Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TCP-FIT: An Improved TCP Congestion Control
Search
Kevin Tong
May 13, 2013
Technology
0
500
TCP-FIT: An Improved TCP Congestion Control
Kevin Tong
May 13, 2013
Tweet
Share
More Decks by Kevin Tong
See All by Kevin Tong
Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE
logicmd
1
4.6k
Transport Methods in 3DTV—A Survey
logicmd
0
130
The Performance of MapReduce: An In-depth Study
logicmd
0
680
Simple Regenerating Codes:Network Coding for Cloud Storage
logicmd
0
520
ANALYSIS OF ADAPTIVE STREAMING FOR HYBRID CDN/P2P LIVE VIDEO SYSTEMS
logicmd
1
530
Other Decks in Technology
See All in Technology
入門 PEAK Threat Hunting @SECCON
odorusatoshi
0
170
Aurora PostgreSQLがCloudWatch Logsに 出力するログの課金を削減してみる #jawsdays2025
non97
1
230
2025/3/1 公共交通オープンデータデイ2025
morohoshi
0
100
Change Managerを活用して本番環境へのセキュアなGUIアクセスを統制する / Control Secure GUI Access to the Production Environment with Change Manager
yuj1osm
0
110
データエンジニアリング領域におけるDuckDBのユースケース
chanyou0311
9
2.5k
DevinでAI AWSエンジニア製造計画 序章 〜CDKを添えて〜/devin-load-to-aws-engineer
tomoki10
0
190
20250304_赤煉瓦倉庫_DeepSeek_Deep_Dive
hiouchiy
2
120
"TEAM"を導入したら最高のエンジニア"Team"を実現できた / Deploying "TEAM" and Building the Best Engineering "Team"
yuj1osm
1
230
あなたが人生で成功するための5つの普遍的法則 #jawsug #jawsdays2025 / 20250301 HEROZ
yoshidashingo
2
320
AWS Well-Architected Frameworkで学ぶAmazon ECSのセキュリティ対策
umekou
2
150
どちらかだけじゃもったいないかも? ECSとEKSを適材適所で併用するメリット、運用課題とそれらの対応について
tk3fftk
2
240
Two Blades, One Journey: Engineering While Managing
ohbarye
4
2.4k
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
10
520
Being A Developer After 40
akosma
89
590k
Mobile First: as difficult as doing things right
swwweet
223
9.5k
Git: the NoSQL Database
bkeepers
PRO
428
65k
A Philosophy of Restraint
colly
203
16k
BBQ
matthewcrist
87
9.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Optimizing for Happiness
mojombo
377
70k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Transcript
Jingyuan Wang, Jiangtao Wen, Jun Zhang and Yuxing Han Tsinghua
National Laboratory for Information Science and Technology
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
TCP ◦ The Transmission Control Protocol TCP Reno/
TCP New Reno ◦ Pros Reliable Sequential ◦ Cons Wireless network high Bandwidth Delay Product (BDP)
Recent development ◦ Wireless TCP Westwood TCP
Veno ◦ BDP TCP Compound TCP CUBIC FAST TCP TCP-FIT ◦ Inspired by parallel TCP
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
What is a Congestion Algorithm? Classification ◦ Loss-based
◦ Delay-based ◦ Hybrid
Loss-Based ◦ TCP Reno, TCP CUBIC ◦ TCP BIC
, High Speed TCP Definition Assumption ◦ Constraints In wireless scenarios In BDP scenarios
Delay-Based ◦ TCP Vegas and FAST TCP Definition
Assumption ◦ Queuing delay = RTT – Propagation delay. ◦ Pros Resilient -> good ◦ Cons bandwidth starvation
Hybrid TCP ◦ Veno, TCP Westwood, TCP Illinois, H-TCP
and Fusion TCP ◦ Compound TCP Cons ◦ Poor in BDP-wireless-hybrid scenarios
TCP-FIT ◦ Parallel TCP ◦ E.g. GridFTP and E-MulTCP
◦ Pros: Utilization Good in wireless and BDP ◦ Cons: Compatibility Fairness
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
Notation of parameter ◦ : Size of congestion window
� ◦ : RTT time ◦ : PLR, Packet Loss Rate ◦ : Throughput of the network ◦ : Propagation delay ◦ : Queuing delay
Object ◦ achieve N times throughput of the TCP
Reno ◦ meanwhile maintain fairness TCP Reno ◦ AIMD : ← + 1 : ← − 1 2
MulTCP ◦ : ← + ◦ : ← −
1 2 Proposed Method ◦ : ← + ◦ : ← − 2 3+1
Assumption: one loss adjustment is enough ◦ Based on
AIMD ◦ = − 2 3+1 ◦ + = 2� ◦ We get ◦ = 3+1 3 �
In a certain length of time( we set it
as k*RTT time ) ◦ ∆ = 1 − � + � 𝑘𝑘 � � 2 3+1 Then ◦ ̇ = ∆ ̇ = 𝑇𝑇 − 𝑋𝑋 � 2 3+1 � 3+1 3 � Let ̇ = 0 then we get = 32 2 � 2 ( = � 𝑇𝑇 ) ◦ = 1 𝑇𝑇 3 2 1
The is adjusted adaptively. Update of is ◦ 𝑖𝑖+1
= 1, 𝑖𝑖 + − −𝑡𝑡 𝑖𝑖 The equilibrium of is ◦ = � −𝑡𝑡 = 𝑇𝑇 ◦ (denote α as α = (𝑡𝑡 − 𝑡𝑡 )/𝑡𝑡 ) ◦ (Easy to know = = + = 𝑡𝑡 + ) ◦ = 2 3 1
Network Utilization ◦ = 1 𝑇𝑇 3 2 1
vs = 1 𝑇𝑇 3 2 1 Fairness ◦ RTT-fairness η = 𝑖𝑖 = 1 vs η = 𝑖𝑖 = + 𝑖𝑖+ ( = = + ) ◦ Inter-fairness = 𝑇𝑇∗−𝑇𝑇′ 𝑇𝑇∗
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
BDP Scenarios
Wireless Scenarios
Inter-fairness
RTT-fairness
Cons: ◦ a low speed ADSL network with large
bandwidth variations ◦ Due to simplistic model of bandwidth estimation compared with FAST.
Thank you