Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Distributed TensorFlow: Scaling Deep Learning L...
Search
mactiendinh
December 28, 2017
Technology
0
86
Distributed TensorFlow: Scaling Deep Learning Library
#tensorflow #scale #distributed
mactiendinh
December 28, 2017
Tweet
Share
More Decks by mactiendinh
See All by mactiendinh
Chapter 5: Good design = Flexible softwave
mactiendinh
0
17
Overview chapter 4 Head First Object Oriented Design and Analysis
mactiendinh
0
42
Overview chapter 3 Head First Object Oriented Design and Analysis
mactiendinh
0
73
Other Decks in Technology
See All in Technology
Authlete で実装する MCP OAuth 認可サーバー #CIMD の実装を添えて
watahani
0
260
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
130
AgentCore BrowserとClaude Codeスキルを活用した 『初手AI』を実現する業務自動化AIエージェント基盤
ruzia
7
2k
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
19
3.2k
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
290
Introduce marp-ai-slide-generator
itarutomy
0
150
業務の煩悩を祓うAI活用術108選 / AI 108 Usages
smartbank
9
17k
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
210
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
290
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
1
250
普段使ってるClaude Skillsの紹介(by Notebooklm)
zerebom
8
2.5k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9.9k
Featured
See All Featured
Discover your Explorer Soul
emna__ayadi
2
1k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
220
エンジニアに許された特別な時間の終わり
watany
106
220k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
680
sira's awesome portfolio website redesign presentation
elsirapls
0
94
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
98
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.8k
Why Our Code Smells
bkeepers
PRO
340
58k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
410
Rails Girls Zürich Keynote
gr2m
95
14k
How to build a perfect <img>
jonoalderson
0
4.8k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
410
Transcript
Distributed TensorFlow Tien Dinh
None
None
None
None
TensorFlow: Expressing High-Level ML Computations Core in C++ • Very
• low overhead Different • front ends for specifying/driving the computation Python • and C++ today, easy to add more
Computation is a dataflow graph Graph of Nodes • ,
called Operations or ops Edges are N • -dimensional arrays: Tensors
Computation is a dataflow graph WITH STATE
Computation is a dataflow graph Distributed
Computation is a dataflow graph Assign Devices to Ops •
TensorFlow inserts Send/Recv Ops to transport tensors across devices • Recv ops pull data from Send ops
Computation is a dataflow graph Assign Devices to Ops TensorFlow
inserts Send/Recv Ops to transport tensors across devices • Recv • ops pull data from Send ops
Distrubuted Training with TensorFlow
Distrubuted Training with TensorFlow
Model Parallelism = split model, share data
Distrubuted Training
Distrubuted Training with TensorFlow
Data Parallelism
Data Parallelism
Data Parallelism
Data Parallelism
Data Parallelism
Data Parallelism
Distributed training mechanisms Graph structure and low-level graph primitives (queues)
allow us to play with synchronous vs. asynchronous update algorithms.
Thanks for your attention!