Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
アノテーションのバイアス排除に関する2020年代の研究動向
Search
kuri8ive
July 20, 2022
Research
2
1.3k
アノテーションのバイアス排除に関する2020年代の研究動向
社内LT会で発表した資料です。
内容はアノテーションのバイアス排除に関する近年の研究をざっくり紹介したものです。
kuri8ive
July 20, 2022
Tweet
Share
More Decks by kuri8ive
See All by kuri8ive
生成AI・AIエージェント時代、データサイエンティストは何をする人なのか?そして、今学生であるあなたは何を学ぶべきか?
kuri8ive
3
2.3k
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
290
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
310
精度を無視しない推薦多様化の評価指標
kuri8ive
1
560
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
320
"多様な推薦"はユーザーの目にどう映るか
kuri8ive
4
660
LLMとの共同執筆は文章の多様性を減らすか?
kuri8ive
4
1.2k
推薦結果への説明付加はいつどんなものが嬉しいか
kuri8ive
2
410
広告設定をより制御できるようになるとユーザーはどう反応しどう感じるか
kuri8ive
2
470
Other Decks in Research
See All in Research
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
2
190
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
100
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
110
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
470
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
360
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
210
Nullspace MPC
mizuhoaoki
1
530
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
350
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
450
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.6k
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
590
Featured
See All Featured
Exploring anti-patterns in Rails
aemeredith
2
210
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.7k
We Have a Design System, Now What?
morganepeng
54
7.9k
Heart Work Chapter 1 - Part 1
lfama
PRO
3
35k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Become a Pro
speakerdeck
PRO
31
5.7k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
Ruling the World: When Life Gets Gamed
codingconduct
0
100
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.4k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
750
Abbi's Birthday
coloredviolet
0
3.8k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
99
Transcript
アノテーションのバイアス排除に関する 2020年代の研究動向 栗本真太郎(@kuri8ive) 2022年7月20日 2022年夏の Official Account 開発室 LT大会 Ad
Data Science Team
2/19 「いかにバイアスを排除し アノテーションの質を高めるか?」に 関連する近年の研究をざっくり紹介するもの これはなに
バイアス排除の難しさを感じさせる研究群 CSCW'20, SIGIR'20, HCOMP'20, ICCV'21, FaccT'22, NAACL'22
4/19 えらい人の都合 in データ 多くの研究はアノテーターの主観に焦点を当てているが本当にそれが問題? → 上位にいる他者の関心、価値、優先順位に深く影響されていた Between Subjectivity and
Imposition: Power Dynamics in Data Annotation for Computer Vision (CSCW'20)
5/19 素人でも玄人並みのアノテーションは可能? 政治的発言の誤報識別タスクで概ね専門家と類似したアノテーション結果 また、ワーカーのグループ化が有用であることも示唆 → ただし、暗黙的な政治的志向が真偽の判断品質に影響するので注意 (明示的な政治スタンスとは関係なく) Can The Crowd
Identify Misinformation Objectively? The Effects of Judgment Scale and Assessor's Background (SIGIR'20)
6/19 違う視点を知ればバイアスは軽減できる? 違う視点を持つ人と一緒にアノテーションをしてもあまり変化はなし → 単に違う視点を知るだけではバイアス軽減には至らない Does Exposure to Diverse Perspectives
Mitigate Biases in Crowdwork? An Explorative Study (HCOMP'20)
7/19 肌の色が違えばいろいろ違ったものに 画像に存在するバイアスを「肌の色が明るい人 or 暗い人」で調査 → キャプションの正確さ、感情や単語の選択に違い また、キャプションシステムが最新かどうかで大きな差 Understanding and
Evaluating Racial Biases in Image Captioning (ICCV'21)
8/19 うーんたぶんこれは真実かな(N回目) 公開されているクラウドソーシングデータの系統的探索分析を実施 → 認知バイアスのほか、科学に対する信念が影響する可能性を示唆 また、一般的に真実性を過大評価する傾向 The Effects of Crowd
Worker Biases in Fact-Checking Tasks (FaccT'22)
9/19 言論の有害性の評価において アノテーターのアイデンティティや信条が強く影響 → 特に、保守的だったり人種差別的信念のスコアが高いアノテーターは 黒人へのヘイトスピーチを無害と評価する一方、アフリカ英語を有害と評価 "標準"じゃないのは有害? Annotators with Attitudes:
How Annotator Beliefs And Identities Bias Toxic Language Detection (NAACL'22)
バイアス排除に挑戦している研究群 VLDB'20, CVPR'21, IJCAI'21, NerIPS'21, CHIIR'22, IJCV'22, CHI'22, ICML'22
11/19 MCMCに基づく類似アイテムの混同検出手法を提案し 品質が改善されることを実験で示した → 単純な警告であっても早期に混同のリスクを警告することで 大幅に改善できることも示した いつ頭こんがらがったか教えて〜 Detecting and Preventing
Confused Labels in Crowdsourced Data (VLDB'20)
12/19 GANを用いて現実的な画像を生成したのち、潜在空間において摂動を与える → 各保護属性に対してバランスの取れた学習データを生成 GANで公平さの補正をかける Fair Attribute Classification Through Latent
Space De-Biasing (CVPR'21)
13/19 ラベルに加えて、アノテーターとタスクの値も同時にEMアルゴリズムで推論 → アノテーターが多い、確証バイアスが大きい場合などでより正確に推測 より確証バイアスを考慮した回答統合 Accounting for Confirmation Bias in
Crowdsourced Label Aggregation (IJCAI'21)
14/19 ラベルを定義する固有の属性とバイアスを引き起こす周辺属性を分離し、 多様な固有属性サンプルを合成 → 各アイテムの非本質的な部分で学習してしまうことを防ぐ 余分な情報をあえてつける Learning Debiased Representation via
Disentangled Feature Augmentation (NeurIPS'21)
15/19 Webページの質判断にどういった要因が影響するか → 時間帯や曜日が大きく影響することを示し 影響を軽減するための方策を指南 アノテーションに効いてくるバイオリズム The Crowd is Made
of People: Observations from Large-Scale Crowd Labelling (CHIIR'22)
16/19 (1)オブジェクト、(2)人物、(3)地理の3つの次元に沿って 潜在的な偏りを可視化するツールを開発 → 「ではどうすればよいか?」も提案し、早期のバイアス軽減へ どれくらい偏ってるか、見れば分かるよね? REVISE: A Tool for
Measuring and Mitigating Bias in Visual Datasets (IJCV'22)
17/19 逐次的な意思決定において、 アンカリングの影響を捕捉し提示アイテムを動的に決定する手法を提案 → リアルタイムでバイアスを軽減しながらの評価収集を実現 さっき見たものの影響をどけたい AI-Moderated Decision-Making: Capturing and
Balancing Anchoring Bias in Sequential Decision Tasks (CHI'22)
18/19 画像内の顔に難読化処理を施す → 人種等の(不必要な)影響を軽減しつつ、 難読化済みデータで学習したモデルの性能低下は1%以下程度に抑えられた XX人がいるから〇〇を避けるために A Study of Face
Obfuscation in ImageNet (ICML'22)
完全じゃなくともバイアスを踏まえたデータ収集をやっていき https://alu.jp/series/僕たちがやりました/crop/HVt9jvtSrrrYDT8TbZ27