Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI駆動の自動テスト生成
Search
Takashi Machinaga
May 15, 2025
Technology
1
150
AI駆動の自動テスト生成
AI ×フロントエンド開発のリアル(2025-05-15)
Takashi Machinaga
May 15, 2025
Tweet
Share
More Decks by Takashi Machinaga
See All by Takashi Machinaga
複雑なフォームに立ち向かう Next.js の技術選定
macchiitaka
4
1.5k
事業モメンタムを生み出すプロダクト開発
macchiitaka
1
210
What is Standard Schema?
macchiitaka
0
140
Other Decks in Technology
See All in Technology
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
300
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
220
SQLだけでマイグレーションしたい!
makki_d
0
150
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
110
ガバメントクラウド利用システムのライフサイクルについて
techniczna
0
190
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
1
280
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
510
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
6
1.6k
AI時代の新規LLMプロダクト開発: Findy Insightsを3ヶ月で立ち上げた舞台裏と振り返り
dakuon
0
190
AI駆動開発の実践とその未来
eltociear
0
120
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
310
Jakarta Agentic AI Specification - Status and Future
reza_rahman
0
110
Featured
See All Featured
Become a Pro
speakerdeck
PRO
31
5.7k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Building Adaptive Systems
keathley
44
2.9k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
730
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Optimizing for Happiness
mojombo
379
70k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Mobile First: as difficult as doing things right
swwweet
225
10k
How STYLIGHT went responsive
nonsquared
100
6k
Transcript
AI駆動の⾃動テスト⽣成 2025-05-15 株式会社IVRy(アイブリー) 町永 隆 @macchiitaka
⾃⼰紹介 • @macchiitaka • 2024年8⽉ IVRy に⼊社 • 主にWebフロントエンドの機能開発 町永
隆(Takashi Machinaga) 2 ソフトウェアエンジニア
IVRyとは?
電話⾃動応答サービスIVRy 電話AI SaaS IVRy(アイブリー)は、 ⽉額2,980円からカスタム電話をカンタンに作成できるサービス。 全ての電話業務を誰でもすぐにAIを使って効率化できます
テストを AI に⽣成してほしい • ⾃社のプロダクト開発の中でのトライ&エラーの話 • 初期からある Web フロントエンドのリポジトリ •
ビジネス優先で開発してきた • リファクタリングをしたい • しかしテストがほぼない • リファクタリングは、プログラムの動作を 変えずに、内部の構造を整理‧改善する作業 • つまりテストとセット • Copilot & Cursor & Devin
静的解析
• AI のため…ではなく元々は⾃分たちのコード品質向上のために強化していた • AI Agent と静的解析の親和性が⾼い • AI の制御にも活⽤できる
• AI Agent は暴⾛する • 適切なフィードバックを与えないと明後⽇の⽅向にコードを変更する • ガードレール(=ルール)が必要 • 確率で動く AI に対して、従来のルールベースの静的解析ツールで制御 静的解析
静的解析 1. TypeScript a. tsconfig/bases 2. ESLint a. bulk suppressions
(v9.24.0) i. AI に disable コメントを真似させない b. スタイルに関するルールも有効にする i. 特に Auto Fixable なルールは積極的に有効に ii. 表記の統⼀(prd, prod, pro…)
ルールの変更も AI にやってもらった
プロンプトを頑張らない • 最初は Cursor で⼿元で実⾏ • 簡単なプロンプトで完了すればラッキー🎉🎉🎉 • だいたいはうまくいかない •
テスト⽣成の「最初」と「最後」に介⼊する • 「最初」に介⼊するパターン ◦ Pull Request やコミット途中まで作成して、続きの作業をしてもらう ◦ = リファレンス実装 ◦ ⾃然⾔語でプロンプトを書くよりも簡単 & ⾼精度
プロンプトを頑張らない • 「最後」に介⼊するパターン ◦ ⼈間相⼿のアンチパターンが AI なら許される ◦ 「あとは俺がやる」 ◦
AI と仕事をしているといままで PR は以下にコード以外に思考を回してい たか気付かされる ◦ 癖になって⼈間相⼿にやらないように気をつけよう • 次回以降は成功した Pull Request を参照させる ◦ 精度が上がるまでは Cursor ◦ 精度が上がってからは Devin で並列実⾏
プロンプトを頑張らないコツ
無限にお⾦があったら • なぜプロンプトを頑張りたくなるのか? ◦ 従量課⾦だから成功率を上げたくなる ◦ 定額だったら使わないと損 ◦ もし5000兆円あったら…? •
⽯油王の気持ちで AI を使う • 同じプロンプトで複数回実⾏する ◦ 当たるまで繰り返す(ガチャ) • ちなみに IVRy 社内でもっとも Devin を使った ◦ マージ率ももっとも⾼かった
「あなたはアラブの⽯油王です」
ユニットテスト
テスト環境 • Vitest ◦ jsdom + Testing Library ◦ Browser
Mode ▪ Chromium ▪ Firefox ▪ WebKit
悩み①:モックサーバー • vi.spyOn、vi.mock を使いたがる ◦ 関数、モジュールレベルをモックすると、実装に依存したテストになる ◦ msw を使ったモックサーバーを利⽤してほしい ◦
しかし、このモックサーバーの⽣成精度が低い • ⾃動⽣成された API クライアントをリポジトリに含めた ◦ OpenAPI を利⽤したスキーマ駆動開発を採⽤している ◦ ⾃動⽣成ファイルはリポジトリから除外していた ◦ これと⽣成元の OpenAPI の定義ファイルを含めた ◦ モックサーバーの⽣成精度が向上 🎉🎉
悩み②:テストケース • 実装に依存したテストを⽣成しがち ◦ 実装に依存すると変更に弱いテストになる ◦ ユーザーが操作するようにテストしたい • it.todo でテストケースだけ作成する
◦ テストケース作成と⾃動テスト実装を別ステップにする ◦ テストファイルは縦に⻑くなりがち ▪ テストケースだけなら出⼒が速い ◦ 場合によっては最初の数ケースをエンジニアが定義する(最初に介⼊)
悩み②:テストケース • ゼロからテストケースを作成するより圧倒的に楽 • AI が⾃ら定義したテストケースは⾼精度で書ける • ただし、エンジニアが介⼊したテストケースのミス率は相対的に⾼い • ⽣成後、テストカバレッジを渡してテストを網羅的に書かせる
• ただしカバレッジが⾼い=良いテストケースではない • 品質は⼈間が担保する
• リファクタリング前に捨てる前提のテストを作成する • テストがグリーンであればいい • テスト品質は問わない ◦ 実装に依存したテストでもいい • 既存の機能が変わっていないことを(多少なりとも)保証してもらう
AI 特有のテスト
現在地点
ジュニアエンジニアとのペアプロ • ⼈間にとって簡単なタスクは AI にとっても簡単 • ⼈間にとって難しいタスクは AI にとっても難しい •
簡単だけど⼿数な必要な作業を AI にやってほしい • どれだけ構造化されたコードベースにできるか • どれだけ簡単なタスクに分割できるか • フロントエンドは⽐較的は細かい作業の連続 • ジュニアエンジニアとのペアプロしてきたメソッドが役に⽴った • 副作⽤として Good First Issue が枯渇する
現時点の付き合い⽅ • ゴールを定めにそこにどう導くか • 宣⾔的 UI と同じ • AI は意思決定をしてくれない
• 考えることまで任せない • 最終的な完成物の責任は⾃分にある
https://ivry-jp.notion.site/IVRy-127eea80adae801397a4e4d7ea74e291