Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangGraphでマルチエージェントワークフローを構築
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
西岡 賢一郎 (Kenichiro Nishioka)
April 28, 2024
Technology
0
580
LangGraphでマルチエージェントワークフローを構築
機械学習の社会実装勉強会第34回 (
https://machine-learning-workshop.connpass.com/event/316112/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
April 28, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
680
Claude Codeを使った情報整理術
knishioka
20
13k
Claude Skillsで"仕事の型"を配布する
knishioka
0
310
Claude Agent SDKで始める実践的AIエージェント開発
knishioka
0
140
AIがAIを拡張する時代へ ~Claude Codeで実現する高品質文書作成~
knishioka
0
180
MLflow × LLM 生成AI時代の実験管理とリスク低減
knishioka
0
170
Conductor: Git Worktreeで実現する並列AIコーディング
knishioka
0
140
ローカルLLMでファインチューニング
knishioka
1
2.4k
自作MCPサーバ入門
knishioka
0
160
Other Decks in Technology
See All in Technology
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
370
Context Engineeringの取り組み
nutslove
0
380
今こそ学びたいKubernetesネットワーク ~CNIが繋ぐNWとプラットフォームの「フラッと」な対話
logica0419
5
540
OWASP Top 10:2025 リリースと 少しの日本語化にまつわる裏話
okdt
PRO
3
850
Claude Code for NOT Programming
kawaguti
PRO
1
110
22nd ACRi Webinar - ChipTip Technology Eric-san's slide
nao_sumikawa
0
100
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
270
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
170
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
250
1,000 にも届く AWS Organizations 組織のポリシー運用をちゃんとしたい、という話
kazzpapa3
0
190
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
360
pool.ntp.orgに ⾃宅サーバーで 参加してみたら...
tanyorg
0
1.4k
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
From π to Pie charts
rasagy
0
130
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
310
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
What's in a price? How to price your products and services
michaelherold
247
13k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
The World Runs on Bad Software
bkeepers
PRO
72
12k
So, you think you're a good person
axbom
PRO
2
1.9k
Transcript
LangGraphで マルチエージェントワークフローを構築 2024/04/26 第34回勉強会
自己紹介 • 名前: 西岡 賢一郎 ◦ Twitter: @ken_nishi ◦ note:
https://note.com/kenichiro ◦ YouTube: 【経営xデータサイエンスx開発】西岡 賢一郎のチャンネル (https://www.youtube.com/channel/UCpiskjqLv1AJg64jFCQIyBg) • 経歴 ◦ 東京大学で位置予測アルゴリズムを研究し博士 (学術) を取得 ◦ 東京大学の博士課程在学中にデータサイエンスをもとにしたサービスを提供する株式会社ト ライディアを設立 ◦ トライディアを別のIT会社に売却し、CTOとして3年半務め、2021年10月末にCTOを退職 ◦ CDPのスタートアップ (Sr. PdM)・株式会社データインフォームド (CEO)・株式会社ディース タッツ (CTO) ◦ 自社および他社のプロダクト開発チーム・データサイエンスチームの立ち上げ経験
はじめに 本日の発表内容 • LangGraph紹介 - LangChain基盤のライブラリ、言語モデル使用の多アク ターアプリケーション構築支援 • LangChain統合 -
LangChain Expression Language拡張、エージェント間の 協調計算 • プレゼンテーション目的 - LangGraph基本概念学習、マルチエージェント ワークフロー構築方法説明
マルチエージェントとは? 1. マルチエージェントシステム定義 - 複数の独立した エージェントが協力し合うシステム。 2. 独立性と協働性 - 各エージェントは独自のタスクと
責任を持ちつつ、共通の目標達成のために互いに情 報やリソースを共有。 3. 通信と協調 - エージェント間の効果的な通信と協調 により、より複雑な問題解決が可能に。
マルチエージェントの利点 1. 効率性の向上 - 複数のエージェントが特定のタスク に特化し、同時に異なる作業を進行することで全体 の処理速度が向上。 2. 複雑な問題の分割 -
大規模または複雑な問題を小さ な単位に分割し、それぞれのエージェントが一部を 担当することで問題全体の解決を容易に。 3. 拡張性と柔軟性 - 新たなエージェントの追加や既存 のエージェントの調整を通じて、システム全体の能 力を柔軟に調整可能。 4. 耐障害性の向上 - 一つのエージェントが停止または 障害を起こしても、他のエージェントがその機能を 代替またはサポートすることでシステム全体のダウ ンタイムを最小限に抑制。
LangGraphの主要機能 1. サイクルの管理 - LangGraphを使用して、ワークフ ローにおける繰り返し処理や循環的なタスクを効果 的に管理。 2. 状態管理 -
各エージェントの状態を追跡し、ワーク フロー全体の状態を一元管理。 3. LangChainとの統合 - LangChainの機能を拡張し、 より複雑なマルチエージェントシステムをサポー ト。 4. エッジとノードの制御 - グラフ内の各ノード(エー ジェント)とエッジ(通信パス)を詳細に設定し、 精密なワークフロー制御を実現。 5. 条件付きルーティング - 条件に基づいて動的にワー クフローの経路を変更する機能を提供。
実践的な例 • LangGraphの例 a. スーパーバイザーが各エージェントを管理 b. マルチエージェントで協力 c. 階層的エージェントチーム •
LangGraphのサンプルが充実している https://github.com/langchain-ai/langgraph/tree/main/examples
スーパーバイザーが各エージェントを管理 一つのスーパーバイザーエージェント が他のエージェントを管理し、タスク の進行状況を監督する例。異なるエー ジェントが独立してタスクを進行させ ながらも、全体の調整をスーパーバイ ザーが行う構成。
マルチエージェントで協力 複数のエージェントが協力してタスク を遂行する例。エージェントが情報を 共有しながら協力する様子を示すコー ドから派生。
階層的エージェント 複数レベルのエージェントが階層的に 協力する構造。上位のエージェントが 下位のエージェントの活動を指示し、 それぞれのエージェントが部分的なタ スクを担当。
デモ • LangGraphの簡単な使い方を紹介 • LangGraphを使った複雑なアプリケーション構築例は次回以降の勉強会で紹 介する予定