Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
棒グラフ、帯グラフ(、円グラフ) / Bar chart, band chart (, pie...
Search
Kenji Saito
PRO
November 29, 2024
Technology
0
110
棒グラフ、帯グラフ(、円グラフ) / Bar chart, band chart (, pie chart)
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第6回で使用したスライドです。
Kenji Saito
PRO
November 29, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
ウェブサービスデザイン 2 / Web Service Design 2
ks91
PRO
0
7
Learning to Govern the Orbital Commons: A Serious Game on Incentivizing Debris Removal
ks91
PRO
0
3
FinTech 13-14 : FinTech Ideathon and Poster
ks91
PRO
0
90
講師自己紹介 / Lecturer Self-Introduction
ks91
PRO
0
18
講師研究紹介 / Lecturer Research Profile
ks91
PRO
0
12
NPO とは何か (を考えるワールドカフェ) / What is an NPO? (A World Café for Reflection)
ks91
PRO
0
70
FinTech 11-12 : Cyber-Physical Society and Future of Finance
ks91
PRO
0
67
AI 前提社会のキャッチ=22 (または私は如何にして民主主義、文書主義、人道的活動...) / Catch-22 in an AI-Premised Society (or How I Came to Democracy, Documentation, Humanitarian Activities...)
ks91
PRO
0
10
ウェブサービスデザイン 1 / Web Service Design 1
ks91
PRO
0
9
Other Decks in Technology
See All in Technology
信頼性が求められる業務のAIAgentのアーキテクチャ設計の勘所と課題
miyatakoji
0
190
生成AIシステムとAIエージェントに関する性能や安全性の評価
shibuiwilliam
2
240
『星の世界の地図の話: Google Sky MapをAI Agentでよみがえらせる』 - Google Developers DevFest Tokyo 2025
taniiicom
0
410
持続可能なアクセシビリティ開発
azukiazusa1
6
350
不確実性に備える ABEMA の信頼性設計とオブザーバビリティ基盤
nagapad
4
8.7k
.NET 10のEntity Framework Coreの新機能
htkym
0
130
国産クラウドを支える設計とチームの変遷 “技術・組織・ミッション”
kazeburo
6
9.8k
組織の“見えない壁”を越えよ!エンタープライズシフトに必須な3つのPMの「在り方」変革 #pmconf2025
masakazu178
1
1k
プロダクト負債と歩む持続可能なサービスを育てるための挑戦
sansantech
PRO
1
1.1k
Pandocでmd→pptx便利すぎワロタwww
meow_noisy
2
990
Master Dataグループ紹介資料
sansan33
PRO
1
4k
Android Studio Otter の最新 Gemini 機能 / Latest Gemini features in Android Studio Otter
yanzm
0
460
Featured
See All Featured
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
350
Navigating Team Friction
lara
190
16k
Music & Morning Musume
bryan
46
7k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Thoughts on Productivity
jonyablonski
73
4.9k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Facilitating Awesome Meetings
lara
57
6.6k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 6 ( ) (WBS) 2024 6 ( ) — 2024-11 – p.1/23
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 6 ( ) — 2024-11 – p.2/23
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 6 ( ) — 2024-11 – p.3/23
( ) ( ) 2024 6 ( ) — 2024-11
– p.4/23
(bar chart) y ( ) cda-demo “ .R” Git “
.R” 1 2024 6 ( ) — 2024-11 – p.5/23
“ .txt” 1 1 <- read.table(" .txt", header=T) 10 barplot(
1$ [1:10], names.arg=c(1:10), xlab=" ", ylab=" ", main=" 1 10 ") ‘barplot( . . . )’ : 2024 6 ( ) — 2024-11 – p.6/23
1 2 3 4 5 6 7 8 9 10
ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 2024 6 ( ) — 2024-11 – p.7/23
( 10 ) 1 2 ## t(table) table ## (matrix)
2 <- t( data.frame( = 1$ [1:10], = 1$ [1:10])) (‘beside=T’) barplot( , beside=T, names.arg=c(1:10), legend.text=T, ylim=c(0, 100), xlab=" ", ylab=" ", main=" 1 10 ") : 2024 6 ( ) — 2024-11 – p.8/23
1 2 3 4 5 6 7 8 9 10
ⱥㄒ ᩘᏛ ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒ࣭ᩘᏛࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 100 2024 6 ( ) — 2024-11 – p.9/23
100% barplot 2024 6 ( ) — 2024-11 – p.10/23
A∼D ( 100%) X Y data1 <- c( "A "=51,
"B "=21, "C "=20, "D "=8) data2 <- c( "A "=33, "B "=35, "C "=20, "D "=12) data <- matrix(c(data1, data2), length(data1), 2) # 4 2 colnames(data) <- c("X ", "Y ") # 2024 6 ( ) — 2024-11 – p.11/23
barplot(data, horiz=T, col=cm.colors(4), xlab=" (%)", legend.text=names(data1), main=" ") ‘horiz’ (
F (False)) ‘col’ ‘cm.colors(4)’ cm ( ) 4 ‘legend.text=names(data1)’ data1 2024 6 ( ) — 2024-11 – p.12/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2024 6 ( ) — 2024-11 – p.13/23
( ) barplot(data, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘horiz’
R ggplot2 2024 6 ( ) — 2024-11 – p.14/23
Xᆅᇦ Yᆅᇦ D♫〇 C♫〇 B♫〇 A♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2024 6 ( ) — 2024-11 – p.15/23
barplot(data, beside=T, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘beside=T’ 2024
6 ( ) — 2024-11 – p.16/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2024 6 ( ) — 2024-11 – p.17/23
## ## col ## density density <- c(50, 25, 13,
7) barplot(data, beside=T, density=density, ylab=" (%)", legend.text=names(data1), main=" ") ‘density’ 2024 6 ( ) — 2024-11 – p.18/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2024 6 ( ) — 2024-11 – p.19/23
2024 6 ( ) — 2024-11 – p.20/23
pie(data1, col=cm.colors(4), main="X ") pie(data2, col=cm.colors(4), main="Y ") ‘pie( .
. . )’ 2024 6 ( ) — 2024-11 – p.21/23
A♫〇 B♫〇 C♫〇 D♫〇 Xᆅᇦ࡛ࡢࢩ࢙ A♫〇 B♫〇 C♫〇 D♫〇 Yᆅᇦ࡛ࡢࢩ࢙
X B C Y A B D % p.15 p.17 2024 6 ( ) — 2024-11 – p.22/23
2024 6 ( ) — 2024-11 – p.23/23