Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LINE's 3D Recognition Technology and Future Pro...
Search
LINE Developers
December 01, 2021
Technology
0
600
LINE's 3D Recognition Technology and Future Prospects
LINEの3D認識技術と今後の展望
井尻善久(LINE株式会社)
MLAI-TALK #1 での発表資料です
https://line.connpass.com/event/231314/
LINE Developers
December 01, 2021
Tweet
Share
More Decks by LINE Developers
See All by LINE Developers
LINEスタンプのSREing事例集:大きなスパイクアクセスを捌くためのSREing
line_developers
3
2.3k
Java 21 Overview
line_developers
6
1.2k
Code Review Challenge: An example of a solution
line_developers
1
1.3k
KARTEのAPIサーバ化
line_developers
1
550
著作権とは何か?〜初歩的概念から権利利用法、侵害要件まで
line_developers
5
2.2k
生成AIと著作権 〜生成AIによって生じる著作権関連の課題と対処
line_developers
3
2.1k
マイクロサービスにおけるBFFアーキテクチャでのモジュラモノリスの導入
line_developers
9
3.6k
A/B Testing at LINE NEWS
line_developers
3
990
LINEのサポートバージョンの考え方
line_developers
2
1.3k
Other Decks in Technology
See All in Technology
コミュニティと計画的偶発性理論 - 出会いが人生を変える / Life-Changing Encounters
soudai
PRO
7
1.2k
PFEM Online Feature Flag @ newmo
shinyaishitobi
2
260
リモートワークで心掛けていること 〜AI活用編〜
naoki85
0
200
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
150
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
2
1.1k
生成AI活用のROI、どう測る? DMM.com 開発責任者から学ぶ「AI効果検証のノウハウ」 / ROI of AI
i35_267
4
140
o11yツールを乗り換えた話
tak0x00
2
1.7k
工業高校で学習したとあるエンジニアのキャリアの話
shirayanagiryuji
0
120
はじめての転職講座/The Guide of First Career Change
kwappa
5
4.5k
[CVPR2025論文読み会] Linguistics-aware Masked Image Modelingfor Self-supervised Scene Text Recognition
s_aiueo32
0
190
いかにして命令の入れ替わりについて心配するのをやめ、メモリモデルを愛するようになったか(改)
nullpo_head
7
2.8k
サイボウズフロントエンドの横断活動から考える AI時代にできること
mugi_uno
3
1.3k
Featured
See All Featured
Navigating Team Friction
lara
188
15k
Fireside Chat
paigeccino
39
3.6k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
The Cult of Friendly URLs
andyhume
79
6.5k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Why Our Code Smells
bkeepers
PRO
338
57k
Done Done
chrislema
185
16k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Transcript
LINEの3D認識技術と今後の展望 LINE CVL Yoshihisa IJIRI
> ઐɿίϯϐϡʔλϏδϣϯɾϩϘςΟΫε > 0VUEPPSొࢁɾεΩʔɾୌ८ΓɾࣸਅࡱӨɾόΠΫτϥΠΞϧɾɾɾ > *OEPPSϐΞϊԋɾྺ࢙ɾᗉɾίʔώʔᖿઝɾΟεΩʔɺΫϥ ϑτϏʔϧɾɾɾ > ΦϜϩϯೖࣾ >
إͷݕग़ೝࣝͷσδΧϝɾܞଳిɺࢹΧϝϥԠ༻ > ମݕग़ɾŤŞƄŸƃũŖŢŔƃɾ0$3ͷ'"͚Խ > ͠ͳ͔ͳ੍ޚΛ࣮ݱ͢ΔࣗιϑτϩϘοτݚڀਪਐ > Ϧαʔνϕϯνϟʔ্ཱͪ͛ 0.30/4*/*$9 > -*/&ೖࣾ > $PNQVUFS7JTJPO-BCͷ্ཱͪ͛ -*/&גࣜձࣾ "*Χϯύχʔ "*։ൃࣨ ࣨɺ$PNQVUFS7JTJPO-BC Ϛωʔδϟʔ :PTIJIJTB*KJSJ 1I%
"*ٕज़ͷաͿΓ 0 1000 2000 3000 4000 5000 6000 7000 8000
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 $713จߘͷਪҠ 出展:IEEE digital library各年度proceedings これらを元に独⾃に集計し作成
ίϯϐϡʔλϏδϣϯٕज़ͷաͿΓ QVCMJDBUJPO I /BUVSF 5IF/FX&OHMBOE+PVSOBMPG.FEJDJOF
4DJFODF *&&&$7'$POGFSFODFPO$PNQVUFS7JTJPOBOE 1BUUFSO3FDPHOJUJPO 5IF-BODFU "EWBODFE.BUFSJBMT $FMM /BUVSF$PNNVOJDBUJPOT $IFNJDBM3FWJFXT *OUFSOBUJPOBM$POGFSFODFPO-FBSOJOH 3FQSFTFOUBUJPOT +"." /FVSBM*OGPSNBUJPO1SPDFTTJOH4ZTUFNT 1SPDFFEJOHTPGUIF/BUJPOBM"DBEFNZPG4DJFODFT +PVSOBMPGUIF"NFSJDBO$IFNJDBM4PDJFUZ "OHFXBOEUF$IFNJF $IFNJDBM4PDJFUZ3FWJFXT /VDMFJD"DJET3FTFBSDI 3FOFXBCMFBOE4VTUBJOBCMF&OFSHZ3FWJFXT +PVSOBMPG$MJOJDBM0ODPMPHZ 1IZTJDBM3FWJFX-FUUFST QVCMJDBUJPO I "EWBODFE&OFSHZ.BUFSJBMT /BUVSF.FEJDJOF *OUFSOBUJPOBM$POGFSFODFPO.BDIJOF-FBSOJOH &OFSHZ&OWJSPONFOUBM4DJFODF "$4/BOP 4DJFOUJGJD3FQPSUT &VSPQFBO$POGFSFODFPO$PNQVUFS7JTJPO 5IF-BODFU0ODPMPHZ "EWBODFE'VODUJPOBM.BUFSJBMT 1-P4 0/& *&&&$7'*OUFSOBUJPOBM$POGFSFODFPO$PNQVUFS 7JTJPO /BUVSF(FOFUJDT +PVSOBMPG$MFBOFS1SPEVDUJPO /BUVSF.BUFSJBMT 4DJFODFPG5IF5PUBM&OWJSPONFOU $JSDVMBUJPO #.+ +PVSOBMPGUIF"NFSJDBO$PMMFHFPG$BSEJPMPHZ "QQMJFE$BUBMZTJT#&OWJSPONFOUBM 4DJFODF"EWBODFT 出展:Google Scholar
5 LINEの藤原師匠 CVPRやICCVにバンバン通していた (それで私もジョインした!)
ͳͥ܈ʁ
ը૾ ✔ ࠲ඪܥ ✔ ॱং ✔ εέʔϧ ܈ ʁ ࠲ඪܥ
ʁ ॱং ʁ εέʔϧ ܈ͷ͠͞
՝ΛΓӽ͑ΔͨΊओʹΞϓϩʔνଘࡏ Point-based: Qi et al. [CVPR 2017] Alternative representation: Sinha
et al. [ECCV 2016] Voxel based: Wu et al. [CVPR 2015] Image-based: Kanezaki et al. [CVPR 2018] αΠζ ϝογϡ͕ඞཁ લॲཧ͕ඞཁ ࠲ඪ ؔͱͯ͠දݱ͢ΕΑ͍ͷͰʁ ओͳղੳख๏
• ಛͱͯ͠ωοτϫʔΫͷॏΈΛར༻ • લॲཧʴಛघͳωοτϫʔΫΛ࠾༻͢Δ͜ͱʹΑΓ࠲ඪɾεέʔϧෆมʹ https://github.com/kentfuji/NeuralEmbedding /FVSBM*NQMJDJU&NCFEEJOHGPS1PJOU$MPVE"OBMZTJT <'VKJXBSB $713>
ը૾ ✔ ࠲ඪܥ ✔ ॱং ✔ εέʔϧ ܈ ʁ ࠲ඪܥ
✔ ॱং ✔ εέʔϧ ܈ͷ͠͞
model chair bed ʜ table ʜ
ʜ ճసෆมͷ࣮ݱ
A Closer Look at Rotation-Invariant Deep Point Cloud Analysis [Li
and Fujiwara+, ICCV2021]
• ओੳͷ࣠ͷΈ߹ΘͤͰճసΛࣔ͢ͷΛಛఆ • 4FMFDUPSϞδϡʔϧΛఏҊ͠࠷దͳ࢟ͷநग़Λ࣮ݱ MLP major network pooling softmax !
24 3N N 3 A Closer Look at Rotation-Invariant Deep Point Cloud Analysis [Li and Fujiwara+, ICCV2021]
ը૾ ✔ ࠲ඪܥ ✔ ॱং ✔ εέʔϧ ܈ ✔ ࠲ඪܥ
✔ ॱং ✔εέʔϧ ܈ͷ͠͞
ϊΠζͷଘࡏରԠ͕ؔະͷ߹ɽɽɽ
𝐴!! 𝐴!" ⋯ 𝐴!# 𝐴"! 𝐴"" ⋯ 𝐴"# ⋮ 𝐴$!
⋮ 𝐴$" ⋱ ⋮ ⋯ 𝐴$# 𝐱 = 𝑏! 𝑏" ⋮ 𝑏$ min 𝐱 𝐀𝐱 − 𝐛 " " ܈" C͕༩͑ΒΕͨ߹ɼมYΛٻΊΔ 順序が必要! ઢܗճؼ (Linear Regression)
܈" C͕༩͑ΒΕͨ߹ɼஔߦྻ1ͱมYΛٻΊΔ 同じ点数が必要! min 𝐱, 𝐏 𝐀𝐱 − 𝐏𝐛 "
" 𝐴!! 𝐴!" ⋯ 𝐴!# 𝐴"! 𝐴"" ⋯ 𝐴"# ⋮ 𝐴$! ⋮ 𝐴$" ⋱ ⋮ ⋯ 𝐴$# 𝐱 = ⋮ 𝑏$ 𝑏" 𝑏! 𝐏() ∈ {0, 1} 5 ( 𝐏() = 1 5 ) 𝐏() = 1 Shuffled Linear Regression [Ashwin+, 2017]
܈" C͕༩͑ΒΕͨ߹ɼஔߦྻ1ͱมYΛٻΊΔ 外れ値と順序の特定が可能! min 𝐱, 𝐏 𝐀𝐱 − 𝐏𝐛 "
" 𝐴!! 𝐴!" ⋯ 𝐴!# 𝐴"! 𝐴"" ⋯ 𝐴"# ⋮ 𝐴$! ⋮ 𝐴$" ⋱ ⋮ ⋯ 𝐴$# 𝐱 = ⋮ 𝑏$ 𝑏" 𝑏! 𝐏() ∈ {0, 1} 5 ( 𝐏() ≤ 1 5 ) 𝐏() ≤ 1 5 (,) 𝐏() = 𝑘 Generalized Shuffled Linear Regression [Li and Fujiwara+, ICCV2021]
• ֊མͪͷஔߦྻѻ͑Δ b4IVGGMFE-JOFBS3FHSFTTJPO` • ܈͚ͩͰͳ͘ը૾ͷಛͳͲʹରԠՄೳ Source Target GSLR (ours) Feature
matching w/ RANSAC SLR Source FMAP ICP BCICP ZoomOut-100 GSLR (ours) 94.4% 62.0% 83.4% 52.6% 37.1% (FOFSBMJ[FE4IVGGMFE-JOFBS3FHSFTTJPO <-JBOE'VKJXBSB *$$7>
̏DʴTime = Motion Motion + Linguistics = Cmd2motion ͜Ε͔Βɾɾɾ
21 -*/&$7-ͷྗٕज़ $79ٕज़ ࣗવݴޠॲཧ ೖྗ Ի σδλϧ ςΩετ ը૾ಈը
3(#%5 ݴޠ ςΩετ ը૾ ਤද Իೝࣝ $713 ॲཧ ੜ Ի߹ $( ςΩετग़ ྗ 5F9ͳͲ ϚϧνϝσΟΞೖྗʹରԠ͢ΔϚϧνϞʔμϧॲཧ"*ٕज़ $7Y˓˓ٕज़͕ॏཁʹʂ ʢ$7Λத৺ͱͯ͠Έͨͱ͖ͷϚϧνϞʔμϧ"*ٕज़ͷҙຯͰԬຊࢯ͕$79ٕज़ͱ໋໊ʣ
%PDVNFOU6OEFSTUBOEJOH "*0$3 Semantic Information S-Overtime 50% (count) 1 (unitpric e)
20,000 (price) 20,000 PBI 1,818 Subtotal 18,181 Total 20,000 Cash 100,000 Change 80,000 Tax Included 10% Image Spatial Dependency Parsing for Semi-Structured Document Information Extraction [Hwang+, ACL2020]
23 -BZPVUSFDPHOJUJPO ςΩετͷϨΠΞτΛೝࣝ͢Δ͜ͱͰϑΟʔϧυݕࡧΛՄೳͱ͢Δ
#FZPOEDVSSFOU"*0$3ʜ $IBSBDUFSUZQF 5FSNJOPMPHZ (SBNNBS 'PSNMBZPVU 5PQJDTTUZMF %PDVNFOUUZQF %PNBJO LOPXMFEHF 1VSQPTF
UBTL $VTUPNFS TQFDJGJD LOPXMFEHF $PNNPO LOPXMFEHF 7JTVBMQBUUFSOT $POUFYU 510 MFWFMPGGPOMZXJUI WJTVBMQBUUFSOT $PNCJOBUJPOXJUI/-1 CFDPNFTDSVDJBM $IBSBDUFS -BOHVBHF 8PSE
25 岡本さんから 次回以降に紹介!
26 -*/&$7-ͷྗٕज़ $79ٕज़ ࣗવݴޠॲཧ ೖྗ Ի σδλϧ ςΩετ ը૾ಈը
3(#%5 ݴޠ ςΩετ ը૾ ਤද Իೝࣝ $713 ॲཧ ੜ Ի߹ $( ςΩετग़ ྗ 5F9ͳͲ ϚϧνϝσΟΞೖྗʹରԠ͢ΔϚϧνϞʔμϧॲཧ"*ٕज़ $7Y˓˓ٕज़͕ॏཁʹʂ ʢ$7Λத৺ͱͯ͠Έͨͱ͖ͷϚϧνϞʔμϧ"*ٕज़ͷҙຯͰԬຊࢯ͕$79ٕज़ͱ໋໊ʣ
STRICTLY CONFIDENTIAL -*/&"*$PNQBOZͷࢦ͢ੈք ʮͻͱʹ͍͞͠"*ʯ͕ɺ ੜ׆ϏδωεʹજΉΘ͠͞Λղফ͠ɺ ʮ͜Ε͔Βͷ͋ͨΓ·͑ʯΛΓ·͢ɻ "*ΧϯύχʔͰɺ-*/&ͷͭ"*ٕज़Λফඅऀ͚͔Β๏ਓ͚·Ͱ෯͘ల։͍ͯ͠·͢ɻ อ༗͢Δٕज़ʹࣗવݴޠॲཧɺจࣈɺը૾ɺإɺԻͷೝࣝԻ߹ͳͲ͕͋Γɺ ࣾձاۀͷ՝χʔζʹ߹Θͤͯઃܭ͔Β࣮·ͰΛߦ͍ɺ"*ͷࣾձਁಁΛਪਐ͍ͯ͠·͢ɻ ͦΜͳࢲͨͪɺ
ʮΑΓࣗવͳϢʔβʔମݧΛ -JGFPO-*/& ʹͨΒ͢͜ͱͰ ͜Ε͔Βͷ͋ͨΓ·͑Λͭ͘Γͩ͢ʯ ͱ͍͏7JTJPOΛ࣋ͬͯʑΛա͍ͯ͝͠·͢ɻ Ϗδωεͱ"*ɺਓͱ"*ͷڑΛ͚ۙͮɺ ʑͷۀͦͷઌͷਓʑͷੜ׆ʹدΓఴ͏ʮ͜Ε͔Βͷ͋ͨΓ·͑ʯΛग़͠ɺ ΑΓศརͳࣾձΛ࣮ݱ͠·͢ɻ
STRICTLY CONFIDENTIAL $-07"$IBUCPU -*/&͔ΜͨΜϔϧϓ$-07"Ͱഓͬͨ ࣗવݴޠٕज़Λɺ'"2٬༻#PUʹ ల։Ͱ͖ΔαʔϏε LINE CLOVA Chatzbot $-07"0$3
ࠃࡍձٞͰੈք࠷ߴਫ४ͱೝΊΒΕͨ OCRٕज़ΛਃࠐॻྖऩॻͳͲͷಡΈऔΓɺ ࣗಈೖྗʹ׆༻Ͱ͖ΔαʔϏε LINE CLOVA OCR $-07"4QFFDI $-07"ͷԻೝٕࣝज़Λ׆༻͠ɺ ిಈըϝσΟΞͷԻॻ͖ى͜͠ɺ ిԠରͷࣗಈԽαʔϏεͳͲΛఏڙ LINE CLOVA Speech $-07"7PJDF $-07"ͷԻ߹ٕज़Λ׆༻͠ɺ اۀϒϥϯυ༻్ʹ͋ͬͨԻϞσϧΛ࡞ ͢ΔαʔϏεΛఏڙ༧ఆ LINE CLOVA Voice $-07"5FYU"OBMZUJDT ςΩετղੳɺײੳٕज़ɻ ԻೝࣝͰىͨ͜͠ςΩετ͔Βͷݕࡧ ײੳͳͲʹ׆༻ɻ LINE CLOVA Text Analytics $-07"7JTJPO ମೝࣝɺը૾ೝٕࣝज़ɻ LINEγϣοϐϯάͷʮSHOPPING LENSʯͰ׆༻ɻ LINE CLOVA Vision $-07"'BDF ߴਫ਼ͷإೝٕࣝज़ɻ eKYCʢΦϯϥΠϯຊਓ֬ೝʣ إೝূʹΑΔडͳͲʹ׆༻ɻ LINE CLOVA Face -*/&$-07"ͷ ϓϩμΫτ 4BB4ఏڙ 4BB4ఏڙ -*/&ͷ࣋ͭଟ༷ͳ"*ཁૉٕज़Λجʹ෯͍##͚ϓϩμΫτΛల։͍ͯ͠·͢ʢҰ෦4BB4ͱͯ͠ఏڙʣɻ
"*Χϯύχʔ͕ఏڙ͍ͯ͠ΔαʔϏε
"*Χϯύχʔ ͷ 3%7JTJPO $POTFSWBUJWF %JTSVQUJWF 5JNF
*OUFSBDUJWFWJSUVBM FYQFSJFODF "VUPOPNPVT"* XPSLGMPX %JHJUBM.F .F"7"5"3 %JHJUBM*EFOUJUZ #FUUFS$BSF 5SVTUXPSUIZ"* "*'BJSOFTT &YQMBJOBCMF"* %BSL%BUB 0NOJQPUFOU"* (JHBOUJD-BOHVBHFNPEFM 6OMBCFMFE%BUB %BUB.BSLFUQMBDF (FOFSBUJWF*OUFMMJHFODF /FX&EVDBUJPO %FQFOEBCMF455 1SJWBDZQSFTFSWJOH 4FBN%JTDSJNJOBUPS
None
ʣ*$"441 ʣ*/5&341&&$) ʣ8"41"" ʣ #JH%BUB ʢʣ*$"441 &64*1$0
*/5&341&&$) %$"4& "14*1" $713 51%1 '-*$.- -%3$ *$"441 *$3" *6* *$%& *$$7 各分野最⾼峰の会議で認められるAI 基礎研究成果 ͜Ε·ͰͷՌ
⾃由度が⾼い発話のリアルタイム認識で⾃然な会話の 書き起こしを実現! ։ൃதͷٕज़ 4QFFDI CLOVA note
%// Ի߹ ʙײΛॊೈʹ੍ޚՄೳͳԻ߹Λ࣮ݱʙ COntrollable, High-quality, And expRessIve TTS 明るさ 暗さ
😀 😄 🙂 😐 😢 😰 😥 ։ൃதͷٕज़ʢ7PJDFʣ
HyperCLOVA 1750億超のパラメータを有する汎⽤⾔語モデルを開発 ։ൃதͷٕज़ʢ/-1ʣ
国会図書館デジタルアーカイブ プロジェクト 247万点2.23億ページ超のデジタル・アーカイブ化 ։ൃதͷٕज़ʢ$7-ʣ https://linecorp.com/ja/pr/news/ja/2021/3825
ੜ׆ϏδωεʹજΉΘ͠͞Λղܾ͠ ͜Ε͔Βͷ͋ͨΓ·͑ΛΓग़͢ʂ Ұྲྀʹͩ͜ΘΔΠϯλʔφγϣφϧͳνʔϜ
None
Our challenge Innovation by mixing LINE AI assets, especially NLP,
voice/speech, and CV .JYFE-*/&"*.J-"* .VMUJNPEBMJOQVUPVUQVU
None
None
None
None
44 STRICTLY CONFIDENTIAL $-07"0$3 Point 1 ੈք࠷ߴਫ४ͷ"*0$3 Point 2 ͋ΒΏΔॻྨը૾Λૉૣ͘ςΩετԽ
Point 3 खॻ͖ͷจࣈೝࣝՄೳ ԣॻ͖ॎॻ͖ɺؙ͘ۂͨ͠จࣈͳͲѱ݅ԼͰͷಡΈऔΓɺଟݴޠͷ ೝࣝɺઐ༻ޠͷೝࣝͳͲͰߴ͍ਫ਼ͱධՁɻจॻղੳͱೝࣝʹؔ͢Δࠃ ࡍձٞ *$%"3 ͷʹͯੈք/PΛ֫ಘ͍ͯ͠·͢ɻ ϑΥʔϚοτ͕ܾ·͍ͬͯΔॻྨͪΖΜɺ͋ΒΏΔελΠϧͷॻྨΛ ਖ਼͘͠ςΩετԽ͠·͢ɻ$-07"0$3ʢྖऩॻɾٻॻɾϨγʔτಛ ԽܕʣͰɺϑΥʔϚοτͷࣄલొ͕ෆཁɻ खॻ͖จࣈɺࣼΊʹͳͬͨจࣈߴਫ਼ͷೝূ͕Մೳ
45 STRICTLY CONFIDENTIAL 4"1$PVODVS +BQBO ࢴͷٻॻͷσδλϧԽͷύʔτφʔͱͯ͠-*/&$-07"Λબఆ גࣜձࣾതใಊ%:ϝσΟΞύʔτφʔζ γϦΞϧφϯόʔΛಡΈऔΔ͜ͱͰɺίϯϏχԁ͘͡ΛΦϯϥΠϯԽ -*/&τʔΫϧʔϜ τʔΫϧʔϜ͔Βը૾ΛࡱΔ͚ͩͰจࣈೝࣝػೳ͕ར༻Մೳ
ΫϥυαʔϏεͱͷύʔτφʔγοϓ ৽ͨͳιϦϡʔγϣϯͱͯ͠ͷ׆༻ -*/&αʔϏεͷߩݙ ʘ GPS*/70*$&ʗ -*/&Ϩγʔτ -*/&1-"$& ϨγʔτΛ"*ͰಡΈऔΔ͜ͱͰɺֹۚͱ͕ࣗಈͰྨɻ ࢧग़ཧར༻͓ͨ͠ళͷޱίϛαΠτͷߘͳͲ͕؆୯ʹɻ $-07"0$3ಋೖࣄྫ
46 STRICTLY CONFIDENTIAL $POGJEFOUJBM -*/&"J$BMM Point 1 ϢʔβʔΛͨͤͳ͍ར༻ମݧ Point 2
ਓؒຯ͋;ΕΔࣗવͳର Point 3 طଘγεςϜ-*/&ͱͷ࿈ܞ ࣌ؒɺडిମ੍Λ༻ҙͰ͖Δ͜ͱͪΖΜɺ൪߸ೖྗͰରԠ ༰ΛৼΓ͚Δ*73ʢ*OUFSBDUJWF7PJDF3FTQPOTFʣͱҟͳΓɺॊೈ ʹରԠ͠·͢ɻ ༲ͷ͋Δਓؒʹ͍ۙࣗવͳԻͰɺϢʔβʔʹετϨεΛֻ͚·ͤΜɻ ·ͨɺ"*ʹΑΔԻೝࣝͷֶशʹΑΓɺԻೝࣝͱରͷਫ਼্͕͠ɺ ରԠ্࣭͕͠·͢ɻ ͜Ε·ͰՍిडిޙʹߦ͍ͬͯͨΞφϩάͳσʔλඋۀɺγες Ϝ࿈ܞʹΑΓܰݮ͠·͢ɻ·ͨɺ-*/&4.4ͱ࿈ܞ͢Δ͜ͱͰɺ௨ޙ ʹϢʔβʔʹࣗಈͰϝοηʔδΛૹ৴͢Δ͜ͱՄೳͰ͢ɻ
47 STRICTLY CONFIDENTIAL ϠϚτӡ༌גࣜձࣾ ސ٬͔ΒͷిʹΑΔूՙड ਆಸݝ ৽ܕίϩφి૬ஊ૭ޱ גࣜձࣾΤϏιϧ ҿ৯ళ͚༧ཧγεςϜ גࣜձࣾΧʔϑϩϯςΟΞ
Χʔϝϯςφϯε༧αʔϏε େखاۀͷۀʹಋೖ ެڞߦͷෛ୲ܰݮ ϓϥοτϑΥʔϜͱͷػೳ࿈ܞ -*/&"J$BMM ಋೖ࣮
48 STRICTLY CONFIDENTIAL -*/&F,:$ Point ߴਫ਼ͷΦϯϥΠϯຊਓ֬ೝ -*/& F,:$ɺ-*/&͕։ൃͨ͠"*ٕज़ΛΈ߹Θͤɺ҆શੑͱརศੑΛ ཱ྆ͨ͠ɺΦϯϥΠϯ্Ͱͷຊਓ֬ೝΛ݁͢ΔιϦϡʔγϣϯͰ͢ɻ "1*4%,ͳͲ๛ͳఏڙํ๏ʹΑΓɺར༻తʹ͋ͬͨΧελϚΠζ͕
ՄೳͰ͢ɻखଓ͖ͷ؆ུԽʹΑͬͯɺۀޮԽɾϢʔβʔͷརศੑ ఏڙɺͳΓ͢·͠ʹΑΔෆਖ਼ΞΫηεɾෆਖ਼ར༻ͷࢭΛ࣮ݱ͠·͢ɻ
49 STRICTLY CONFIDENTIAL -*/&1BZ εϚϗͱূ͕͋ΕͰ͖ΔʮεϚϗͰ͔ΜͨΜຊਓ֬ೝʯ -*/&1BZͰͷಋೖ -*/&F,:$ ಋೖࣄྫ