Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangGraph Templatesによる効率的なワークフロー構築
Search
西岡 賢一郎 (Kenichiro Nishioka)
October 30, 2024
Technology
0
120
LangGraph Templatesによる効率的なワークフロー構築
機械学習の社会実装勉強会第40回 (
https://machine-learning-workshop.connpass.com/event/334075/
) の発表資料です.
西岡 賢一郎 (Kenichiro Nishioka)
October 30, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
DeepSeekを使ったローカルLLM構築
knishioka
0
77
業務ツールをAIエージェントとつなぐ - Composio
knishioka
0
150
LangGraphを使ったHuman in the loop
knishioka
0
170
AIシステムの品質と成功率を向上させるReflection
knishioka
0
32
AIエージェントの開発に特化した統合開発環境 LangGraph Studio
knishioka
0
160
LangGraphを用いたAIアプリケーションにおけるメモリ永続化の実践
knishioka
1
450
Text-to-SQLをLangSmithで評価
knishioka
0
210
効果的なLLM評価法 LangSmithの技術と実践
knishioka
1
410
LangGraphのノード・エッジ・ルーティングを深堀り
knishioka
1
610
Other Decks in Technology
See All in Technology
コンピュータビジョンの社会実装について考えていたらゲームを作っていた話
takmin
1
490
ESXi で仮想化した ARM 環境で LLM を動作させてみるぞ
unnowataru
0
130
依存パッケージの更新はコツコツが勝つコツ! / phpcon_nagoya2025
blue_goheimochi
3
180
管理者しか知らないOutlookの裏側のAIを覗く#AzureTravelers
hirotomotaguchi
2
510
Windows の新しい管理者保護モード
murachiakira
0
180
生成 AI プロダクトを育てる技術 〜データ品質向上による継続的な価値創出の実践〜
icoxfog417
PRO
5
1.8k
「正しく」失敗できる チームの作り方 〜リアルな事例から紐解く失敗を恐れない組織とは〜 / A team that can fail correctly
i35_267
1
540
SA Night #2 FinatextのSA思想/SA Night #2 Finatext session
satoshiimai
1
150
Reading Code Is Harder Than Writing It
trishagee
2
110
分解して理解する Aspire
nenonaninu
2
490
運用しているアプリケーションのDBのリプレイスをやってみた
miura55
1
830
Iceberg Meetup Japan #1 : Iceberg and Databricks
databricksjapan
0
180
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Building an army of robots
kneath
303
45k
KATA
mclloyd
29
14k
4 Signs Your Business is Dying
shpigford
182
22k
Practical Orchestrator
shlominoach
186
10k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
How to Think Like a Performance Engineer
csswizardry
22
1.4k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
175
52k
The Invisible Side of Design
smashingmag
299
50k
How GitHub (no longer) Works
holman
314
140k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
Transcript
LangGraph Templatesによる 効率的なワークフロー構築 2024/10/26 機械学習の社会実装勉強会 第40回 1
LangGraph Studio Template 2
LangGraph Template LangGraph Templateは、PythonとJavaScriptで利用可能なテンプレートレポジトリ 実体はGitHub上のリポジトリ: (langgraph:///template? githubUrl=https%3A%2F%2Fgithub.com%2Flangchain-ai%2Freact-agent) 3
なぜLangGraph Templateが必要か? 簡単な導入とカスタマイズ: テンプレートは、リポジトリをクローンすることで内 部の機能を簡単に修正できるため、プロンプトやロジックの変更が容易 デバッグと展開のしやすさ: テンプレートはLangGraph Studioでデバッグし、ワン クリックでLangGraph Cloudに展開できる構造
高いカスタマイズ性: エージェントの内部コードを自由に変更できるため、開発者 が自分のニーズに合わせた詳細な制御可能 4
現在提供されているTemplate New LangGraph Project: https://github.com/langchain-ai/new-langgraph-project Langchain Memory Agent: https://github.com/langchain-ai/memory-agent Data
Enrichment: https://github.com/langchain-ai/data-enrichment React Agent: https://github.com/langchain-ai/react-agent Retrieval Agent Template: https://github.com/langchain-ai/retrieval-agent-template 5
New LangGraph Project 概要: LangGraph Studio用にデザインされたChatBot。永続的なチャットメモリを保持。 機能: ノードとエッジで表現されるデータフローの可視化 複雑なワークフローを細かく制御できるカスタマイズ性 エージェントの組織化と管理
利点: テンプレートを活用した迅速な開発 Studioでのデバッグとクラウドへのワンクリック展開 6
Langchain Memory Agent 概要: 過去のやり取りや状態を記憶し、長期タスクや対話の継続を可能にするエージェント 機能: 会話やタスクの履歴を記憶するメモリ機能 過去の情報を利用してインタラクションを最適化 長期タスクや複雑な対話の管理 利点:
パーソナライズされたやり取りの実現 タスクの進行状況に応じた応答の提供 長期的な対話に適した設計 7
Data Enrichment 概要: 外部情報を使って既存データを補完・強化するエージェント 機能: 外部APIやデータソースからの情報取得 取得データの分析と統合 自動的なデータ補完プロセス 利点: データの価値と精度の向上
研究やデータ収集に適した設計 複数のデータソースを活用した情報の強化 8
React Agent 概要: リアルタイムで環境の変化に反応し、動的に行動するエージェント 機能: 状況に応じたリアルタイム応答 環境変化に基づく動的な意思決定 タスクを繰り返し実行し、適切なツールを選択 利点: リアルタイム処理が必要なアプリケーションに最適
環境に即応するインタラクティブなエージェント設計 高い応答性 9
Retrieval Agent Template 概要: 情報取得に特化したエージェントのテンプレート 機能: クエリに基づくデータ検索と取得 外部ソースや特定のデータセットからの情報抽出 検索結果の最適化と自動化 利点:
カスタマイズ可能な情報取得エージェントの作成 データ検索と取得プロセスの効率化 特定データソースに簡単に適応 10