Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Claude Agent SDKで始める実践的AIエージェント開発
Search
西岡 賢一郎 (Kenichiro Nishioka)
October 25, 2025
Technology
0
11
Claude Agent SDKで始める実践的AIエージェント開発
機械学習の社会実装勉強会第52回 (
https://machine-learning-workshop.connpass.com/event/372543/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
October 25, 2025
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
AIがAIを拡張する時代へ ~Claude Codeで実現する高品質文書作成~
knishioka
0
74
MLflow × LLM 生成AI時代の実験管理とリスク低減
knishioka
0
110
Conductor: Git Worktreeで実現する並列AIコーディング
knishioka
0
82
ローカルLLMでファインチューニング
knishioka
0
1.2k
自作MCPサーバ入門
knishioka
0
54
成功と失敗の実像と生成AI時代の展望
knishioka
0
75
MCPが変えるAIとの協働
knishioka
1
230
LangFlowではじめるRAG・マルチエージェントシステム構築
knishioka
0
290
DeepSeekを使ったローカルLLM構築
knishioka
0
240
Other Decks in Technology
See All in Technology
「タコピーの原罪」から学ぶ間違った”支援” / the bad support of Takopii
piyonakajima
0
110
React19.2のuseEffectEventを追う
maguroalternative
2
590
「魔法少女まどか☆マギカ Magia Exedra」におけるバックエンドの技術選定
gree_tech
PRO
0
100
データ戦略部門 紹介資料
sansan33
PRO
1
3.8k
クラウドとリアルの融合により、製造業はどう変わるのか?〜クラスメソッドの製造業への取組と共に〜
hamadakoji
0
330
FinOps について (ちょっと) 本気出して考えてみた
skmkzyk
0
190
「魔法少女まどか☆マギカ Magia Exedra」のIPのキャラクターを描くための3Dルック開発
gree_tech
PRO
0
140
物体検出モデルでシイタケの収穫時期を自動判定してみた。 #devio2025
lamaglama39
0
270
CREが作る自己解決サイクルSlackワークフローに組み込んだAIによる社内ヘルプデスク改革 #cre_meetup
bengo4com
0
270
Copilot Studio ハンズオン - 生成オーケストレーションモード
tomoyasasakimskk
0
190
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
0
190
Node.js 2025: What's new and what's next
ruyadorno
0
980
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.8k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
How to train your dragon (web standard)
notwaldorf
97
6.3k
The Language of Interfaces
destraynor
162
25k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
115
20k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Embracing the Ebb and Flow
colly
88
4.9k
Thoughts on Productivity
jonyablonski
70
4.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Transcript
Claude Agent SDKで始める実践的AIエージェント開発 自律型AIエージェント開発フレームワーク 機械学習の社会実装勉強会 第52回 2025年10月25日 発表者:西岡 賢一郎
開発現場のよくある課題 毎日同じコードレビューやドキュメント生 成を繰り返している 調査タスク:Web検索 → 整理 → レポート
作成に何時間も 長時間タスクで途中で情報が失われる ツール統合に複雑なコードが必要
なぜ従来のAIでは解決できないのか 単発対応のみ コンテキストの壁 統合の困難 これらの限界を超えるのがAgent SDKです 1回の質問に1回の回答
• ステップごとに人間が指示 • 長い会話で情報が失われる • トークン制限に到達 • ファイル操作不可 • システムアクセス困難 •
Claude Agent SDK Anthropic社がClaude Codeを構築した実際のインフラ 1 実績ある基盤 Anthropic社の自社製品と同じインフラ 2 より広い用途へ
2025年9月に「Claude Code SDK」から改名 3 すぐ使える プロダクション投入可能 2025年9月29日 Anthropic社リリース
「指示」から「依頼」へ 従来のAI 人間が毎回指示: 人間が毎回指示する必要あり Agent SDK エージェントが自律実行: 「プロジェクト分析してレポート作成して」 目標を伝えるだけで完結 ファイルを読んで
• それを分析して • レポートを作って • 自動で全ステップ実行 • ファイル検索 → 分析 → レポート作成 •
なぜClaude Agent SDKを選ぶのか 1 プロダクション実績 Anthropic社の自社製品と同じ基盤 大規模運用で実証済みの信頼性 2 自律実行 エージェントループで自己判断
複数ステップを人間の介入なしで実行 3 自動コンテキスト管理 長時間タスクでも制限に達しない 重要情報を自動で保持 (詳細は次スライドへ)
なぜClaude Agent SDKを選ぶのか(続き) 4. 豊富なツール ファイル操作(Glob、Read、Write)やコード実行 (Bash、Python)などの基本ツールが組み込まれています 5.
シンプルなAPI すぐに始められるシンプルな設計と、必要に応じて高度な制 御も可能 ファイル操作、コード実行、Web検索 • MCP連携で拡張可能 • 基本:query() 関数だけで開始 • 高度:ClaudeSDKClient • ストリーミング対応 •
こんな使い方ができる Agent SDKで実現できる5つの活用例 開発支援 コードレビュー、ドキュメント生成、リファクタ リング提案 リサーチ自動化 Web検索
→ 分析 → レポート生成の完全自動化 プロジェクト分析 ファイル構造分析、統計計算、品質評価 データ処理 ファイル読込 → 加工 → 可視化 → 保存 ワークフロー自動化 複数ツールを組み合わせた複雑な処理の自動化
実践デモ:こんなことができる github.com/knishioka/machine-learning-workshop/claude_code/agent_sdk プロジェクト自動分析 ファイル検索 → 内容分析 → レポート生成
README自動生成 コード読取 → 構造理解 → ドキュメント作成 リサーチエージェント Web検索 → 情報整理 → レポート作成
例:プロジェクト自動分析 入力 $ python project_analyzer.py examples/01_basic たった1行のコマンドで起動
動作 1. ファイル検索(自動) 2. 内容分析(自動) 3. 統計計算(自動) 4. レポート生成(自動) 人間の介入なしで実行 結果 • Pythonファイル:2個(234行) • ドキュメント:高品質 • コード構造:優れた設計 所要時間:約20秒
主要フレームワーク比較(2025年) Claude Agent SDK プロダクション単一エージェント • 自動コンテキスト管理 • 組み込みガバナンス •
ストリーミング対応 LangChain マルチモデル統合 • ベンダー非依存 • RAGパイプライン • 豊富な統合 OpenAI Agents SDK マルチエージェント連携 • 軽量・高速 • エージェント間連携 • ミニマルな設計
どれを選ぶべきか Claude Agent SDK プロダクション品質が必要 長時間の自律タスク 明確な権限管理
LangChain 複数LLMの使い分け ベンダーロックイン回避 OpenAI Agents SDK 複数エージェントの協調 軽量な実装
5分で始める 1 インストール pip install claude-agent-sdk 2 APIキー取得 console.anthropic.com 3
環境設定 export ANTHROPIC_API_KEY=your_key 4 実行 python examples/01_basic/hello_agent.py
学習リソース 公式ドキュメント docs.claude.com/en/api/agent- sdk/overview API完全リファレンス アーキテクチャ解説 ベストプラクティス 公式Python
SDK github.com/anthropics/claude- agent-sdk-python 最新のSDKコード サンプルコード リリース情報 デモプロジェクト github.com/knishioka/machine- learning- workshop/claude_code/agent_sdk 段階的デモコード 日本語ドキュメント すぐに試せる環境
Claude Agent SDK:開発の新しいパラダイム デモを試す github.com/knishioka/machine-learning-workshop/claude_code/agent_sdk Anthropic社のプロダクションインフラ 1 自律的な複数ステップ実行 2 自動コンテキスト管理
3 幅広い活用可能性 4 今すぐ始められる 5 機械学習の社会実装勉強会 第52回 / 2025年10月25日 / 西岡 賢一郎