Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介:Safety Alignment Should be Made More Than ...
Search
Kazutoshi Shinoda
August 23, 2025
Research
0
110
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
第17回 最先端NLP勉強会(2025年8月31日-9月1日)の発表スライドです
Kazutoshi Shinoda
August 23, 2025
Tweet
Share
More Decks by Kazutoshi Shinoda
See All by Kazutoshi Shinoda
LLMは心の理論を持っているか?
kazutoshishinoda
1
170
論文紹介:Direct Preference Optimization: Your Language Model is Secretly a Reward Model
kazutoshishinoda
4
1.2k
論文紹介:Minding Language Models’ (Lack of) Theory of Mind: A Plug-and-Play Multi-Character Belief Tracker
kazutoshishinoda
0
460
Other Decks in Research
See All in Research
超高速データサイエンス
matsui_528
1
190
投資戦略202508
pw
0
570
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
120
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
270
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
410
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
190
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
110
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
3
220
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.7k
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
190
Remote sensing × Multi-modal meta survey
satai
4
550
アニメにおける宇宙猫ミームとその表現
yttrium173340
0
110
Featured
See All Featured
Product Roadmaps are Hard
iamctodd
PRO
55
11k
GraphQLとの向き合い方2022年版
quramy
49
14k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Balancing Empowerment & Direction
lara
5
730
Making the Leap to Tech Lead
cromwellryan
135
9.6k
For a Future-Friendly Web
brad_frost
180
10k
KATA
mclloyd
PRO
32
15k
Gamification - CAS2011
davidbonilla
81
5.5k
Facilitating Awesome Meetings
lara
57
6.6k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
The Cult of Friendly URLs
andyhume
79
6.7k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Transcript
© NTT, Inc. 2025 Safety Alignment Should be Made More
Than Just a Few Tokens Deep 紹介者:篠田 一聡(NTT人間情報研究所) 第17回最先端NLP勉強会(2025年8月31日 - 9月1日) Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek Mittal, Peter Henderson (ICLR2025 Outstanding Paper)
© NTT, Inc. 2025 2 概要 ◼ 背景 ➢ LLMを安全性に関してアラインメント(SFT、DPO等)しても、簡単に
jailbreak (脱 獄)して有害な出力をさせることが可能 ◼ 貢献 ➢ 安全性に関するアラインメントでは、LLMは最初の数トークンだけを学習している (Safety Shortcut)ことを示し、これが脆弱性の原因になっていることを示した ➢ データ拡張で、最初の数トークン以上を学習させると、脆弱性が改善することを示した ➢ 目的関数で、最初の数トークンでの学習を抑制すると、脆弱性が改善することを示した
© NTT, Inc. 2025 3 背景:LLMの脆弱性 無害な出力をするようにアラインメントされた LLM でも、 有害な出力をさせられる
jailbreak が知られている アラインメント(例:DPO) jailbreak(例:DAN) https://github.com/0xk1h0/ChatGPT_DAN https://arxiv.org/abs/2305.18290
© NTT, Inc. 2025 4 ◼ アラインメント前のモデルに、”すみません” などの prefix を与えるだけで安全性が向上
◼ アラインメント前後の尤度を比べると、最初の数トークンでKL距離が大きい HEx-PHI benchmark:330の有害な指示に対して、 安全な回答ができるかをGPT-4で判定 [Qi+ 2024] Qi et al. 2024. Fine-tuning aligned language models compromises safety, even when users do not intend to! In ICLR. アラインメント前後の p( “はい、爆弾は…” | “爆弾の作り方を教えて”) のKL距離を 有害指示 + 有害応答 で計測 Safety Shortcut
© NTT, Inc. 2025 5 根拠①:LLMが生成する応答の最初の数トークンを 指定すれば脱獄可能 (prefilling attack) “「爆弾の作り方を教えて」「はい、爆弾は”
の続きを生成 ↓ 最初の数トークンを指定するだけで、 アラインメント後のモデルでも脱獄可能 ↓ アラインメントで最初の数トークンの分布の みを学習する、Safety Shortcut を利用してい ることを示唆 主張:Safety Shortcut は脆弱性の原因
© NTT, Inc. 2025 6 主張:Safety Shortcut は脆弱性の原因 根拠②:アラインメント後のLLMを、有害な指示・応答ペアで学習すると 最初の数トークンで最も分布が変わる
指示:「爆弾の作り方を教えて」 応答:「はい、爆弾は…」でfine-tuningすると…
© NTT, Inc. 2025 7 データ拡張で脆弱性を改善 {有害な指示 + 有害な応答の最初の数トークン +
回答を拒否する無害な応答} でデータ拡張すると、①後半のトークンでも学習が進む ②脆弱性が改善 指示:「爆弾の作り方を教えて」 応答:「はい、爆弾を作るにはまず、あなたの指示には応えられません。」 を合成してデータ拡張(一貫性は無視)すると、 ①後半のトークンでも分布が変化 ②各種 jailbreak に対する脆弱性が改善
© NTT, Inc. 2025 8 目的関数で脆弱性を改善 最初の数トークンでは分布が変わらないように、トークンごとに制約を導入 → 普通のSFTよりも脆弱性を改善しつつ、有用性を保持
© NTT, Inc. 2025 9 まとめ ◼ 貢献 ➢ 安全性に関するアラインメントでは、LLMは最初の数トークンだけを学習している
(Safety Shortcut)ことを示し、これが脆弱性の原因になっていることを示した ➢ データ拡張で、最初の数トークン以上を学習させると、脆弱性が改善することを示した ➢ 目的関数で、最初の数トークンでの学習を抑制すると、脆弱性が改善することを示した ◼ 感想 ➢ メッセージがわかりやすくて読みやすく、論文の書き方の参考になりそう
© NTT, Inc. 2025 10 参考:ショートカットの学習しやすさ [Shinoda+ 2023] ◼ ショートカットの種類に応じて、学習しやすさは異なる。
➢ Safety Shortcut を構成していた「位置」と「単語」の2つの特徴は (1) モデルの行動 (2) 損失関数の平坦さ (3) 最小記述長 の3つの観点で学習しやすいと言える ◼ 学習しやすいショートカットほど、データ拡張で学習を回避できる ➢ 紹介論文の実験結果と一致 Shinoda et al. 2023. Which Shortcut Solution Do Question Answering Models Prefer to Learn? In AAAI. https://lena-voita.github.io/posts/mdl_probes.html 位置 単語