Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Text-to-SQLをLangSmithで評価
Search
西岡 賢一郎 (Kenichiro Nishioka)
July 26, 2024
Business
0
190
Text-to-SQLをLangSmithで評価
機械学習の社会実装勉強会第37回 (
https://machine-learning-workshop.connpass.com/event/324630/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
July 26, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
LangGraph Templatesによる効率的なワークフロー構築
knishioka
0
91
AIエージェントの開発に特化した統合開発環境 LangGraph Studio
knishioka
0
130
LangGraphを用いたAIアプリケーションにおけるメモリ永続化の実践
knishioka
1
350
効果的なLLM評価法 LangSmithの技術と実践
knishioka
1
350
LangGraphのノード・エッジ・ルーティングを深堀り
knishioka
1
520
LangGraphでマルチエージェントワークフローを構築
knishioka
0
380
LLMアプリケーションで使用するVector Databaseの比較
knishioka
0
2.4k
LLMアプリケーションの デバッグ・テスト・評価・監視を楽にするLangSmith
knishioka
0
310
LangChainから学ぶプロンプトエンジニアリングテクニック
knishioka
0
330
Other Decks in Business
See All in Business
Amazon Q Developerの 最新アップデート情報まとめ
o2mami
0
1k
Sales Marker Culture Book(English)
salesmarker
PRO
1
3k
仮説のマップ・ループ・リープ
tumada
PRO
11
3.9k
経験やセンスに頼らずに成果を出すためのチームマネジメント実践ガイド / Team Management Without Relying on Experience or Intuition
happy_imafuku
4
11k
成功をつなげる プロジェクトマネジメントの探求 / Exploring Project Management to Continuous Success
tunepolo
0
170
The AI-savvy operating model - Matthew Skelton, Conflux - Agile to Agility conference
matthewskelton
PRO
2
190
ドローンを活用した汚泥焼却炉内点検のDX
tokyo_metropolitan_gov_digital_hr
0
320
【エンジニア職】中途採用向け会社説明資料(テックファーム株式会社)
techfirm
0
4.2k
2024.12_中途採用資料.pdf
superstudio
PRO
0
56k
DNX Ventures Japan|Introduction Deck
natsumidnx
0
730
【エンジニア採用】BuySell Technologies会社説明資料
buyselltechnologies
2
55k
クロス・オペレーショングループ採用資料
xopg
2
24k
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
Docker and Python
trallard
42
3.1k
Music & Morning Musume
bryan
46
6.2k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
170
The Pragmatic Product Professional
lauravandoore
32
6.3k
How to Ace a Technical Interview
jacobian
276
23k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Rails Girls Zürich Keynote
gr2m
94
13k
Six Lessons from altMBA
skipperchong
27
3.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
95
17k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Transcript
Text-to-SQLをLangSmithで評価 2024/07/27 第37回勉強会
自己紹介 • 名前: 西岡 賢一郎 ◦ Twitter: @ken_nishi ◦ note:
https://note.com/kenichiro ◦ YouTube: 【経営xデータサイエンスx開発】西岡 賢一郎のチャンネル (https://www.youtube.com/channel/UCpiskjqLv1AJg64jFCQIyBg) • 経歴 ◦ 東京大学で位置予測アルゴリズムを研究し博士 (学術) を取得 ◦ 東京大学の博士課程在学中にデータサイエンスをもとにしたサービスを提供する株式会社ト ライディアを設立 ◦ トライディアを別のIT会社に売却し、CTOとして3年半務め、2021年10月末にCTOを退職 ◦ CDPのスタートアップ (Sr. CSM)・株式会社データインフォームド (CEO)・株式会社ディース タッツ (CTO) ◦ 自社および他社のプロダクト開発チーム・データサイエンスチームの立ち上げ経験
Text-to-SQLの背景と必要性
Text-to-SQLとは • 自然言語の質問やコマンドをSQLクエリに変換する技術 • 例: "30歳以上のユーザーの平均年齢は?" → "SELECT AVG(age) FROM
users WHERE age >= 30;" • Text-to-SQLの仕組み ◦ 自然言語理解 (NLU): ▪ ユーザーが入力した自然言語の質問や要求を解析して、意図を理解します。 ◦ 文脈と構造の抽出: ▪ 質問の文脈や構造を抽出し、どのデータベースのテーブルやカラムが関係して いるかを特定します。 ◦ SQLクエリ生成: ▪ 抽出された情報を基に、適切なSQLクエリを生成します。 ◦ 実行と結果の表示: ▪ 生成されたSQLクエリをデータベースに対して実行し、その結果をユーザーに 返します。
なぜText-to-SQLが必要か • データベースへのアクセシビリティ向上 ◦ SQL非専門家でもデータ分析が可能に ◦ ビジネスユーザーが直接データにアクセス可能 • 開発効率の向上 ◦
繰り返し行われるクエリ作成の自動化 ◦ プロトタイピングの迅速化 • 自然言語インターフェースの実現 ◦ チャットボットやAIアシスタントへの統合 ◦ よりユーザーフレンドリーなデータ探索ツールの 開発 データ抽出依頼 データ抽出 Text-to SQLで データ抽出
Text-to-SQLの評価方法
評価指標の例 1. 正確性 (Correctness) ◦ 生成されたSQLが意図した結果を返すか 2. 効率性 (Efficiency) ◦
生成されたSQLが最適化されているか 3. 可読性 (Readability) ◦ 生成されたSQLが人間にとって理解しやすいか 4. 実行精度 (Execution Accuracy) ◦ 実行結果が期待される結果と一致するか
LangSmithを使ったText-to-SQL評価のデモ
LangSmithの概要 LLMアプリケーション開発でよく使われるLangChainのサー ビスである「LangSmith」は、LLMを楽に評価できる機能を 提供している。 • Evaluatorの設定 ◦ コードを書かずにEvaluatorを設定し、データ セットに紐づけられる •
PlayGround ◦ プログラムを書かずにプロンプトやモデルの設 定をテスト • 中間ステップの評価 ◦ RAGパイプラインなどの中間ステップを詳細に 評価 • 標準Evaluatorの利用: ◦ カスタムコードを書くことなく、標準の Evaluatorを使用 • Annotationの利用 ◦ 実行結果に注釈を追加し、詳細なフィードバッ クを提供
デモ 評価プロセス 1. 評価対象のText-to-SQL modelの定義 2. 評価用データセットの作成 3. カスタム評価器の設定 4.
評価の実行と結果の分析 デモの主要ポイント • SQLiteデータベースの使用 • LangChainのSQLエージェントの活用 • カスタムLLM評価器の実装 • 効率性スコアの計算 • LangSmithでの評価実行と結果の可視化
まとめ • Text-to-SQLはデータアクセシビリティと開発効率を向上 • 多面的な評価が重要: 正確性、効率性、可読性、実行精度 • LangSmithを使用することで、包括的かつ効率的な評価が可能 • 継続的な改善と最適化のためのツールとしてのLangSmithが便利