Presentation at Devclub.ee 2025-03-26
### **Summary of the Presentation: Bringing LangChain4j to Kotlin**
#### **Speaker:**
- **Konstantin Pavlov**, Software Engineer at Twilio.
#### **Overview:**
- The presentation discusses integrating **LangChain4j** with **Kotlin** to build AI-driven applications.
- Focus on using **Kotlin DSL (Domain-Specific Language)** for **concise, expressive, and safe** AI development.
---
### **Key Topics Covered:**
#### **1. LangChain4j in Kotlin**
- **LangChain4j** enables AI models to interact with various **data sources, memory, tools, and instructions**.
- Provides a **framework** for using **Large Language Models (LLMs)** within Kotlin applications.
#### **2. AI Components & Workflow**
- AI **character (virtual agent)** interacts with:
- 🌍 **World Knowledge**
- 📖 **Personal Knowledge**
- 📝 **Instructions (System Prompt)**
- 💬 **Chat Memory**
- 🛠 **Tools (Functions)**
- Queries are processed by an **LLM**, which returns responses.
#### **3. Retrieval-Augmented Generation (RAG)**
- **Indexing & Retrieval** for **efficient AI responses**.
- **Embedding models** used to store and fetch relevant data chunks.
#### **4. OpenAI & Model Context Protocol**
- Uses **OpenAI APIs** for response generation.
- **Model Context Protocol (MCP)** standardizes AI interactions.
#### **5. Running AI Workloads on Java**
- Java is chosen for **historical reasons** and **enterprise compatibility**.
- Kotlin offers advantages like **concise syntax, null safety, and better async handling**.
#### **6. Kotlin DSL for AI Development**
- **Cleaner and more readable** way to interact with AI models.
- Example:
```kotlin
model.chat {
messages(
userMessage("Tell me a joke about LLM"),
)
}
```
- Allows **extension functions** and **function types with receivers**.
#### **7. Testing AI Models with Mocks**
- Challenges:
- Non-deterministic responses.
- API costs and network dependencies.
- Complexity in **CI/CD**.
- **AI-Mocks**:
- Provides **fast, deterministic, offline tests**.
- Simulates **OpenAI completions** to test AI behavior.
#### **8. Running LLMs in Production**
- **Challenges**:
- High **latency** in LLM responses.
- **Cloud reliability** issues.
- **Security**: Prevent exposing sensitive data.
- **Monitoring**: Track **token usage & costs**.
---
### **Resources & Links**
- **Demo Code**: [GitHub - Elven Project](https://github.com/kpavlov/elven)
- **AI Mocks**: [AI Mocks Documentation](https://kpavlov.github.io/ai-mocks)
- **OpenAI Responses API**: [OpenAI Docs](https://platform.openai.com/docs/guides/responses-vs-chat-completions)
- **Speaker Contact**:
- **GitHub**: [@kpavlov](https://github.com/kpavlov)
- **Website**: [kpavlov.me](https://kpavlov.me)
- **LinkedIn**: [in/kpavlov](https://www.linkedin.com/in/kpavlov)
---
### **Conclusion**
The presentation explores **bringing LangChain4j to Kotlin**, emphasizing **Kotlin DSL, AI integration, testing with mocks, and production challenges**. It provides a **practical approach** to running **AI-driven applications efficiently** on the JVM. 🚀