Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第14回アソビワークショップ / session-14 Asobi-Workshop
Search
Loochs.org
September 20, 2020
Education
0
440
第14回アソビワークショップ / session-14 Asobi-Workshop
2020年9月20日に行われたアソビワークショップでPRした資料になります
Loochs.org
September 20, 2020
Tweet
Share
More Decks by Loochs.org
See All by Loochs.org
R7年度プログラミング講座のサンプルプログラム/R7-programming-seminar-sample-program-20250727
loochsorg
0
17
ラズベリーパイをもっと働かせよう / Make Raspberrypi hard work more
loochsorg
0
10
R7年度プログラミング講座のサンプルプログラム/R7-programming-seminar-sample-program
loochsorg
0
45
Nakamura Shogakko Club Activity Session 4
loochsorg
0
200
Nakamura Shogakko Club Activity Session 3
loochsorg
0
60
第42回アソビワークショップ / session-42 Asobi-Workshop
loochsorg
0
390
第41回アソビワークショップ / session-41 Asobi-Workshop
loochsorg
0
250
Nakamura Shogakko Club Activity Session 1
loochsorg
0
35
第38回アソビワークショップ / session-38 Asobi-Workshop
loochsorg
0
270
Other Decks in Education
See All in Education
自己紹介 / who-am-i
yasulab
PRO
5
6.3k
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
230
Semantic Web and Web 3.0 - Lecture 9 - Web Technologies (1019888BNR)
signer
PRO
2
3.2k
Introduction - Lecture 1 - Advanced Topics in Big Data (4023256FNR)
signer
PRO
1
2.2k
いわゆる「ふつう」のキャリアを歩んだ人の割合(若者向け)
hysmrk
0
300
Use Cases and Course Review - Lecture 8 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.4k
1216
cbtlibrary
0
140
Security, Privacy and Trust - Lecture 11 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
【洋書和訳:さよならを待つふたりのために】第1章 出会いとメタファー
yaginumatti
0
220
AIは若者の成長機会を奪うのか?
frievea
0
180
Measuring your measuring
jonoalderson
1
340
MySmartSTEAM 2526
cbtlibrary
0
190
Featured
See All Featured
From π to Pie charts
rasagy
0
120
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
140
Between Models and Reality
mayunak
1
180
Claude Code のすすめ
schroneko
67
210k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
72
Art, The Web, and Tiny UX
lynnandtonic
304
21k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
63
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
97
Chasing Engaging Ingredients in Design
codingconduct
0
110
The Language of Interfaces
destraynor
162
26k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
62
Transcript
ୈճ ΞιϏϫʔΫγϣοϓ d!·ͪͽ͋
ຊͷࢿྉҎԼͷϦϯΫઌ͔Β IUUQTTQFBLFSEFDLDPNMPPDITPSH
ʮϧʔΫεʯͬͯͳΜ͚ͩͬ w ϧʔΫεʢ-PPDITʣٯ͔ΒಡΉͱεΫʔϧʢ4DIPPMʣʹͳΔ w ʮֶͦͦߍͬͯͳΜ͚ͩͬʁʯˡΈΜͳͬͯΔʁ w FHʮษڧΛ͢Δͱ͜ΖͰ͢ʯˡຊʹͦ͏ʁ w ϧʔΫεʮֶߍͱԿ͔ʯΛߟ͑͜Ε͔ΒͷֶߍΛ࡞Δ৫ w
ͦͦʮֶߍ͍Βͳ͍આʯ͋ΓಘΔ
ΞιϏϫʔΫγϣοϓʹ͍ͭͯ w ΈΜͳ͕Γ͍ͨ͜ͱͷ୳ٻɾ࣮ݱΛࢧԉͰ͖ΔΛ࡞Γ͍ͨ w ͦͷதͷʮ༡ͼʯ͔ΒʮֶͼʯΛײͯ͡΄͍͠ w αϙʔτ͢ΔզʑେਓઈࢍʮֶͼʯதͰ͢ w ϓϩάϥϛϯάͦͷதͷखஈͷҰͭͰ͔͋͠Γ·ͤΜ
సചϠʔ w ఱಊεΠονɺ14సചϠʔͨͪͷసചߦҝͰਖ਼نΑΓߴ͍Ձ֨ͰऔҾ͞ Ε͍ͯΔ w Ͳ͏͢Εਖ਼نͷՁ֨ͰήʔϜػ͕ങ͑Δ͕࣌๚ΕΔͷ͔ʁʁ
ࣗݾհᶃ w Ωονʔʢ!LJDIJOPTVLFZʣ w ݪ٢೭ॿʢ;͘Β͖ͪͷ͚͢ʣ w Ұൠࣾஂ๏ਓϧʔΫεදཧࣄɺ̍ࣇʢঁͷࢠʣͷ w ࡀΛઅͱଊ͑ͯҰൠࣾஂ๏ਓϧʔΫεͷاۀΛܾҙ w
ιϑτΣΞ։ൃͷྗΛ͚ͨͯ͘ΦʔϓϯιʔειϑτΣΞͷ։ ൃʹࢀՃத w ࣮ࣗಈं0&.Ͱಇ͘ձࣾһͰ͋Δ
ࣗݾհᶄ w ·ʔ͘Μ !.TZL.ZU w ٶాɹਅߦʢΈͨɹ·͞Ώ͖ʣ w Ұൠࣾஂ๏ਓϧʔΫεɹཧࣄɺ̏ࣇʢશһঁͷࢠʂʣͷ
w ʮͱʹ͔͘ͳΜͰͬͯΈΔʯͷ͕͖ʂ ˠࣗʹNͷ݀Λ۷Δ΄Ͳস w झຯɺిࢠ࡞ɺϛχຍɺ৯২ɺΩϟϯϓɺΓɺ όΠΫɾं͍͡ΓɺFUDʜ w ಉࣗ͘͡ಈं0&.Ͱಇ͘ձࣾһ
ϧʔΫεϓϩδΣΫτҰཡ ʢਐߦதʣ w ࢠͲΞΠσΟΞίϯςετاը w ݄ͷϫʔΫγϣοϓͰࢴఏग़ʢ॓͡Όͳ͍Αʂʣ w ΞΠσΟΞΛܗʹͯ͠ΈΑ͏ w ϧʔΫεϚείοτΩϟϥ੍࡞
w d݄νϥγʹө༧ఆ ఏҊ
ϧʔΫεϓϩδΣΫτҰཡ ʢਐߦதʣ w ˓˓˓✖ϚΠΫϩϏοτɹଞ w ͜Ε·ͰɹˠखࢴʢόʔεσʔΧʔυʣɺ͓Έ͘͡BOEωίɺޫΔ w ͜Ε͔ΒɹˠόϧʔϯεύΠμʔɺϩϘΧʔɹɽɽɽ w ϓϩδΣΫγϣϯϚοϐϯάγϣʔ
w اը̍࣍ͱͯ͠σϞΛ࣮ࢪʢ܅ͨͪͷڧΈ͓ݟ௨ͩ͠ɾɾɾʣ ఏҊ
ϧʔΫεϓϩδΣΫτҰཡ ʢاըதʣ w ΈΜͳͰ·ͪͮ͘Γ w ๅ୳͠ w ࣗݾհεϥΠυ࡞ w ະ౿δϡχΞ
ࠓͷྲྀΕ w Πϯτϩʴࣗݾհʢʣ w ϑϧʔπൃిʢʣ w ϓϩδΣΫγϣϯϚοϐϯάγϣʔʢʣ w ࢠͲΞΠσΟΞίϯςετاըɹʢʣ
ిؾͷ࣮ݧ
λΠϜεέδϡʔϧ ؒ ϑϧʔπൃి ؒ ిؾ௨Δ͔ͳ
ൃిͷछྨʢλʔϏϯܕʣ ɾݪࢠྗ ɾՐྗ ɾਫྗ ɾ෩ྗ ɾ ग़ॴɿIUUQTTUZMFOJLLFJDPNBSUJDMF%(9,;03$"8
ൃిͷछྨʢλʔϏϯܕʣ ɾݪࢠྗ ɾՐྗ ɾਫྗ ɾ෩ྗ ɾ ग़యɿʮݪࢠྗɾΤωϧΪʔਤ໘ूʯ+108&3)1ΑΓ
ൃిͷछྨʢԽֶԠܕʣ ɾଠཅޫ ग़ॴɿژηϥ)1ΑΓ
ൃిͷछྨʢԽֶԠܕʣ ɾి ɾࣗಈंͷόοςϦʔ ɾϑϧʔπൃి ग़ॴɿதࠃిྗ)1ΑΓ
ϑϧʔπൃి࣮ݧɹॾҙ ɾ࣮ݧʹͬͨϑϧʔπࡊۚଐ༹͕͚͍ͩͯ͠ΔͷͰɼ ɹઈରʹ৯ͳ͍Ͱʂʂ ɾۚଐ൘ࢦΛΔڪΕ͕͋ΔͷͰɺ৮Δͱ͖ඞͣ܉खΛ༻͠ɺ ɹ͋·ΓྗΛೖΕͳ͍͜ͱɻେਓʹͬͯΒͬͯ0,ɻ
ϋϩΟϯΠϕϯτاը ʢϓϩδΣΫγϣϯϚοϐϯάγϣʔʣ
ϛογϣϯ w ࣌YYɺਓྨΛײછͷҖ͕ऻ͍ଓ͚ϚεΫͷண༻ͷΈͳΒͣ৮ײ છ௨ΞϓϦͷར༻͕ৗࣝͱͳ͍ͬͯΔ࣌ w ͜ͷΑ͏ͳ࣌ʹچདྷͷΤϯλʔςΠϝϯτద߹Ͱ͖ͳ͍ w ະདྷͷਓྨָ͕͠ΊΔΤϯλʔςΠϝϯτΛ܅ͨͪΓग़ͤΔ͔ʂʁ w ։࠵݄࣌ʢʣୈճΞιϏϫʔΫγϣοϓ
w ·ͪͽ͋͞Μͷऔࡐ͕ೖΓ·͢ʢ͓ͦΒ͘ӉٶͷใࢽʹࡌΔ͜ͱʹʁʣ
Πϕϯτͷΰʔϧ w ݟͨਓ͕ʮ͍͢͝ʂʯʮͲ͏ͬͯͬͨͷʂʁʯͱݴ͍ͨ͘ͳΔϑΝογϣ ϯγϣʔಈըΛͭ͘Δ w ͦͷͨΊʹΈΜͳͷʮڧΈʯΛ׆͔͢
͑Ζɺ1FSGVNF 3IJ[PNBUJLT w IUUQTXXXZPVUVCFDPNXBUDI W)2N/&FSD* w "3ʢ֦ுݱ࣮ʣޮՌΛϦΞϧλΠϜͰμϯεύϑΥʔϚϯεʹ߹ɾ৴ w "3ɿίϯϐϡʔλʹΑͬͯ࡞ΒΕ֮ͨใʢԻɺޫͳͲʣʹΑ࣮ͬͯੈքͷମݧʢԻ ָɺμϯεɺखͱ͔ʣΛڧԽ͢Δٕज़
w ͜ͷఆٛʹͳΒ͑ΈΜͳ"3ͷ׆༻ݚڀΛ͍ͯ͠Δ͜ͱʹͳΔ͔
ࠓΔ͜ͱ w ϑΥʔϝʔγϣϯܾΊ w ϑΝογϣϯγϣʔө૾ͷاը w
࣍ճҎ߱ w ੍࡞ʢʣ w ऩʢʣ
ϧʔΫεྲྀ ϓϩδΣΫγϣϯϚοϐϯάվΊ "3ϑΝογϣϯγϣʔͷϑΥʔϝʔγϣϯ Ξχϝʔγϣϯ ΫϦΤΠλʔ ৼࢣ ࡶ༻
ϑΝογϣϯγϣʔө૾ͷاը w ಈըͷ͞ w ͪ͜Β͔Βͷ݅ಈըͷ͞ఔɺ͘Β͍͔ͳʁʁ ʢө૾ͮ͘Γ͕͍࣌ؒͱಛʹେมͳͷͰʣ w ө૾ίϯηϓτ w ϋϩΟϯ෩ʁා͍ײ͡ʁ
ϑΝογϣϯγϣʔө૾ͷاը w ָ͘͢͠ΔͨΊʹ w ө૾ͷ৭Ͱ͖Δ͚ͩ໌Δ͘Χϥϑϧʹʂ w ന͍༸PSૉഽʹө૾͕៉ྷʹөΔʂˡ/FX w ҙࣄ߲ w
αϯάϥεඞਢʢ͕௧͘ͳΔɾɾɾʣ w ଞʹͲΜͳؾ͖͕ͮ͋Δ͔ͳʁʁ
ୈճΞιϏϫʔΫγϣοϓ ݄!·ͪͽ͋
None