Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
テキストメディア特論 「会社名」の抽出
Search
Lamron
October 01, 2023
Research
0
120
テキストメディア特論 「会社名」の抽出
Lamron
October 01, 2023
Tweet
Share
More Decks by Lamron
See All by Lamron
テキストメディア特論 類似した「名前」の同一性の判定
lamrongol
0
83
Blueskyでは何が話し合われているか。「情報技術は民主主義を生み、今は殺そうとしている」
lamrongol
0
7.5k
要約: Formal Approaches in Categorization: Chapter.5 Semantics without categorization
lamrongol
0
3.6k
Blueskyの「今」がわかる!Bot
lamrongol
0
1.9k
Other Decks in Research
See All in Research
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
4
1.3k
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
500
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
Ankylosing Spondylitis
ankh2054
0
120
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
420
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
230
説明可能な機械学習と数理最適化
kelicht
2
940
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
120
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
230
Featured
See All Featured
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
160
Paper Plane
katiecoart
PRO
0
46k
Testing 201, or: Great Expectations
jmmastey
46
8.1k
HDC tutorial
michielstock
1
390
My Coaching Mixtape
mlcsv
0
50
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
How to train your dragon (web standard)
notwaldorf
97
6.5k
Code Reviewing Like a Champion
maltzj
527
40k
Site-Speed That Sticks
csswizardry
13
1.1k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Transcript
「会社名」の抽出 @lamrongol
「~社」などの表現から会社名を判断する方法には限界 がある 切れ目の判断が難しい(「・」は切れ目か否か、など) 「オラクル」のように「~社」の形になってないものは社名と判 断できない 「東電」などの略称もある
あらかじめどのような会社名があるか登録しておけばよ い
Wikipedia の利用 Wikipediaの特徴 各項目には多くの場合「千葉県の会社」などカテゴリが 付与されている 一定の規則に基づいた文書が大量にある
人手による更新・訂正が行われるので正確性がある程 度保証されている 大量の「会社名」データを手に入れることができる (Wikipediaのデータベース・ダンプを利用)
略称の取得 略称と正式名称の関連も取得できる 例)「日立」というリンクから「日立製作所」につな がっている場合 「日立」=「日立製作所」と関連付けられる
Wikipedia以外からの取得 Web上にはWikipedia以外の文書も大量にある しかし、それらはWikipediaのように「企業」であることが 明記されてるわけではない だが、量は圧倒的に多いのでなんとか活用したい 周りの文章から「会社名」であることを判断できな
いか? 「〇〇は東証一部に上場した~」 「〇〇は1997年に創業した~」
構造化されてない文章からの会社名の取得 まず、Wikipediaなど構造化されているデータを「訓 練データ」として用いる 前後の単語から、会社名を判断する確率モデルを作 る 構造化されてないデータ(ブログの文章等)に対して これを適用し、会社名を取り出す
P(会社名|創業)= N(会社名∧創業) N(創業)
関連研究の応用 Support Vector Machineを用いた日本語固有表 現抽出[山田 et al] 前後の単語の素性(単語自体だけでなく、品詞の
種類なども含む)ベクトルの集合に対してSVMを行 い、学習させる