Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Offline and Reactive apps with Apollo Kotlin
Search
mbonnin
November 07, 2022
Technology
1
55
Offline and Reactive apps with Apollo Kotlin
Slides from Benoit Lubek and Martin Bonnin's talk at droidcon London 2022 🎃
mbonnin
November 07, 2022
Tweet
Share
More Decks by mbonnin
See All by mbonnin
Metadataquoi??
martinbonnin
0
100
Harmonizing APIs, a comparison of GraphQL and OpenAPI through the Spotify API
martinbonnin
1
43
Construisez votre bibliothèque Java/Kotlin
martinbonnin
2
88
Building libraries for the next 25 years
martinbonnin
2
56
Gratatouille: metaprogramming for your build-logic
martinbonnin
2
140
GraphQL 💙 Kotlin, 2024 edition
martinbonnin
1
66
GraphQL_nullability__state_of_the_union.pdf
martinbonnin
1
33
Paris Kotlin Meetup de mai: Gradle 💙 Kotlin
martinbonnin
3
68
What's new in Apollo Kotlin 3
martinbonnin
2
210
Other Decks in Technology
See All in Technology
小さなチーム 大きな仕事 - 個人開発でAIをフル活用する
himaratsu
0
120
浸透しなさいRFC 5322&7208
hinono
0
120
人と組織に偏重したEMへのアンチテーゼ──なぜ、EMに設計力が必要なのか/An antithesis to the overemphasis of people and organizations in EM
dskst
5
600
[OCI Skill Mapping] AWSユーザーのためのOCI(2025年8月20日開催)
oracle4engineer
PRO
2
140
人を動かすことについて考える
ichimichi
2
320
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
30k
mruby(PicoRuby)で ファミコン音楽を奏でる
kishima
1
220
LLMエージェント時代に適応した開発フロー
hiragram
1
410
認知戦の理解と、市民としての対抗策
hogehuga
0
310
LLM時代の検索とコンテキストエンジニアリング
shibuiwilliam
2
1.1k
MySQL HeatWave:サービス概要のご紹介
oracle4engineer
PRO
4
1.7k
Understanding Go GC #coefl_go_jp
bengo4com
0
1.1k
Featured
See All Featured
Building Applications with DynamoDB
mza
96
6.6k
Thoughts on Productivity
jonyablonski
69
4.8k
Optimizing for Happiness
mojombo
379
70k
Building Adaptive Systems
keathley
43
2.7k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.8k
How to Ace a Technical Interview
jacobian
279
23k
Side Projects
sachag
455
43k
Speed Design
sergeychernyshev
32
1.1k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Docker and Python
trallard
45
3.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.6k
Transcript
Caching your data graph Offline & Reactive apps with Apollo
Kotlin
Hello, World! @BoD @MartinBonnin apollographql/apollo-kotlin
What is GraphQL? An open source language to describe and
run your API
What is GraphQL? • Schema ◦ Int, Float, String, Boolean
◦ Objects, Interfaces, Unions ◦ Lists ◦ Nullability • Introspection • Deprecation
APIs in a REST world
https://apis.guru/graphql-voyager/
How does it look in practice query UserQuery { user
{ id login } }
How does it look in practice query UserQuery { user
{ id login avatar { small medium } } }
How does it look in practice query UserQuery { user
{ id login name } } { "data": { "user": { "id": "42", "login": "BoD", "name": "Benoit Lubek" } } }
How does it look in practice query UserQuery { user
{ id login name } } { "data": { "user": { "id": "42", "login": "BoD", "name": "Benoit Lubek" } } }
How does it look in practice query UserQuery { user
{ id email login name } } { "data": { "user": { "id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } }
Caching entities
How to deal with partial entities query ViewerQuery { #
Returns a User viewer { id email avatarUrl } } query UserQuery($id: String) { # Also a User user(id: $id) { id email login name } }
How to deal with partial entities
How to deal with partial entities null means not cached?
null means null?
How to deal with partial entities 👎 both are User
- should share cache
Cache the HTTP response? { "data": { "viewer": { "id":
"42", "email": "
[email protected]
", "avatarUrl": "http://…" } } } { "data": { "user": { "id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } } key: ViewerQuery key: UserQuery(42) same entity, but different keys 👎
Entering Cache normalization Response → List<Record> A Record is a
Map<String, Any?>
Cache normalization { "data": { "user": { "id": "42", "email":
"
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } } Response
Cache normalization { "data": { "user": CacheReference("42"), }, "42": {
"id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } { "data": { "user": { "id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } } Response 2 Records
Adding fields { "data": { "user": CacheReference("42"), }, "42": {
"id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek", } }
Adding fields { "data": { "user": CacheReference("42"), }, "42": {
"id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek", // New Record field "avatarUrl": "https://…", } }
Adding fields { "data": { "user": CacheReference("42"), }, "42": {
"id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek", // New Record field "avatarUrl": "https://…", } } Ids!
What if there’s no id? { "data": { "user": {
"email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } }
Use the field’s path as key { "data": { "user":
CacheReference("data.user"), }, "data.user": { "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } }
What if there are several paths? { "data": { "user":
{…} "comments": [ { "text": "#dcldn22 is awesome 😎", "date": "2022-10-28T10:00Z", "user": { "login": "BoD", "avatarUrl": "https://" }, }, ], } }
Use the field’s path as key { "data": { "user":
CacheReference("data.user"), "comments": [CacheReference("data.comments[0]")], }, "data.user": { "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" }, "data.comments[0]": { "title": "Write retrowave slides!", "checked": true, "user": CacheReference("data.comments[0].user") }, "data.comments[0].user": { "login": "BoD", "avatarUrl": "https://" } } Duplication
Always query your ids
This is all typesafe { "data": { "user": CacheReference("42"), },
"42": { "id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } Data( user=User( id=42,
[email protected]
, login=BoD, name=Benoit Lubek ) ) 2 Records 1 Data class
Apollo Kotlin
Storage: in-memory or persistent val memoryCache = MemoryCacheFactory(maxSizeBytes = 5_000_000)
val apolloClient: ApolloClient = ApolloClient.Builder() .serverUrl(SERVER_URL) .normalizedCache(memoryCache) .build()
Storage: in-memory or persistent val sqlCache = SqlNormalizedCacheFactory(context, "app.db") val
apolloClient: ApolloClient = ApolloClient.Builder() .serverUrl(SERVER_URL) .normalizedCache(sqlCache) .build()
Storage: in-memory and persistent val memoryCache = MemoryCacheFactory(maxSizeBytes = 5_000_000)
val sqlCache = SqlNormalizedCacheFactory(context, "app.db") val memoryThenSqlCache = memoryCache.chain(sqlCache) val apolloClient: ApolloClient = ApolloClient.Builder() .serverUrl(SERVER_URL) .normalizedCache(memoryThenSqlCache) .build()
Watchers
The cache updates after a mutation mutation { updateUser(id: "42",
status: "At dcldn22 😃") { id status } }
The cache updates after a mutation watch() mutate("At dcldn22 😃")
// receives from network "At dcldn22 😃" // updates the cache "At dcldn22 😃" Coroutine 1 Coroutine 2 // receives from network "Work from home 🏡" // wait for cache updates
Single source of truth
Conclusion • Type-safe language + Tooling = 💜 • Offline
support is one line ✈ • Don’t forget your ids!
Where to go from here • Declarative cache ◦ Available
in 3.0 • Client improvements ◦ apollo-normalized-cache-incubating ◦ #3566 (data age) ◦ #3807 (pagination) • Server side caching ◦ @cacheControl ◦ Automated Persisted Queries
For inspiration 🎊 github.com/joreilly/Confetti
Merci! @BoD @MartinBonnin apollographql/apollo-kotlin
It depends.
Declarative cache type User { id: ID! name: String! }
type Query { user(id: ID!): User } extend type User @typePolicy(keyFields: "id") extend type Query @fieldPolicy(forField: "user", keyArgs: "id")
Optimistic updates
Declarative cache type User { id: ID! name: String! }
type Query { user(id: ID!): User } extend type User @typePolicy(keyFields: "id") extend type Query @fieldPolicy(forField: "user", keyArgs: "id")
Schema # schema.graphqls type Speaker implements Node { id: ID!
name: String! company: String session(name: String!): Session sessions(first: Int, after: ID, orderBy: SessionOrder): [Session!] }
Caching entities