Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Distributed TensorFlow: Scaling Deep Learning L...
Search
mactiendinh
December 28, 2017
Technology
0
84
Distributed TensorFlow: Scaling Deep Learning Library
#tensorflow #scale #distributed
mactiendinh
December 28, 2017
Tweet
Share
More Decks by mactiendinh
See All by mactiendinh
Chapter 5: Good design = Flexible softwave
mactiendinh
0
14
Overview chapter 4 Head First Object Oriented Design and Analysis
mactiendinh
0
41
Overview chapter 3 Head First Object Oriented Design and Analysis
mactiendinh
0
67
Other Decks in Technology
See All in Technology
ZOZOマッチのアーキテクチャと技術構成
zozotech
PRO
4
1.6k
いま注目のAIエージェントを作ってみよう
supermarimobros
0
280
AWSで始める実践Dagster入門
kitagawaz
1
620
2025年夏 コーディングエージェントを統べる者
nwiizo
0
170
【初心者向け】ローカルLLMの色々な動かし方まとめ
aratako
7
3.5k
AIのグローバルトレンド2025 #scrummikawa / global ai trend
kyonmm
PRO
1
290
LLMを搭載したプロダクトの品質保証の模索と学び
qa
0
1.1k
5年目から始める Vue3 サイト改善 #frontendo
tacck
PRO
3
220
なぜスクラムはこうなったのか?歴史が教えてくれたこと/Shall we explore the roots of Scrum
sanogemaru
5
1.6k
roppongirb_20250911
igaiga
1
240
「何となくテストする」を卒業するためにプロダクトが動く仕組みを理解しよう
kawabeaver
0
410
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
2
560
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
GraphQLとの向き合い方2022年版
quramy
49
14k
Statistics for Hackers
jakevdp
799
220k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
Done Done
chrislema
185
16k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
Distributed TensorFlow Tien Dinh
None
None
None
None
TensorFlow: Expressing High-Level ML Computations Core in C++ • Very
• low overhead Different • front ends for specifying/driving the computation Python • and C++ today, easy to add more
Computation is a dataflow graph Graph of Nodes • ,
called Operations or ops Edges are N • -dimensional arrays: Tensors
Computation is a dataflow graph WITH STATE
Computation is a dataflow graph Distributed
Computation is a dataflow graph Assign Devices to Ops •
TensorFlow inserts Send/Recv Ops to transport tensors across devices • Recv ops pull data from Send ops
Computation is a dataflow graph Assign Devices to Ops TensorFlow
inserts Send/Recv Ops to transport tensors across devices • Recv • ops pull data from Send ops
Distrubuted Training with TensorFlow
Distrubuted Training with TensorFlow
Model Parallelism = split model, share data
Distrubuted Training
Distrubuted Training with TensorFlow
Data Parallelism
Data Parallelism
Data Parallelism
Data Parallelism
Data Parallelism
Data Parallelism
Distributed training mechanisms Graph structure and low-level graph primitives (queues)
allow us to play with synchronous vs. asynchronous update algorithms.
Thanks for your attention!