Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
棒グラフ、帯グラフ(、円グラフ) / Bar chart, band chart (, pie...
Search
Kenji Saito
PRO
November 29, 2024
Technology
0
19
棒グラフ、帯グラフ(、円グラフ) / Bar chart, band chart (, pie chart)
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第6回で使用したスライドです。
Kenji Saito
PRO
November 29, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
32
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
51
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
12
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
43
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
8
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
59
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
23
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
12
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
13
Other Decks in Technology
See All in Technology
Opcodeを読んでいたら何故かphp-srcを読んでいた話
murashotaro
0
360
Zero Data Loss Autonomous Recovery Service サービス概要
oracle4engineer
PRO
1
4.9k
AWS環境におけるランサムウェア攻撃対策の設計
nrinetcom
PRO
1
300
20240522 - 躍遷創作理念 @ PicCollage Workshop
dpys
0
260
ガバナンスを支える新サービス / New Services to Support Governance
sejima1105
1
770
Unlearn Product Development - Unleashed Edition
lemiorhan
PRO
2
150
TypeScript開発にモジュラーモノリスを持ち込む
sansantech
PRO
3
810
終了の危機にあった15年続くWebサービスを全力で存続させる - phpcon2024
yositosi
28
24k
怖くない!ゼロから始めるPHPソースコードコンパイル入門
colopl
0
220
Qiita埋め込み用スライド
naoki_0531
0
5.4k
Duckiedrone - 基於 Raspberry Pi 與 Python 的小型無人機專案介紹
piepie_tw
PRO
0
120
日本版とグローバル版のモバイルアプリ統合の開発の裏側と今後の展望
miichan
1
150
Featured
See All Featured
How to Ace a Technical Interview
jacobian
276
23k
Faster Mobile Websites
deanohume
305
30k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
The World Runs on Bad Software
bkeepers
PRO
66
11k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
840
How to Think Like a Performance Engineer
csswizardry
22
1.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
171
50k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Optimizing for Happiness
mojombo
376
70k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
VelocityConf: Rendering Performance Case Studies
addyosmani
326
24k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 6 ( ) (WBS) 2024 6 ( ) — 2024-11 – p.1/23
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 6 ( ) — 2024-11 – p.2/23
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 6 ( ) — 2024-11 – p.3/23
( ) ( ) 2024 6 ( ) — 2024-11
– p.4/23
(bar chart) y ( ) cda-demo “ .R” Git “
.R” 1 2024 6 ( ) — 2024-11 – p.5/23
“ .txt” 1 1 <- read.table(" .txt", header=T) 10 barplot(
1$ [1:10], names.arg=c(1:10), xlab=" ", ylab=" ", main=" 1 10 ") ‘barplot( . . . )’ : 2024 6 ( ) — 2024-11 – p.6/23
1 2 3 4 5 6 7 8 9 10
ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 2024 6 ( ) — 2024-11 – p.7/23
( 10 ) 1 2 ## t(table) table ## (matrix)
2 <- t( data.frame( = 1$ [1:10], = 1$ [1:10])) (‘beside=T’) barplot( , beside=T, names.arg=c(1:10), legend.text=T, ylim=c(0, 100), xlab=" ", ylab=" ", main=" 1 10 ") : 2024 6 ( ) — 2024-11 – p.8/23
1 2 3 4 5 6 7 8 9 10
ⱥㄒ ᩘᏛ ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒ࣭ᩘᏛࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 100 2024 6 ( ) — 2024-11 – p.9/23
100% barplot 2024 6 ( ) — 2024-11 – p.10/23
A∼D ( 100%) X Y data1 <- c( "A "=51,
"B "=21, "C "=20, "D "=8) data2 <- c( "A "=33, "B "=35, "C "=20, "D "=12) data <- matrix(c(data1, data2), length(data1), 2) # 4 2 colnames(data) <- c("X ", "Y ") # 2024 6 ( ) — 2024-11 – p.11/23
barplot(data, horiz=T, col=cm.colors(4), xlab=" (%)", legend.text=names(data1), main=" ") ‘horiz’ (
F (False)) ‘col’ ‘cm.colors(4)’ cm ( ) 4 ‘legend.text=names(data1)’ data1 2024 6 ( ) — 2024-11 – p.12/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2024 6 ( ) — 2024-11 – p.13/23
( ) barplot(data, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘horiz’
R ggplot2 2024 6 ( ) — 2024-11 – p.14/23
Xᆅᇦ Yᆅᇦ D♫〇 C♫〇 B♫〇 A♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2024 6 ( ) — 2024-11 – p.15/23
barplot(data, beside=T, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘beside=T’ 2024
6 ( ) — 2024-11 – p.16/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2024 6 ( ) — 2024-11 – p.17/23
## ## col ## density density <- c(50, 25, 13,
7) barplot(data, beside=T, density=density, ylab=" (%)", legend.text=names(data1), main=" ") ‘density’ 2024 6 ( ) — 2024-11 – p.18/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2024 6 ( ) — 2024-11 – p.19/23
2024 6 ( ) — 2024-11 – p.20/23
pie(data1, col=cm.colors(4), main="X ") pie(data2, col=cm.colors(4), main="Y ") ‘pie( .
. . )’ 2024 6 ( ) — 2024-11 – p.21/23
A♫〇 B♫〇 C♫〇 D♫〇 Xᆅᇦ࡛ࡢࢩ࢙ A♫〇 B♫〇 C♫〇 D♫〇 Yᆅᇦ࡛ࡢࢩ࢙
X B C Y A B D % p.15 p.17 2024 6 ( ) — 2024-11 – p.22/23
2024 6 ( ) — 2024-11 – p.23/23