$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangGraphでマルチエージェントワークフローを構築
Search
西岡 賢一郎 (Kenichiro Nishioka)
April 28, 2024
Technology
0
570
LangGraphでマルチエージェントワークフローを構築
機械学習の社会実装勉強会第34回 (
https://machine-learning-workshop.connpass.com/event/316112/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
April 28, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
Claude Skillsで"仕事の型"を配布する
knishioka
0
68
Claude Agent SDKで始める実践的AIエージェント開発
knishioka
0
73
AIがAIを拡張する時代へ ~Claude Codeで実現する高品質文書作成~
knishioka
0
110
MLflow × LLM 生成AI時代の実験管理とリスク低減
knishioka
0
130
Conductor: Git Worktreeで実現する並列AIコーディング
knishioka
0
88
ローカルLLMでファインチューニング
knishioka
0
1.7k
自作MCPサーバ入門
knishioka
0
77
成功と失敗の実像と生成AI時代の展望
knishioka
0
86
MCPが変えるAIとの協働
knishioka
1
240
Other Decks in Technology
See All in Technology
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
550
How native lazy objects will change Doctrine and Symfony forever
beberlei
1
380
たかが特別な時間の終わり / It's Only the End of Special Time
watany
5
1.6k
バグハンター視点によるサプライチェーンの脆弱性
scgajge12
2
510
Databricksによるエージェント構築
taka_aki
1
120
eBPFとwaruiBPF
sat
PRO
4
1.7k
一億総業務改善を支える社内AIエージェント基盤の要諦
yukukotani
8
2.8k
MS Ignite 2025で発表されたFoundry IQをRecap
satodayo
3
240
AI時代の開発フローとともに気を付けたいこと
kkamegawa
0
410
AIにおける自由の追求
shujisado
3
470
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
650
Docker, Infraestructuras seguras y Hardening
josejuansanchez
0
150
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
700
Producing Creativity
orderedlist
PRO
348
40k
A Tale of Four Properties
chriscoyier
162
23k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Embracing the Ebb and Flow
colly
88
4.9k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.1k
How GitHub (no longer) Works
holman
316
140k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Designing Experiences People Love
moore
142
24k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Scaling GitHub
holman
464
140k
Transcript
LangGraphで マルチエージェントワークフローを構築 2024/04/26 第34回勉強会
自己紹介 • 名前: 西岡 賢一郎 ◦ Twitter: @ken_nishi ◦ note:
https://note.com/kenichiro ◦ YouTube: 【経営xデータサイエンスx開発】西岡 賢一郎のチャンネル (https://www.youtube.com/channel/UCpiskjqLv1AJg64jFCQIyBg) • 経歴 ◦ 東京大学で位置予測アルゴリズムを研究し博士 (学術) を取得 ◦ 東京大学の博士課程在学中にデータサイエンスをもとにしたサービスを提供する株式会社ト ライディアを設立 ◦ トライディアを別のIT会社に売却し、CTOとして3年半務め、2021年10月末にCTOを退職 ◦ CDPのスタートアップ (Sr. PdM)・株式会社データインフォームド (CEO)・株式会社ディース タッツ (CTO) ◦ 自社および他社のプロダクト開発チーム・データサイエンスチームの立ち上げ経験
はじめに 本日の発表内容 • LangGraph紹介 - LangChain基盤のライブラリ、言語モデル使用の多アク ターアプリケーション構築支援 • LangChain統合 -
LangChain Expression Language拡張、エージェント間の 協調計算 • プレゼンテーション目的 - LangGraph基本概念学習、マルチエージェント ワークフロー構築方法説明
マルチエージェントとは? 1. マルチエージェントシステム定義 - 複数の独立した エージェントが協力し合うシステム。 2. 独立性と協働性 - 各エージェントは独自のタスクと
責任を持ちつつ、共通の目標達成のために互いに情 報やリソースを共有。 3. 通信と協調 - エージェント間の効果的な通信と協調 により、より複雑な問題解決が可能に。
マルチエージェントの利点 1. 効率性の向上 - 複数のエージェントが特定のタスク に特化し、同時に異なる作業を進行することで全体 の処理速度が向上。 2. 複雑な問題の分割 -
大規模または複雑な問題を小さ な単位に分割し、それぞれのエージェントが一部を 担当することで問題全体の解決を容易に。 3. 拡張性と柔軟性 - 新たなエージェントの追加や既存 のエージェントの調整を通じて、システム全体の能 力を柔軟に調整可能。 4. 耐障害性の向上 - 一つのエージェントが停止または 障害を起こしても、他のエージェントがその機能を 代替またはサポートすることでシステム全体のダウ ンタイムを最小限に抑制。
LangGraphの主要機能 1. サイクルの管理 - LangGraphを使用して、ワークフ ローにおける繰り返し処理や循環的なタスクを効果 的に管理。 2. 状態管理 -
各エージェントの状態を追跡し、ワーク フロー全体の状態を一元管理。 3. LangChainとの統合 - LangChainの機能を拡張し、 より複雑なマルチエージェントシステムをサポー ト。 4. エッジとノードの制御 - グラフ内の各ノード(エー ジェント)とエッジ(通信パス)を詳細に設定し、 精密なワークフロー制御を実現。 5. 条件付きルーティング - 条件に基づいて動的にワー クフローの経路を変更する機能を提供。
実践的な例 • LangGraphの例 a. スーパーバイザーが各エージェントを管理 b. マルチエージェントで協力 c. 階層的エージェントチーム •
LangGraphのサンプルが充実している https://github.com/langchain-ai/langgraph/tree/main/examples
スーパーバイザーが各エージェントを管理 一つのスーパーバイザーエージェント が他のエージェントを管理し、タスク の進行状況を監督する例。異なるエー ジェントが独立してタスクを進行させ ながらも、全体の調整をスーパーバイ ザーが行う構成。
マルチエージェントで協力 複数のエージェントが協力してタスク を遂行する例。エージェントが情報を 共有しながら協力する様子を示すコー ドから派生。
階層的エージェント 複数レベルのエージェントが階層的に 協力する構造。上位のエージェントが 下位のエージェントの活動を指示し、 それぞれのエージェントが部分的なタ スクを担当。
デモ • LangGraphの簡単な使い方を紹介 • LangGraphを使った複雑なアプリケーション構築例は次回以降の勉強会で紹 介する予定