Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangGraph Templatesによる効率的なワークフロー構築
Search
西岡 賢一郎 (Kenichiro Nishioka)
October 30, 2024
Technology
0
210
LangGraph Templatesによる効率的なワークフロー構築
機械学習の社会実装勉強会第40回 (
https://machine-learning-workshop.connpass.com/event/334075/
) の発表資料です.
西岡 賢一郎 (Kenichiro Nishioka)
October 30, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
MLflow × LLM 生成AI時代の実験管理とリスク低減
knishioka
0
47
Conductor: Git Worktreeで実現する並列AIコーディング
knishioka
0
75
ローカルLLMでファインチューニング
knishioka
0
600
自作MCPサーバ入門
knishioka
0
32
成功と失敗の実像と生成AI時代の展望
knishioka
0
62
MCPが変えるAIとの協働
knishioka
1
210
LangFlowではじめるRAG・マルチエージェントシステム構築
knishioka
0
230
DeepSeekを使ったローカルLLM構築
knishioka
0
230
業務ツールをAIエージェントとつなぐ - Composio
knishioka
1
260
Other Decks in Technology
See All in Technology
トヨタ生産方式(TPS)入門
recruitengineers
PRO
6
1.4k
ライブサービスゲームQAのパフォーマンス検証による品質改善の取り組み
gree_tech
PRO
0
430
実践データベース設計 ①データベース設計概論
recruitengineers
PRO
4
2k
実践AIガバナンス
asei
3
290
ヘブンバーンズレッドのレンダリングパイプライン刷新
gree_tech
PRO
0
440
Figma + Storybook + PlaywrightのMCPを使ったフロントエンド開発
yug1224
10
3.6k
PRDの正しい使い方 ~AI時代にも効く思考・対話・成長ツールとして~
techtekt
PRO
0
310
AIのグローバルトレンド2025 #scrummikawa / global ai trend
kyonmm
PRO
0
100
実運用で考える PGO
kworkdev
PRO
0
130
AIエージェントの活用に重要な「MCP (Model Context Protocol)」とは何か
masayamoriofficial
0
250
ソフトウェア エンジニアとしての 姿勢と心構え
recruitengineers
PRO
26
12k
JuniorからSeniorまで: DevOpsエンジニアの成長ロードマップ
yuriemori
2
350
Featured
See All Featured
Become a Pro
speakerdeck
PRO
29
5.5k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Designing Experiences People Love
moore
142
24k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
A Tale of Four Properties
chriscoyier
160
23k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Site-Speed That Sticks
csswizardry
10
800
Designing for humans not robots
tammielis
253
25k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Optimizing for Happiness
mojombo
379
70k
Transcript
LangGraph Templatesによる 効率的なワークフロー構築 2024/10/26 機械学習の社会実装勉強会 第40回 1
LangGraph Studio Template 2
LangGraph Template LangGraph Templateは、PythonとJavaScriptで利用可能なテンプレートレポジトリ 実体はGitHub上のリポジトリ: (langgraph:///template? githubUrl=https%3A%2F%2Fgithub.com%2Flangchain-ai%2Freact-agent) 3
なぜLangGraph Templateが必要か? 簡単な導入とカスタマイズ: テンプレートは、リポジトリをクローンすることで内 部の機能を簡単に修正できるため、プロンプトやロジックの変更が容易 デバッグと展開のしやすさ: テンプレートはLangGraph Studioでデバッグし、ワン クリックでLangGraph Cloudに展開できる構造
高いカスタマイズ性: エージェントの内部コードを自由に変更できるため、開発者 が自分のニーズに合わせた詳細な制御可能 4
現在提供されているTemplate New LangGraph Project: https://github.com/langchain-ai/new-langgraph-project Langchain Memory Agent: https://github.com/langchain-ai/memory-agent Data
Enrichment: https://github.com/langchain-ai/data-enrichment React Agent: https://github.com/langchain-ai/react-agent Retrieval Agent Template: https://github.com/langchain-ai/retrieval-agent-template 5
New LangGraph Project 概要: LangGraph Studio用にデザインされたChatBot。永続的なチャットメモリを保持。 機能: ノードとエッジで表現されるデータフローの可視化 複雑なワークフローを細かく制御できるカスタマイズ性 エージェントの組織化と管理
利点: テンプレートを活用した迅速な開発 Studioでのデバッグとクラウドへのワンクリック展開 6
Langchain Memory Agent 概要: 過去のやり取りや状態を記憶し、長期タスクや対話の継続を可能にするエージェント 機能: 会話やタスクの履歴を記憶するメモリ機能 過去の情報を利用してインタラクションを最適化 長期タスクや複雑な対話の管理 利点:
パーソナライズされたやり取りの実現 タスクの進行状況に応じた応答の提供 長期的な対話に適した設計 7
Data Enrichment 概要: 外部情報を使って既存データを補完・強化するエージェント 機能: 外部APIやデータソースからの情報取得 取得データの分析と統合 自動的なデータ補完プロセス 利点: データの価値と精度の向上
研究やデータ収集に適した設計 複数のデータソースを活用した情報の強化 8
React Agent 概要: リアルタイムで環境の変化に反応し、動的に行動するエージェント 機能: 状況に応じたリアルタイム応答 環境変化に基づく動的な意思決定 タスクを繰り返し実行し、適切なツールを選択 利点: リアルタイム処理が必要なアプリケーションに最適
環境に即応するインタラクティブなエージェント設計 高い応答性 9
Retrieval Agent Template 概要: 情報取得に特化したエージェントのテンプレート 機能: クエリに基づくデータ検索と取得 外部ソースや特定のデータセットからの情報抽出 検索結果の最適化と自動化 利点:
カスタマイズ可能な情報取得エージェントの作成 データ検索と取得プロセスの効率化 特定データソースに簡単に適応 10