Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Offline and Reactive apps with Apollo Kotlin
Search
mbonnin
November 07, 2022
Technology
1
57
Offline and Reactive apps with Apollo Kotlin
Slides from Benoit Lubek and Martin Bonnin's talk at droidcon London 2022 🎃
mbonnin
November 07, 2022
Tweet
Share
More Decks by mbonnin
See All by mbonnin
Metadataquoi??
martinbonnin
0
110
Harmonizing APIs, a comparison of GraphQL and OpenAPI through the Spotify API
martinbonnin
1
48
Construisez votre bibliothèque Java/Kotlin
martinbonnin
2
89
Building libraries for the next 25 years
martinbonnin
2
60
Gratatouille: metaprogramming for your build-logic
martinbonnin
2
150
GraphQL 💙 Kotlin, 2024 edition
martinbonnin
1
69
GraphQL_nullability__state_of_the_union.pdf
martinbonnin
1
33
Paris Kotlin Meetup de mai: Gradle 💙 Kotlin
martinbonnin
3
68
What's new in Apollo Kotlin 3
martinbonnin
2
210
Other Decks in Technology
See All in Technology
現場の壁を乗り越えて、 「計装注入」が拓く オブザーバビリティ / Beyond the Field Barriers: Instrumentation Injection and the Future of Observability
aoto
PRO
1
600
入院医療費算定業務をAIで支援する:包括医療費支払い制度とDPCコーディング (公開版)
hagino3000
0
110
FinOps について (ちょっと) 本気出して考えてみた
skmkzyk
0
210
会社を支える Pythonという言語戦略 ~なぜPythonを主要言語にしているのか?~
curekoshimizu
3
700
Kubernetes self-healing of your workload
hwchiu
0
540
OpenTelemetry が拡げる Gemini CLI の可観測性
phaya72
2
2.3k
AI時代におけるデータの重要性 ~データマネジメントの第一歩~
ryoichi_ota
0
710
オブザーバビリティと育てた ID管理・認証認可基盤の歩み / The Journey of an ID Management, Authentication, and Authorization Platform Nurtured with Observability
kaminashi
1
710
Okta Identity Governanceで実現する最小権限の原則 / Implementing the Principle of Least Privilege with Okta Identity Governance
tatsumin39
0
170
デザインとエンジニアリングの架け橋を目指す OPTiMのデザインシステム「nucleus」の軌跡と広げ方
optim
0
120
Building a cloud native business on open source
lizrice
0
180
Observability — Extending Into Incident Response
nari_ex
1
400
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
Navigating Team Friction
lara
190
15k
Thoughts on Productivity
jonyablonski
70
4.9k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
A Tale of Four Properties
chriscoyier
161
23k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Making Projects Easy
brettharned
120
6.4k
Transcript
Caching your data graph Offline & Reactive apps with Apollo
Kotlin
Hello, World! @BoD @MartinBonnin apollographql/apollo-kotlin
What is GraphQL? An open source language to describe and
run your API
What is GraphQL? • Schema ◦ Int, Float, String, Boolean
◦ Objects, Interfaces, Unions ◦ Lists ◦ Nullability • Introspection • Deprecation
APIs in a REST world
https://apis.guru/graphql-voyager/
How does it look in practice query UserQuery { user
{ id login } }
How does it look in practice query UserQuery { user
{ id login avatar { small medium } } }
How does it look in practice query UserQuery { user
{ id login name } } { "data": { "user": { "id": "42", "login": "BoD", "name": "Benoit Lubek" } } }
How does it look in practice query UserQuery { user
{ id login name } } { "data": { "user": { "id": "42", "login": "BoD", "name": "Benoit Lubek" } } }
How does it look in practice query UserQuery { user
{ id email login name } } { "data": { "user": { "id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } }
Caching entities
How to deal with partial entities query ViewerQuery { #
Returns a User viewer { id email avatarUrl } } query UserQuery($id: String) { # Also a User user(id: $id) { id email login name } }
How to deal with partial entities
How to deal with partial entities null means not cached?
null means null?
How to deal with partial entities 👎 both are User
- should share cache
Cache the HTTP response? { "data": { "viewer": { "id":
"42", "email": "
[email protected]
", "avatarUrl": "http://…" } } } { "data": { "user": { "id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } } key: ViewerQuery key: UserQuery(42) same entity, but different keys 👎
Entering Cache normalization Response → List<Record> A Record is a
Map<String, Any?>
Cache normalization { "data": { "user": { "id": "42", "email":
"
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } } Response
Cache normalization { "data": { "user": CacheReference("42"), }, "42": {
"id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } { "data": { "user": { "id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } } Response 2 Records
Adding fields { "data": { "user": CacheReference("42"), }, "42": {
"id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek", } }
Adding fields { "data": { "user": CacheReference("42"), }, "42": {
"id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek", // New Record field "avatarUrl": "https://…", } }
Adding fields { "data": { "user": CacheReference("42"), }, "42": {
"id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek", // New Record field "avatarUrl": "https://…", } } Ids!
What if there’s no id? { "data": { "user": {
"email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } }
Use the field’s path as key { "data": { "user":
CacheReference("data.user"), }, "data.user": { "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } }
What if there are several paths? { "data": { "user":
{…} "comments": [ { "text": "#dcldn22 is awesome 😎", "date": "2022-10-28T10:00Z", "user": { "login": "BoD", "avatarUrl": "https://" }, }, ], } }
Use the field’s path as key { "data": { "user":
CacheReference("data.user"), "comments": [CacheReference("data.comments[0]")], }, "data.user": { "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" }, "data.comments[0]": { "title": "Write retrowave slides!", "checked": true, "user": CacheReference("data.comments[0].user") }, "data.comments[0].user": { "login": "BoD", "avatarUrl": "https://" } } Duplication
Always query your ids
This is all typesafe { "data": { "user": CacheReference("42"), },
"42": { "id": "42", "email": "
[email protected]
", "login": "BoD", "name": "Benoit Lubek" } } Data( user=User( id=42,
[email protected]
, login=BoD, name=Benoit Lubek ) ) 2 Records 1 Data class
Apollo Kotlin
Storage: in-memory or persistent val memoryCache = MemoryCacheFactory(maxSizeBytes = 5_000_000)
val apolloClient: ApolloClient = ApolloClient.Builder() .serverUrl(SERVER_URL) .normalizedCache(memoryCache) .build()
Storage: in-memory or persistent val sqlCache = SqlNormalizedCacheFactory(context, "app.db") val
apolloClient: ApolloClient = ApolloClient.Builder() .serverUrl(SERVER_URL) .normalizedCache(sqlCache) .build()
Storage: in-memory and persistent val memoryCache = MemoryCacheFactory(maxSizeBytes = 5_000_000)
val sqlCache = SqlNormalizedCacheFactory(context, "app.db") val memoryThenSqlCache = memoryCache.chain(sqlCache) val apolloClient: ApolloClient = ApolloClient.Builder() .serverUrl(SERVER_URL) .normalizedCache(memoryThenSqlCache) .build()
Watchers
The cache updates after a mutation mutation { updateUser(id: "42",
status: "At dcldn22 😃") { id status } }
The cache updates after a mutation watch() mutate("At dcldn22 😃")
// receives from network "At dcldn22 😃" // updates the cache "At dcldn22 😃" Coroutine 1 Coroutine 2 // receives from network "Work from home 🏡" // wait for cache updates
Single source of truth
Conclusion • Type-safe language + Tooling = 💜 • Offline
support is one line ✈ • Don’t forget your ids!
Where to go from here • Declarative cache ◦ Available
in 3.0 • Client improvements ◦ apollo-normalized-cache-incubating ◦ #3566 (data age) ◦ #3807 (pagination) • Server side caching ◦ @cacheControl ◦ Automated Persisted Queries
For inspiration 🎊 github.com/joreilly/Confetti
Merci! @BoD @MartinBonnin apollographql/apollo-kotlin
It depends.
Declarative cache type User { id: ID! name: String! }
type Query { user(id: ID!): User } extend type User @typePolicy(keyFields: "id") extend type Query @fieldPolicy(forField: "user", keyArgs: "id")
Optimistic updates
Declarative cache type User { id: ID! name: String! }
type Query { user(id: ID!): User } extend type User @typePolicy(keyFields: "id") extend type Query @fieldPolicy(forField: "user", keyArgs: "id")
Schema # schema.graphqls type Speaker implements Node { id: ID!
name: String! company: String session(name: String!): Session sessions(first: Int, after: ID, orderBy: SessionOrder): [Session!] }
Caching entities