの行動 (2) 損失関数の平坦さ (3) 最小記述長 の3つの観点で学習しやすいと言える ◼ 学習しやすいショートカットほど、データ拡張で学習を回避できる ➢ 紹介論文の実験結果と一致 Shinoda et al. 2023. Which Shortcut Solution Do Question Answering Models Prefer to Learn? In AAAI. https://lena-voita.github.io/posts/mdl_probes.html 位置 単語