Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TCP-FIT: An Improved TCP Congestion Control
Search
Kevin Tong
May 13, 2013
Technology
0
510
TCP-FIT: An Improved TCP Congestion Control
Kevin Tong
May 13, 2013
Tweet
Share
More Decks by Kevin Tong
See All by Kevin Tong
Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE
logicmd
1
4.6k
Transport Methods in 3DTV—A Survey
logicmd
0
140
The Performance of MapReduce: An In-depth Study
logicmd
0
690
Simple Regenerating Codes:Network Coding for Cloud Storage
logicmd
0
520
ANALYSIS OF ADAPTIVE STREAMING FOR HYBRID CDN/P2P LIVE VIDEO SYSTEMS
logicmd
1
540
Other Decks in Technology
See All in Technology
いまからでも遅くない!SSL/TLS証明書超入門(It's not too late to start! SSL/TLS Certificates: The Absolute Beginner's Guide)
norimuraz
0
240
オープンソースでどこまでできる?フォーマル検証チャレンジ
msyksphinz
0
140
綺麗なデータマートをつくろう_データ整備を前向きに考える会 / Let's create clean data mart
brainpadpr
3
520
Findy Team+ QAチーム これからのチャレンジ!
findy_eventslides
0
200
[Codex Meetup Japan #1] Codex-Powered Mobile Apps Development
korodroid
2
800
セキュアな認可付きリモートMCPサーバーをAWSマネージドサービスでつくろう! / Let's build an OAuth protected remote MCP server based on AWS managed services
kaminashi
3
330
JAZUG 15周年記念 × JAT「AI Agent開発者必見:"今"のOracle技術で拡張するAzure × OCIの共存アーキテクチャ」
shisyu_gaku
1
160
PHPからはじめるコンピュータアーキテクチャ / From Scripts to Silicon: A Journey Through the Layers of Computing Hiroshima 2025 Edition
tomzoh
0
140
AWS Top Engineer、浮いてませんか? / As an AWS Top Engineer, Are You Out of Place?
yuj1osm
2
210
Claude Code Subagents 再入門 ~cc-sddの実装で学んだこと~
gotalab555
3
2k
GoでもGUIアプリを作りたい!
kworkdev
PRO
0
140
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
930
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
75
5.1k
How to Ace a Technical Interview
jacobian
280
24k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Become a Pro
speakerdeck
PRO
29
5.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
The World Runs on Bad Software
bkeepers
PRO
72
11k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Context Engineering - Making Every Token Count
addyosmani
6
250
Building an army of robots
kneath
306
46k
How to Think Like a Performance Engineer
csswizardry
27
2k
Transcript
Jingyuan Wang, Jiangtao Wen, Jun Zhang and Yuxing Han Tsinghua
National Laboratory for Information Science and Technology
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
TCP ◦ The Transmission Control Protocol TCP Reno/
TCP New Reno ◦ Pros Reliable Sequential ◦ Cons Wireless network high Bandwidth Delay Product (BDP)
Recent development ◦ Wireless TCP Westwood TCP
Veno ◦ BDP TCP Compound TCP CUBIC FAST TCP TCP-FIT ◦ Inspired by parallel TCP
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
What is a Congestion Algorithm? Classification ◦ Loss-based
◦ Delay-based ◦ Hybrid
Loss-Based ◦ TCP Reno, TCP CUBIC ◦ TCP BIC
, High Speed TCP Definition Assumption ◦ Constraints In wireless scenarios In BDP scenarios
Delay-Based ◦ TCP Vegas and FAST TCP Definition
Assumption ◦ Queuing delay = RTT – Propagation delay. ◦ Pros Resilient -> good ◦ Cons bandwidth starvation
Hybrid TCP ◦ Veno, TCP Westwood, TCP Illinois, H-TCP
and Fusion TCP ◦ Compound TCP Cons ◦ Poor in BDP-wireless-hybrid scenarios
TCP-FIT ◦ Parallel TCP ◦ E.g. GridFTP and E-MulTCP
◦ Pros: Utilization Good in wireless and BDP ◦ Cons: Compatibility Fairness
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
Notation of parameter ◦ : Size of congestion window
� ◦ : RTT time ◦ : PLR, Packet Loss Rate ◦ : Throughput of the network ◦ : Propagation delay ◦ : Queuing delay
Object ◦ achieve N times throughput of the TCP
Reno ◦ meanwhile maintain fairness TCP Reno ◦ AIMD : ← + 1 : ← − 1 2
MulTCP ◦ : ← + ◦ : ← −
1 2 Proposed Method ◦ : ← + ◦ : ← − 2 3+1
Assumption: one loss adjustment is enough ◦ Based on
AIMD ◦ = − 2 3+1 ◦ + = 2� ◦ We get ◦ = 3+1 3 �
In a certain length of time( we set it
as k*RTT time ) ◦ ∆ = 1 − � + � 𝑘𝑘 � � 2 3+1 Then ◦ ̇ = ∆ ̇ = 𝑇𝑇 − 𝑋𝑋 � 2 3+1 � 3+1 3 � Let ̇ = 0 then we get = 32 2 � 2 ( = � 𝑇𝑇 ) ◦ = 1 𝑇𝑇 3 2 1
The is adjusted adaptively. Update of is ◦ 𝑖𝑖+1
= 1, 𝑖𝑖 + − −𝑡𝑡 𝑖𝑖 The equilibrium of is ◦ = � −𝑡𝑡 = 𝑇𝑇 ◦ (denote α as α = (𝑡𝑡 − 𝑡𝑡 )/𝑡𝑡 ) ◦ (Easy to know = = + = 𝑡𝑡 + ) ◦ = 2 3 1
Network Utilization ◦ = 1 𝑇𝑇 3 2 1
vs = 1 𝑇𝑇 3 2 1 Fairness ◦ RTT-fairness η = 𝑖𝑖 = 1 vs η = 𝑖𝑖 = + 𝑖𝑖+ ( = = + ) ◦ Inter-fairness = 𝑇𝑇∗−𝑇𝑇′ 𝑇𝑇∗
Introduction Background and Motivation The TCP-FIT Algorithm
Experimental Results Conclusion
BDP Scenarios
Wireless Scenarios
Inter-fairness
RTT-fairness
Cons: ◦ a low speed ADSL network with large
bandwidth variations ◦ Due to simplistic model of bandwidth estimation compared with FAST.
Thank you