Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2019.07.05 Cloud Native Kansai #04 MLOpsで必要なf...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Takayoshi Kobayashi
July 05, 2019
Technology
0
220
2019.07.05 Cloud Native Kansai #04 MLOpsで必要なflowを考えてみる
2019.07.05 Cloud Native Kansai #04 MLOpsで必要なflowを考えてみる
Takayoshi Kobayashi
July 05, 2019
Tweet
Share
More Decks by Takayoshi Kobayashi
See All by Takayoshi Kobayashi
AWS re:Invent 2020 SageMakerのUpdateをre:cap
koba_taka
0
200
2020.02.13_ABEJA_プロダクトがスケールする過程における課題と取り組み
koba_taka
0
300
2019.08.10_AAJUG Kyoto #2_Alexa✕ML
koba_taka
0
95
2018.07.31 JAWS-UG京都 AWSマネージドDB祭~まだDBにEC2使ってんの?~ / 今のAuroraのスゴさ
koba_taka
0
320
JAWS-UG Sales #0 「SalesがJAWS-UGに参加してみて」
koba_taka
0
230
【さるる勉強会#1】AWSの機械学習って?
koba_taka
0
370
2018.2.11- Alexa Day 2018 - Alexa Ninja Warrior 結果発表
koba_taka
0
5.4k
【さばわの「わ」#2】AWSパートナーとしてのサバワの営業スタイル
koba_taka
0
630
【BIファーストステップ】AWSやSalesforceとPowerBIとの連携
koba_taka
0
2k
Other Decks in Technology
See All in Technology
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
140
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
Agile Leadership Summit Keynote 2026
m_seki
1
680
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
Red Hat OpenStack Services on OpenShift
tamemiya
0
140
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
330
Cosmos World Foundation Model Platform for Physical AI
takmin
0
980
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
110
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
210
今日から始めるAmazon Bedrock AgentCore
har1101
4
420
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
390
Featured
See All Featured
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
190
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
68
KATA
mclloyd
PRO
34
15k
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
A designer walks into a library…
pauljervisheath
210
24k
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
440
Design in an AI World
tapps
0
150
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
230
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Transcript
#cnjp 2019.07.05 Cloud Native Kansai #04 ABEJA, Inc / Takayoshi
Kobayashi / @koba_taka MLOpsで必要なflowを考えてみる
#cnjp 2 What is MLOps ?
#cnjp 3 ML will run on Kubernetes
#cnjp 4 MLOps ✕ Kubernetes
#cnjp 5 @koba_taka Twitter Like takayoshi.kobayashi.16 Facebook AWS Drinking Job
Takayoshi Kobayashi Who is ? ABEJA Co., Ltd. ABEJA Platform Customer Success
None
#cnjp 7 Deep Learningの実装、運用プロセスを効率化する ABEJA Platform。 来客属性、動線分析、リピート推定といった 顧客行動データの取得・分析を基軸とする、 AIを活用した 店舗解析サービス。
商品仕分け、メンテナンスサポートの効率化、熟練工の行動分析といった、 AIを用いた多用なソリューションを展開。 製造業、インフラ業、物流業や小売業まで、 150社以上のAI導入実績で得た知見・ノウハウをもとに、 AI導入・活用まで一気通貫で支援します。 AIのビジネス実装 What`s ABEJA?
#cnjp 8 インフラやってますか?
#cnjp 9 機械学習やってますか?
#cnjp 10 機械学習インフラしたいなー?
#cnjp 11 We are hiring!!
#cnjp 12 What is MLOps ?
#cnjp 13 MLOps Pipeline Low Data Data Wrangling Data Preprocessing
Validation Training New Data Training Data Model Inference Predictions Input Data
#cnjp 14 Why Machine Learning on Kubernetes? Low Data Data
Wrangling Data Preprocessing Validation Training New Data Training Data Model Inference Predictions Input Data データ収集・蓄積 開発・学習 推論・予測
#cnjp 15 Hidden Technical Debt in Machine Learning Systems [Sculley+,
NIPS 2015] 正直、MLOpsって設計より管理が大変‥
#cnjp 16 We have Kubernetes!!
#cnjp 17 構成としてはこんな感じ?
#cnjp 18 just only?
#cnjp 19 Noooo!!!!
#cnjp 20 Make it Easy for Everyone to Learn, Deploy
and Manage Portable, Distributed ML on Kubernetes (Everywhere) by Michelle Casbon (Google)
#cnjp 21 Agree with you
#cnjp 22 The ML Toolkit for Kubernetes
#cnjp 23 Why Machine Lerning on Kubeflow? Composability Portability Scalability
#cnjp 24 Ambassador Service Ambassador Ambassador Ambassador CentralUI JupyterHub TFJobDashBoard
KubeDash Kubeflowを構成するもの
#cnjp 25 Kubeflowを構成するもの part.1 Ambassador ・Kubernetes上で動作するAPI Gateway ・役目はModelの提供 ・Envoyをイイ感じに構成 ・自分のServerに暗号化や認証認可を付与可能
・ルーティングとスケーリングの運用が簡単 モデルのサービングをKubernetes上で快適に!
#cnjp Soldon Core 26 Kubeflowを構成するもの part.2 ・機械学習のモデルをKubernetesクラスタ上にデプロイ ・多様な言語やフレームワークに対応している ・機械学習のモデルを、RESTやgRPCを介した公開可能 ・モデルの継続的なアップデート、スケーリング、
モニタリングなどを可能 モデルのデプロイをKubernetes上で快適に!
#cnjp Soldon Core main supported 27
#cnjp 28 Kubeflowを構成するもの part.3 Argo ・コンテナネイティブなワークフローエンジン ・Kubernates Cluster上で稼働 ・ワークフローをYAMLで宣言的に書ける ・MLOpsでは各タスクを記載
(整形・登録など) ・resources指定なども可能 ・簡単に操作ができ、スゴイやつ パイプラインジャングルをKubernates上で解決!
#cnjp 29
#cnjp 30 Example:EKS on Kubeflow Overview
#cnjp 31 Why Machine Learning on Kubernetes? Low Data Data
Wrangling Data Preprocessing Validation Training New Data Training Data Model Inference Predictions Input Data データ収集・蓄積 開発・学習 推論・予測
#cnjp 32 Demo
#cnjp 33 まとめ ・機械学習のモデル作成/提供はインフラやることいっぱい ・MLOpsのパイプラインを意識して設計が大事 ・極力、省力化した運用を心がけよう ・Kubeflowなどのオーケストレーションツールの検討を
#cnjp 34 宣伝:ABEJA PLATFORM 04 デプロイ 01 取得 05 推論・再学習
03 学習 02 蓄積 AIの継続的 インテグレーションを実現 01 取得 02 蓄積 03 学習 04 デプロイ 05 推論・再学習 モニタリング トリガー デプロイ データレイク アノテーション データセット 学習 AIのモデル開発工程における継続的インテグレーションの各タスクを機能として提供しています。
#cnjp 35 フローを理解して快適なMLOpsライフを!
#cnjp 36 Thank you!!