Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
部署ごとの着眼点や用途を重視した ID解決の検討
Search
Takeshi Hiratsuka - marreta27
May 20, 2025
Business
0
9
部署ごとの着眼点や用途を重視した ID解決の検討
2025-05-20 Snowflake x Salesforce 勉強会 登壇資料
Takeshi Hiratsuka - marreta27
May 20, 2025
Tweet
Share
More Decks by Takeshi Hiratsuka - marreta27
See All by Takeshi Hiratsuka - marreta27
Tableau 新時代で見直すBIツールに求められる価値
marreta27
0
130
生成AIが変える新時代のビジネスインテリジェンス
marreta27
0
330
Mashmatrix で育成する Salesforce 版データ活用人材
marreta27
1
49
もっと Snowflake に向き合うための Salesforce Data Cloud
marreta27
0
99
Account Engagement x Data Cloud の 楽しみ方
marreta27
0
120
Data CloudとTableauを繋ぐSemantic Layer - Dreamforce Global Gathering for Dev/Arch in Tokyo 2024-10-07
marreta27
0
3.9k
あなたの組織でも始められる! Tableauの歩き方 with Tableau Einstein
marreta27
0
53
リバネスグループにおける Salesforce Data Cloud ユースケース 2024-07-16
marreta27
0
190
リバネスグループにおける Salesforce“s” x Tableau ユースケース紹介
marreta27
1
73
Other Decks in Business
See All in Business
ネクストビートコーポレートガイド/corporate-guide
nextbeat
3
81k
VISASQ: ABOUT US
eikohashiba
15
500k
株式会社TableCheck - 会社紹介 Company Profile
tablecheckac
0
500
消防設備について:2720 JAPAN O.K. ロータリーEクラブ ・(有)タナカ消防設備 専務取締役 田中 省吾 会員
2720japanoke
0
720
M&A戦略に関する資料
portpr
0
14k
ソリューションデザイナの紹介
laboroai2016
0
150
航空機設計者がResearcherを社内に広めてみた
aonomasahiro
1
390
c-slide_サービス紹介資料テンプレート
coneinc
0
110
Notes on “Camp”
campinc
0
1.7k
LayerX AI・LLM Division Deck
layerx
PRO
1
36k
エンジニアの紹介
laboroai2016
0
150
01_全社_FLUX採用ピッチ資料_Ver.5.1
flux
PRO
5
160k
Featured
See All Featured
Done Done
chrislema
184
16k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Music & Morning Musume
bryan
46
6.6k
Building Applications with DynamoDB
mza
95
6.4k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.9k
Making Projects Easy
brettharned
116
6.2k
A better future with KSS
kneath
239
17k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Being A Developer After 40
akosma
90
590k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Statistics for Hackers
jakevdp
799
220k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
43
2.4k
Transcript
2025-05-20 Snowflake x Salesforce 勉強会 部署ごとの着眼点や⽤途を重視した ID解決の検討
株式会社リバネスナレッジ 取締役 平塚 武 Leave a Nest Knowledge Co., Ltd.
Board Member, Takeshi Hiratsuka 専⾨分野: データを価値に変換する Salesforce + Data Cloud + Tableau Next Snowflake Squad 2025 DATA Saber Profile 2 𝕏 : marreta27_jp
リバネスナレッジの紹介 3 Salesforce製品活⽤⽀援事業を⾏う組織です。 株式会社リバネスの業務システム部⾨が分社化し設⽴されました。 “ITを使い倒せる組織を増やす”をミッションとして掲げています。 業務システム部門
リバネスグループのビジネスシステム導⼊の歴史 2014年 2015年 2016年 2017年 2018年 2019年 2013年 Pardot Standard
Experience Cloud Heroku Quip CRM Analytics Account Engagement Advance(Einstein) myTrailhead Advertising Studio Tableau 2020年 2021年 Slack 2022年 2023年 2024年 Sales Cloud Sales Cloud Einstein Enterprise Grid Snowflake DataCloud 構造データ化時代 AI黎明期/BI活⽤期 ⽣成AI⾰命期 UE+ 統合 統合 終売
リバネスグループのシステム構成 5 User Staff リバネスグループ⾃⾝でも多くのSalesforce 製品を活⽤しています。
今⽇のテーマ
部署ごとの着眼点や ⽤途を重視した ID解決の検討
ID解決とは 8 MDM(マスターデータ管理)における「ID解決(Identity Resolution)」 は、異なるシステムやデータソースに存在する顧客、製品、取引先などの同 ⼀エンティティのレコードを識別‧統合し、⼀貫性のあるマスターデータを 構築するプロセスです。
MDM とは 9 https://www.ibm.com/jp-ja/think/topics/master-data-management
ID解決の⽬的と重要性 10 企業内では、部⾨やシステムごとに異なる形式でデータが管理されているこ とが⼀般的です。 例えば、営業部⾨とマーケティング部⾨で同⼀の顧客が異なるIDや名称で登 録されている場合、データの重複や不整合が⽣じ、正確な分析や意思決定を 妨げます。 ID解決は、これらの課題を解消し、統⼀されたマスターデータを実現するた めに不可⽋です。
ID解決のプロセス 11 データ収集と 正規化 ⼀致ルールの定義 マッチングと統合 統合プロファイルの 作成 各システムからデータ を収集し、フォーマッ
トや表記の違いを統⼀ します。例えば、「株 式会社ABC」と 「(株)ABC」を同⼀と認 識できるように正規化 します。 データの⼀致を判断す るルールを設定しま す。厳密⼀致(Exact Match)やあいまい⼀ 致(Fuzzy Match)な どがあり、⽒名、住 所、電話番号などの属 性を基に照合します。 定義したルールに基づ き、同⼀エンティティ と判断されたレコード を統合し、単⼀のマス ターレコードを作成し ます。この際、データ の信頼性や最新性を考 慮して統合⽅法を決定 します。 統合されたデータを基 に、エンティティごと の統合プロファイルを 作成し、各システムで 共有‧活⽤できるよう にします。
ID解決のプロセスの弱点
本来の⽬的と異なる着眼点で 収集されたデータや 存在しないデータは解決できない
部署ごとの着眼点や ⽤途を重視した ID解決の検討
15
To Cの例
ID解決の例 ~ Mary Smith の場合 17 『データスチュワードシップデータマネジメント&ガバナンスの実践ガイド』 より
ID解決の例 ~ 住宅所有保険情報と会員情報 18 『データスチュワードシップデータマネジメント&ガバナンスの実践ガイド』 より
ID解決 サバイバーシップ 19 『データスチュワードシップデータマネジメント&ガバナンスの実践ガイド』 より
To Bの例
各部⾨のデータ利⽤⽬的と精度要件 21 部署 主な利⽤⽬的 必要なデータ項⽬例 精度要件 営業部⾨ 顧客管理‧営業活動⽀援 取引先名、所在地、業種、営業ランク 中
経理‧財務 部⾨ 請求‧⽀払い処理、会計連携 法⼈正式名、法⼈番号、請求先住所、 銀⾏⼝座情報 ⾮常に⾼い 購買部⾨ 発注‧取引先管理 仕⼊先名、⽀払条件、所在地 ⾼い 法務部⾨ 契約審査‧リスク管理 正式法⼈名、法⼈格、登記住所 ⾮常に⾼い 情報システム 部⾨ マスタ統合‧他システム連携 ⼀意ID、法⼈番号、 正規化された住所‧名称 ⾮常に⾼い BtoBマーケ ティング部⾨ リード創出、ターゲティング、 セグメンテーション 企業名、業種、売上規模、従業員数、 地域、導⼊製品 中
データが登録される順番 22 データが登録されるシステムにより精度に強弱がある。 ID解決に利⽤できるもしくはID解決するべきか否か、考えることも重要。 営業部⾨ 法務部⾨ システム部⾨ 経理部⾨
Howの話
Salesforce を利⽤しているならば Data Cloud 24
ID解決における調整ルール 25 最新のデータ、最頻のデータ、信頼できるシステムからのデータの 3つを使い分けて、ID解決で適⽤するデータの優先度を決定できる。
Individual 26
ID解決後オブジェクト 27
Engagementを把握するときに都合がいい 28
メールアドレスの標準化 29
電話番号の標準化 30
住所の標準化 31
あいまい⼀致 32
ただし⾮ラテン⽂字は... 33
34 Zero Copy Partner Network
終わりに
株式会社リバネスナレッジ 取締役 平塚 武 Leave a Nest Knowledge Co., Ltd.
Board Member, Takeshi Hiratsuka 専⾨分野: データを価値に変換する Salesforce + Data Cloud + Tableau Next Snowflake Squad 2025 DATA Saber Profile 36 𝕏 : marreta27_jp 積極採用中
37 Data Cloud eBook 監修
None