Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Story Points Suck!
Search
Mauro Da Silva
November 16, 2024
Programming
0
66
Story Points Suck!
Mauro Da Silva
November 16, 2024
Tweet
Share
More Decks by Mauro Da Silva
See All by Mauro Da Silva
What Submarines & Chickens Can Teach You About Teams
maurodasilva
0
94
Other Decks in Programming
See All in Programming
Vibe codingでおすすめの言語と開発手法
uyuki234
0
130
複雑なUI設計への銀の弾丸 「オブジェクト指向UIデザイン」
teamlab
PRO
2
110
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
420
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
980
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
280
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
150
認証・認可の基本を学ぼう後編
kouyuume
0
250
チームをチームにするEM
hitode909
0
400
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
140
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
200
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
650
JETLS.jl ─ A New Language Server for Julia
abap34
2
460
Featured
See All Featured
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
How to make the Groovebox
asonas
2
1.8k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
0
46
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Making Projects Easy
brettharned
120
6.5k
Abbi's Birthday
coloredviolet
0
3.8k
Music & Morning Musume
bryan
46
7k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
31
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
260
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
110
Building an army of robots
kneath
306
46k
Believing is Seeing
oripsolob
0
15
Transcript
Exploring a unique approach to estimation Managing Consultant Telstra Purple
THE HISTORY
…using them [story points] to predict “when we’ll be done”
is at best a weak idea
PROBLEMS WITH STORY POINTS
7:20AM Story Point
How long does it take to get to work? EXPERIMENT
1st March 2nd March 7:00AM 8:10AM 7:00AM 7:30AM 3rd March 7:00AM 7:20AM
Plans based on average are wrong on average
None
PRINCIPLES OF FORECASTING Reforecast with new information Think probabilistically, not
deterministically
None
Scatterplot Cycle Time (Days)
DON’T ESTIMATE STORIES
WORK IN PROGRESS
Monte Carlo Simulation
EXPERIMENT
EXPERIMENT
1 4 10,000x BASIC
When will all the work be 1 1st Feb 2nd
Feb 3rd Feb 4th Feb 0 2 1
When will be
How stories can be
START FORECASTING in just Four weeks
LITTLE’S LAW AVERAGE CYCLE TIME = AVERAGE WIP / AVERAGE
THROUGPUT
Use the assumptions of to verify stability
CFD
Average Arrival Rate Average Departure Rate matches
Finish all work that is started
Work in Progress should be constant
Work in Progress should be constant Average Age of
USE consistent UNITS
Think probabilistically
None
scatterplot
stories with
Completion Predict with Monte Carlo Simulation
Ensure stability with assumptions of
IMPACTS Tomorrows PREDICTABILITY Today’s actions
Thank you
None