Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
mapping2015
Search
Leonardo Collado-Torres
February 23, 2015
Science
1
390
mapping2015
Leonardo Collado-Torres
February 23, 2015
Tweet
Share
More Decks by Leonardo Collado-Torres
See All by Leonardo Collado-Torres
SpatialBiologyWestCoastUS2024
lcolladotor
0
200
WCS-LA-2024
lcolladotor
0
330
FOGBoston2024
lcolladotor
0
220
PROINNOVA2023
lcolladotor
0
210
2023-10-03-FOGBoston
lcolladotor
0
1k
LCG20
lcolladotor
0
740
2023-08-02_spatialLIBD_BioC2023_demo
lcolladotor
0
350
2023-07-18_Verge_Genomics
lcolladotor
0
330
2023-NIA-LNG-Seminar-Series
lcolladotor
0
490
Other Decks in Science
See All in Science
サイゼミ用因果推論
lw
1
7.5k
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
650
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
120
データマイニング - ウェブとグラフ
trycycle
PRO
0
180
Hakonwa-Quaternion
hiranabe
1
140
機械学習 - pandas入門
trycycle
PRO
0
330
データマイニング - グラフデータと経路
trycycle
PRO
1
220
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
360
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
190
KH Coderチュートリアル(スライド版)
koichih
1
48k
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
140
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
180
Featured
See All Featured
It's Worth the Effort
3n
187
28k
Visualization
eitanlees
149
16k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Being A Developer After 40
akosma
91
590k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
33
2.3k
Statistics for Hackers
jakevdp
799
220k
Fireside Chat
paigeccino
40
3.7k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
The Cult of Friendly URLs
andyhume
79
6.6k
How GitHub (no longer) Works
holman
315
140k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Transcript
Does mapping simulated RNA-seq reads provide information? Leonardo Collado-Torres tweet:
@fellgernon blog: tinyurl.com/FellBit
Previously • Choose 10 genes with FPKM > 20 •
cufflinks: estimate isoform FPKM from 7 Geuvadis samples • polyester: simulate with uniform & rnaf models • Map with TopHat • View coverage https://github.com/alyssafrazee/polyester_code/blob/master/polyester_manuscript.Rmd
https://github.com/alyssafrazee/polyester_code/blob/master/polyester_manuscript.Rmd
Goals • Reproduce • Similar behavior in other genes/samples? •
Do simulated reads predict observed data? Get a measure by gene • Even more than by chance?
None
Original
Reproduced
None
None
None
None
Measures by gene: using single bp exon • Correlation (R^2)
• RMSD: scaling by max first • ARIMA: forecast models – Auto ARIMA on obs – Fit again using simulated data as predictor – P-value for predictor and estimated coef • Chance: – Neg. binomial size 1 and 6 – Compare replicates of simulated data
• d: default params, 2 reps (2x) • r: using
rnaf bias, 2x • b1: neg. binomial with size = 1, 2x • b6: neg. binom. size = 6, 2x • d1-d2: using d1 as “obs” – Same for r1-r2, b1a-b1b, b6a-b6b
Correlation
Correlation: summarize by sample
Correlation: summarize by gene
R^2
Scaling by max then RMSD
Scaling by max then RMSD
None
None
ARIMA: predictor p-value
ARIMA: predictor p-value
ARIMA: predictor coefficient
None
None
Code • https://github.com/alyssafrazee/polyest er_code/blob/master/polyester_manuscri pt.Rmd • https://github.com/lcolladotor/mapBias (private for now)
None
None