Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangGraphでマルチエージェントワークフローを構築
Search
西岡 賢一郎 (Kenichiro Nishioka)
April 28, 2024
Technology
0
440
LangGraphでマルチエージェントワークフローを構築
機械学習の社会実装勉強会第34回 (
https://machine-learning-workshop.connpass.com/event/316112/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
April 28, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
DeepSeekを使ったローカルLLM構築
knishioka
0
16
業務ツールをAIエージェントとつなぐ - Composio
knishioka
0
140
LangGraphを使ったHuman in the loop
knishioka
0
160
AIシステムの品質と成功率を向上させるReflection
knishioka
0
30
LangGraph Templatesによる効率的なワークフロー構築
knishioka
0
120
AIエージェントの開発に特化した統合開発環境 LangGraph Studio
knishioka
0
160
LangGraphを用いたAIアプリケーションにおけるメモリ永続化の実践
knishioka
1
440
Text-to-SQLをLangSmithで評価
knishioka
0
200
効果的なLLM評価法 LangSmithの技術と実践
knishioka
1
410
Other Decks in Technology
See All in Technology
白金鉱業Meetup Vol.17_あるデータサイエンティストのデータマネジメントとの向き合い方
brainpadpr
6
740
プロダクトエンジニア構想を立ち上げ、プロダクト志向な組織への成長を続けている話 / grow into a product-oriented organization
hiro_torii
1
170
2.5Dモデルのすべて
yu4u
2
860
明日からできる!技術的負債の返済を加速するための実践ガイド~『ホットペッパービューティー』の事例をもとに~
recruitengineers
PRO
3
390
ユーザーストーリーマッピングから始めるアジャイルチームと並走するQA / Starting QA with User Story Mapping
katawara
0
200
トラシューアニマルになろう ~開発者だからこそできる、安定したサービス作りの秘訣~
jacopen
2
2k
技術負債の「予兆検知」と「状況異変」のススメ / Technology Dept
i35_267
1
1.1k
2/18/25: Java meets AI: Build LLM-Powered Apps with LangChain4j
edeandrea
PRO
0
110
エンジニアの育成を支える爆速フィードバック文化
sansantech
PRO
3
1.1k
エンジニアが加速させるプロダクトディスカバリー 〜最速で価値ある機能を見つける方法〜 / product discovery accelerated by engineers
rince
4
330
君も受託系GISエンジニアにならないか
sudataka
2
430
偶然 × 行動で人生の可能性を広げよう / Serendipity × Action: Discover Your Possibilities
ar_tama
1
1.1k
Featured
See All Featured
Writing Fast Ruby
sferik
628
61k
Into the Great Unknown - MozCon
thekraken
35
1.6k
How GitHub (no longer) Works
holman
314
140k
Thoughts on Productivity
jonyablonski
69
4.5k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Rails Girls Zürich Keynote
gr2m
94
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
174
51k
Designing Experiences People Love
moore
140
23k
4 Signs Your Business is Dying
shpigford
182
22k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Transcript
LangGraphで マルチエージェントワークフローを構築 2024/04/26 第34回勉強会
自己紹介 • 名前: 西岡 賢一郎 ◦ Twitter: @ken_nishi ◦ note:
https://note.com/kenichiro ◦ YouTube: 【経営xデータサイエンスx開発】西岡 賢一郎のチャンネル (https://www.youtube.com/channel/UCpiskjqLv1AJg64jFCQIyBg) • 経歴 ◦ 東京大学で位置予測アルゴリズムを研究し博士 (学術) を取得 ◦ 東京大学の博士課程在学中にデータサイエンスをもとにしたサービスを提供する株式会社ト ライディアを設立 ◦ トライディアを別のIT会社に売却し、CTOとして3年半務め、2021年10月末にCTOを退職 ◦ CDPのスタートアップ (Sr. PdM)・株式会社データインフォームド (CEO)・株式会社ディース タッツ (CTO) ◦ 自社および他社のプロダクト開発チーム・データサイエンスチームの立ち上げ経験
はじめに 本日の発表内容 • LangGraph紹介 - LangChain基盤のライブラリ、言語モデル使用の多アク ターアプリケーション構築支援 • LangChain統合 -
LangChain Expression Language拡張、エージェント間の 協調計算 • プレゼンテーション目的 - LangGraph基本概念学習、マルチエージェント ワークフロー構築方法説明
マルチエージェントとは? 1. マルチエージェントシステム定義 - 複数の独立した エージェントが協力し合うシステム。 2. 独立性と協働性 - 各エージェントは独自のタスクと
責任を持ちつつ、共通の目標達成のために互いに情 報やリソースを共有。 3. 通信と協調 - エージェント間の効果的な通信と協調 により、より複雑な問題解決が可能に。
マルチエージェントの利点 1. 効率性の向上 - 複数のエージェントが特定のタスク に特化し、同時に異なる作業を進行することで全体 の処理速度が向上。 2. 複雑な問題の分割 -
大規模または複雑な問題を小さ な単位に分割し、それぞれのエージェントが一部を 担当することで問題全体の解決を容易に。 3. 拡張性と柔軟性 - 新たなエージェントの追加や既存 のエージェントの調整を通じて、システム全体の能 力を柔軟に調整可能。 4. 耐障害性の向上 - 一つのエージェントが停止または 障害を起こしても、他のエージェントがその機能を 代替またはサポートすることでシステム全体のダウ ンタイムを最小限に抑制。
LangGraphの主要機能 1. サイクルの管理 - LangGraphを使用して、ワークフ ローにおける繰り返し処理や循環的なタスクを効果 的に管理。 2. 状態管理 -
各エージェントの状態を追跡し、ワーク フロー全体の状態を一元管理。 3. LangChainとの統合 - LangChainの機能を拡張し、 より複雑なマルチエージェントシステムをサポー ト。 4. エッジとノードの制御 - グラフ内の各ノード(エー ジェント)とエッジ(通信パス)を詳細に設定し、 精密なワークフロー制御を実現。 5. 条件付きルーティング - 条件に基づいて動的にワー クフローの経路を変更する機能を提供。
実践的な例 • LangGraphの例 a. スーパーバイザーが各エージェントを管理 b. マルチエージェントで協力 c. 階層的エージェントチーム •
LangGraphのサンプルが充実している https://github.com/langchain-ai/langgraph/tree/main/examples
スーパーバイザーが各エージェントを管理 一つのスーパーバイザーエージェント が他のエージェントを管理し、タスク の進行状況を監督する例。異なるエー ジェントが独立してタスクを進行させ ながらも、全体の調整をスーパーバイ ザーが行う構成。
マルチエージェントで協力 複数のエージェントが協力してタスク を遂行する例。エージェントが情報を 共有しながら協力する様子を示すコー ドから派生。
階層的エージェント 複数レベルのエージェントが階層的に 協力する構造。上位のエージェントが 下位のエージェントの活動を指示し、 それぞれのエージェントが部分的なタ スクを担当。
デモ • LangGraphの簡単な使い方を紹介 • LangGraphを使った複雑なアプリケーション構築例は次回以降の勉強会で紹 介する予定