Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangGraphでマルチエージェントワークフローを構築
Search
西岡 賢一郎 (Kenichiro Nishioka)
April 28, 2024
Technology
0
540
LangGraphでマルチエージェントワークフローを構築
機械学習の社会実装勉強会第34回 (
https://machine-learning-workshop.connpass.com/event/316112/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
April 28, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
AIがAIを拡張する時代へ ~Claude Codeで実現する高品質文書作成~
knishioka
0
57
MLflow × LLM 生成AI時代の実験管理とリスク低減
knishioka
0
83
Conductor: Git Worktreeで実現する並列AIコーディング
knishioka
0
79
ローカルLLMでファインチューニング
knishioka
0
920
自作MCPサーバ入門
knishioka
0
44
成功と失敗の実像と生成AI時代の展望
knishioka
0
64
MCPが変えるAIとの協働
knishioka
1
220
LangFlowではじめるRAG・マルチエージェントシステム構築
knishioka
0
260
DeepSeekを使ったローカルLLM構築
knishioka
0
240
Other Decks in Technology
See All in Technology
DataOpsNight#8_Terragruntを用いたスケーラブルなSnowflakeインフラ管理
roki18d
1
230
GC25 Recap+: Advancing Go Garbage Collection with Green Tea
logica0419
1
200
全てGoで作るP2P対戦ゲーム入門
ponyo877
3
1k
SOC2取得の全体像
shonansurvivors
0
100
日経が挑戦するデータ民主化 ~ セルフサービス基盤がもたらす利点と苦悩~/nikkei-tech-talk-37
nikkei_engineer_recruiting
0
200
[2025-09-30] Databricks Genie を利用した分析基盤とデータモデリングの IVRy の現在地
wxyzzz
0
310
Windows で省エネ
murachiakira
0
120
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
8.9k
データ民主化を加速する仕組み作り -BigQuery Sharing の活用-
plaidtech
PRO
0
140
データエンジニアがこの先生きのこるには...?
10xinc
0
350
コンテキストエンジニアリングとは? 考え方と応用方法
findy_eventslides
4
730
【GPT-5本出版記念】npaka による AIの今とこれから と AI時代の生存戦略
npaka
2
790
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
27
2k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Side Projects
sachag
455
43k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
A better future with KSS
kneath
239
17k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Designing for humans not robots
tammielis
254
25k
Statistics for Hackers
jakevdp
799
220k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Transcript
LangGraphで マルチエージェントワークフローを構築 2024/04/26 第34回勉強会
自己紹介 • 名前: 西岡 賢一郎 ◦ Twitter: @ken_nishi ◦ note:
https://note.com/kenichiro ◦ YouTube: 【経営xデータサイエンスx開発】西岡 賢一郎のチャンネル (https://www.youtube.com/channel/UCpiskjqLv1AJg64jFCQIyBg) • 経歴 ◦ 東京大学で位置予測アルゴリズムを研究し博士 (学術) を取得 ◦ 東京大学の博士課程在学中にデータサイエンスをもとにしたサービスを提供する株式会社ト ライディアを設立 ◦ トライディアを別のIT会社に売却し、CTOとして3年半務め、2021年10月末にCTOを退職 ◦ CDPのスタートアップ (Sr. PdM)・株式会社データインフォームド (CEO)・株式会社ディース タッツ (CTO) ◦ 自社および他社のプロダクト開発チーム・データサイエンスチームの立ち上げ経験
はじめに 本日の発表内容 • LangGraph紹介 - LangChain基盤のライブラリ、言語モデル使用の多アク ターアプリケーション構築支援 • LangChain統合 -
LangChain Expression Language拡張、エージェント間の 協調計算 • プレゼンテーション目的 - LangGraph基本概念学習、マルチエージェント ワークフロー構築方法説明
マルチエージェントとは? 1. マルチエージェントシステム定義 - 複数の独立した エージェントが協力し合うシステム。 2. 独立性と協働性 - 各エージェントは独自のタスクと
責任を持ちつつ、共通の目標達成のために互いに情 報やリソースを共有。 3. 通信と協調 - エージェント間の効果的な通信と協調 により、より複雑な問題解決が可能に。
マルチエージェントの利点 1. 効率性の向上 - 複数のエージェントが特定のタスク に特化し、同時に異なる作業を進行することで全体 の処理速度が向上。 2. 複雑な問題の分割 -
大規模または複雑な問題を小さ な単位に分割し、それぞれのエージェントが一部を 担当することで問題全体の解決を容易に。 3. 拡張性と柔軟性 - 新たなエージェントの追加や既存 のエージェントの調整を通じて、システム全体の能 力を柔軟に調整可能。 4. 耐障害性の向上 - 一つのエージェントが停止または 障害を起こしても、他のエージェントがその機能を 代替またはサポートすることでシステム全体のダウ ンタイムを最小限に抑制。
LangGraphの主要機能 1. サイクルの管理 - LangGraphを使用して、ワークフ ローにおける繰り返し処理や循環的なタスクを効果 的に管理。 2. 状態管理 -
各エージェントの状態を追跡し、ワーク フロー全体の状態を一元管理。 3. LangChainとの統合 - LangChainの機能を拡張し、 より複雑なマルチエージェントシステムをサポー ト。 4. エッジとノードの制御 - グラフ内の各ノード(エー ジェント)とエッジ(通信パス)を詳細に設定し、 精密なワークフロー制御を実現。 5. 条件付きルーティング - 条件に基づいて動的にワー クフローの経路を変更する機能を提供。
実践的な例 • LangGraphの例 a. スーパーバイザーが各エージェントを管理 b. マルチエージェントで協力 c. 階層的エージェントチーム •
LangGraphのサンプルが充実している https://github.com/langchain-ai/langgraph/tree/main/examples
スーパーバイザーが各エージェントを管理 一つのスーパーバイザーエージェント が他のエージェントを管理し、タスク の進行状況を監督する例。異なるエー ジェントが独立してタスクを進行させ ながらも、全体の調整をスーパーバイ ザーが行う構成。
マルチエージェントで協力 複数のエージェントが協力してタスク を遂行する例。エージェントが情報を 共有しながら協力する様子を示すコー ドから派生。
階層的エージェント 複数レベルのエージェントが階層的に 協力する構造。上位のエージェントが 下位のエージェントの活動を指示し、 それぞれのエージェントが部分的なタ スクを担当。
デモ • LangGraphの簡単な使い方を紹介 • LangGraphを使った複雑なアプリケーション構築例は次回以降の勉強会で紹 介する予定