Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
強化学習を可視化するchainerrl visualizerを動かしてみた
Search
mogamin
January 28, 2019
Technology
1
620
強化学習を可視化するchainerrl visualizerを動かしてみた
強化学習を可視化するchainerrl visualizerを動かしてみた
mogamin
January 28, 2019
Tweet
Share
More Decks by mogamin
See All by mogamin
エンプラRAG構築の最適解!Oracle AI Vector Searchによる明日からできるRAG!
mogamin
1
230
RDB脳はあなたに送る KVSモデリングのノウハウを公開! AWS DynamoDB、AzureCosmosDBでのKVS設計はこうしよう!
mogamin
1
630
Deep dive into application-level network management & observability with AppMesh
mogamin
0
840
Introducing Amazon SageMaker AutoPilot
mogamin
1
630
EfficientNet:Rethinking Model Scaling for Convolutional Neural Networks
mogamin
0
160
Pytorch強化学習プラットフォーム? Horizonのドキュメントを読む
mogamin
0
2.2k
Other Decks in Technology
See All in Technology
特別捜査官等研修会
nomizone
0
540
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.6k
【U/Day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
1.4k
JEDAI認定プログラム JEDAI Order 2026 エントリーのご案内 / JEDAI Order 2026 Entry
databricksjapan
0
170
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
2.2k
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
190
AlmaLinux + KVM + Cockpit で始めるお手軽仮想化基盤 ~ 開発環境などでの利用を想定して ~
koedoyoshida
0
150
NIKKEI Tech Talk #41: セキュア・バイ・デザインからクラウド管理を考える
sekido
PRO
0
200
20251219 OpenIDファウンデーション・ジャパン紹介 / OpenID Foundation Japan Intro
oidfj
0
450
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
210
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
570
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
760
Featured
See All Featured
How to Ace a Technical Interview
jacobian
281
24k
Designing Experiences People Love
moore
143
24k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Designing for Performance
lara
610
69k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
2
62
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Building AI with AI
inesmontani
PRO
1
570
Heart Work Chapter 1 - Part 1
lfama
PRO
3
35k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.8k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Transcript
強化学習を可視化する chainerrl-visualizerを動かしてみた 28.Jan.2019 Machine Learning Casual Talks #8 LT Takashi,MOGAMI
@mogamin
WHO AM I? Takashi,MOGAMI / @mogamin ウルシステムズ株式会社 シニアコンサルタント 画像処理(OpenCV)、ディープラーニング系をメインに業務をしておりま す。最近では強化学習を使った研究開発プロジェクトを推進しています
が、時間を見つけてはkaggleやSIGNATEで技術を磨いております。 - Scrum Master - AWS Certified Solutions Architect Professional
None
AGENDA - 「ありの行列」の話 - 強化学習とは - 強化学習のつらい所 - chainerrl-visualizer -
try! demo. ※本内容は個人の見解です。所属組織とは一切関係ありません。
強化学習とは - エージェント(学習の主体)が環境から得られる状態に対し て、報酬を最大化するように行動を学習する。 - 何がうれしいかというと、正答データがない問題でも報 酬を正しく定義できれば問題を解くことができる。 ※https://www.slideshare.net/ssuserf2c42e/20190125-minecraft-129160073 Agent Environment
action observation, reward
強化学習のつらい所 - 報酬設計がむずい - いつ報酬を与えるべきか、いつ罰を与えるべきか - マルチワーカーが苦手 - 画像認識のようにGPUをフルに使えない。CPUパワーに依存する -
シュミレータの開発コストが高い - 実際の環境、状態を網羅するシュミレータが必要 - マルコフ決定過程をちゃんと成立させて作る - 状態が変わらなければ意味がないaction? - 方策設計はどうあるべきか - いつまでも奇跡、神の手を待っていると永遠に終わらない。 - アルゴリズム部、Deep Q-Network部、超絶 試行錯誤 - やってみないとわからない。評価軸は?まずは可視化が必要!
そこで、Chainerrl-Visualizer - XXX すごく簡単。 $ git clone chainerrl-visualizer $ cd
いずれかのexampleフォルダへ... $ python ./main.py
Chainerrl-Visualizer - XXX 当該STEPにおけるSTEP時 系列なOUTPUT層の出力値 (100%積上げ) STEP時系列なOUTPUT層 の出力値(100%積上げ) その時の画面とGrad-CAM による特徴抽出の可視化
try! demo.
ありがとうございました。 We are now hiring! @mogaminまで