Michael Green: Deep probabilistic neural networks - A way forward

Michael Green: Deep probabilistic neural networks - A way forward

In a world where deep learning and other massively scalable perception machines are at our disposal, allowing us to build amazing applications, the time is now ripe to move beyond the concept of pure perception and into broader Artificial Intelligence (AI). The path towards AI goes through what's missing in many applications today; Inference. Only when we combine Inference machines and Perception machines can we truly talk about AI. The benefit will be a machine that knows what to expect before observing it's environment and that can take prior information into account. With ever more mature Probabilistic programming languages available, we can express this marriage of perception and inference. In this talk, we will scrape the surface of how to build Bayesian predictive inference machines using Probabilistic programming.

3c3f3f18c25ea5283640ebd23553e7c6?s=128

MunichDataGeeks

November 23, 2017
Tweet

Transcript

  1. None
  2. None
  3. None
  4. None
  5. None
  6. None
  7. data { int<lower=0> N; vector[N] x; vector[N] y; } parameters

    { real alpha; real beta; real<lower=0> sigma; } model { real mu[N] = alpha + beta * x; y ~ normal(mu, sigma); } data { int<lower=0> N; vector[N] x; vector[N] y; } parameters { real alpha; real beta; real<lower=0> nu; real<lower=0> sigma; } model { real mu[N] = alpha + beta * x; y ~ student_t(nu, mu, sigma); }
  8. data { int<lower=0> N; vector[N] x; vector[N] y; } parameters

    { real alpha; real beta; real<lower=0> sigma; } model { real mu[N] = alpha + beta * x; y ~ normal(mu, sigma); } data { int<lower=0> N; vector[N] x; vector[N] y; } parameters { real alpha; real beta; real<lower=0> sigma; } model { vector[N] mu = exp(x*beta+alpha); y ~ neg_binomial_2(mu, sigma); }
  9. None
  10. None
  11. None
  12. None
  13. None
  14. None
  15. None
  16. None
  17. None
  18. None
  19. None
  20. None
  21. None
  22. None
  23. None
  24. None
  25. None
  26. None
  27. None
  28. None
  29. None
  30. None
  31. None
  32. None
  33. None
  34. None
  35. None
  36. None
  37. None
  38. None
  39. None
  40. None
  41. None
  42. None
  43. None
  44. None
  45. None
  46. None
  47. None
  48. None
  49. None
  50. None
  51. None
  52. ## setting value ## version R version 3.4.2 (2017-09-28) ##

    system x86_64, linux-gnu ## ui X11 ## language en_US:en ## collate en_US.UTF-8 ## tz Europe/Copenhagen ## date 2017-11-23 ## ## package * version date source ## assertthat 0.1 2013-12-06 CRAN (R 3.4.2) ## backports 1.1.1 2017-09-25 CRAN (R 3.4.2) ## base * 3.4.2 2017-10-29 local ## bindr 0.1 2016-11-13 CRAN (R 3.4.2) ## bindrcpp * 0.2 2017-06-17 CRAN (R 3.4.2) ## bitops 1.0-6 2013-08-17 CRAN (R 3.4.2) ## caTools 1.17.1 2014-09-10 CRAN (R 3.4.2) ## colorspace 1.3-2 2016-12-14 CRAN (R 3.4.2) ## compiler 3.4.2 2017-10-29 local ## datasets * 3.4.2 2017-10-29 local ## devtools 1.13.4 2017-11-09 CRAN (R 3.4.2) ## digest 0.6.12 2017-01-27 CRAN (R 3.4.2) ## dplyr * 0.7.4 2017-09-28 CRAN (R 3.4.2) ## evaluate 0.10 2016-10-11 CRAN (R 3.4.2) ## gdata 2.18.0 2017-06-06 CRAN (R 3.4.2) ## ggplot2 * 2.2.1 2016-12-30 CRAN (R 3.4.2) ## glue 1.2.0 2017-10-29 CRAN (R 3.4.2) ## gplots * 3.0.1 2016-03-30 CRAN (R 3.4.2)