Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TCP-FIT: An Improved TCP Congestion Control
Search
Kevin Tong
May 13, 2013
Technology
0
510
TCP-FIT: An Improved TCP Congestion Control
Kevin Tong
May 13, 2013
Tweet
Share
More Decks by Kevin Tong
See All by Kevin Tong
Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE
logicmd
1
4.6k
Transport Methods in 3DTV—A Survey
logicmd
0
140
The Performance of MapReduce: An In-depth Study
logicmd
0
690
Simple Regenerating Codes:Network Coding for Cloud Storage
logicmd
0
520
ANALYSIS OF ADAPTIVE STREAMING FOR HYBRID CDN/P2P LIVE VIDEO SYSTEMS
logicmd
1
540
Other Decks in Technology
See All in Technology
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
0
180
AI時代、1年目エンジニアの悩み
jin4
1
130
AI開発の落とし穴 〜馬には乗ってみよAIには添うてみよ〜
sansantech
PRO
10
5.5k
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
1
440
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
1
590
AI開発をスケールさせるデータ中心の仕組みづくり
kzykmyzw
0
190
Claude Codeベストプラクティスまとめ
minorun365
53
30k
Werner Vogelsが14年間 問い続けてきたこと
yusukeshimizu
2
260
Databricks Free Edition講座 データサイエンス編
taka_aki
0
250
【NGK2026S】日本株のシステムトレードに入門してみた
kazuhitotakahashi
0
240
JuliaTokaiとしてはこれが最後かもしれない(仮) for NGK2026S
antimon2
0
130
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
Featured
See All Featured
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
130
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
570
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
GraphQLとの向き合い方2022年版
quramy
50
14k
It's Worth the Effort
3n
188
29k
We Are The Robots
honzajavorek
0
150
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Designing for Performance
lara
610
70k
From π to Pie charts
rasagy
0
120
Code Review Best Practice
trishagee
74
20k
First, design no harm
axbom
PRO
2
1.1k
Skip the Path - Find Your Career Trail
mkilby
0
51
Transcript
Jingyuan Wang, Jiangtao Wen, Jun Zhang and Yuxing Han Tsinghua
National Laboratory for Information Science and Technology
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
TCP ◦ The Transmission Control Protocol TCP Reno/
TCP New Reno ◦ Pros Reliable Sequential ◦ Cons Wireless network high Bandwidth Delay Product (BDP)
Recent development ◦ Wireless TCP Westwood TCP
Veno ◦ BDP TCP Compound TCP CUBIC FAST TCP TCP-FIT ◦ Inspired by parallel TCP
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
What is a Congestion Algorithm? Classification ◦ Loss-based
◦ Delay-based ◦ Hybrid
Loss-Based ◦ TCP Reno, TCP CUBIC ◦ TCP BIC
, High Speed TCP Definition Assumption ◦ Constraints In wireless scenarios In BDP scenarios
Delay-Based ◦ TCP Vegas and FAST TCP Definition
Assumption ◦ Queuing delay = RTT – Propagation delay. ◦ Pros Resilient -> good ◦ Cons bandwidth starvation
Hybrid TCP ◦ Veno, TCP Westwood, TCP Illinois, H-TCP
and Fusion TCP ◦ Compound TCP Cons ◦ Poor in BDP-wireless-hybrid scenarios
TCP-FIT ◦ Parallel TCP ◦ E.g. GridFTP and E-MulTCP
◦ Pros: Utilization Good in wireless and BDP ◦ Cons: Compatibility Fairness
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
Notation of parameter ◦ : Size of congestion window
� ◦ : RTT time ◦ : PLR, Packet Loss Rate ◦ : Throughput of the network ◦ : Propagation delay ◦ : Queuing delay
Object ◦ achieve N times throughput of the TCP
Reno ◦ meanwhile maintain fairness TCP Reno ◦ AIMD : ← + 1 : ← − 1 2
MulTCP ◦ : ← + ◦ : ← −
1 2 Proposed Method ◦ : ← + ◦ : ← − 2 3+1
Assumption: one loss adjustment is enough ◦ Based on
AIMD ◦ = − 2 3+1 ◦ + = 2� ◦ We get ◦ = 3+1 3 �
In a certain length of time( we set it
as k*RTT time ) ◦ ∆ = 1 − � + � 𝑘𝑘 � � 2 3+1 Then ◦ ̇ = ∆ ̇ = 𝑇𝑇 − 𝑋𝑋 � 2 3+1 � 3+1 3 � Let ̇ = 0 then we get = 32 2 � 2 ( = � 𝑇𝑇 ) ◦ = 1 𝑇𝑇 3 2 1
The is adjusted adaptively. Update of is ◦ 𝑖𝑖+1
= 1, 𝑖𝑖 + − −𝑡𝑡 𝑖𝑖 The equilibrium of is ◦ = � −𝑡𝑡 = 𝑇𝑇 ◦ (denote α as α = (𝑡𝑡 − 𝑡𝑡 )/𝑡𝑡 ) ◦ (Easy to know = = + = 𝑡𝑡 + ) ◦ = 2 3 1
Network Utilization ◦ = 1 𝑇𝑇 3 2 1
vs = 1 𝑇𝑇 3 2 1 Fairness ◦ RTT-fairness η = 𝑖𝑖 = 1 vs η = 𝑖𝑖 = + 𝑖𝑖+ ( = = + ) ◦ Inter-fairness = 𝑇𝑇∗−𝑇𝑇′ 𝑇𝑇∗
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
BDP Scenarios
Wireless Scenarios
Inter-fairness
RTT-fairness
Cons: ◦ a low speed ADSL network with large
bandwidth variations ◦ Due to simplistic model of bandwidth estimation compared with FAST.
Thank you